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ABSTRACT

We define some new collection of sets in ideal topological spaces and characterize them
in terms of sets already defined. Also, we give a decomposition theorem for o — Z—open
sets and open sets. At the end, we discuss the property of some collection of subsets in
*—extremally disconnected spaces.

RESUMEN

Definimos una nueva coleccién de conjuntos en espacios topoldgicos ideales y caracteri-
zamos estos en términos de conjuntos ya definidos. También damos un teorema de descom-
posicion para o —Z— abiertos y conjuntos abiertos. Finalmente discutimos la probabilidad
de algunas colecciones de subconjuntos en espacios disconexos x— extremos.
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1 Introduction

By a space, we always mean a topological space (X, 7) with no separation properties assumed. If
A C X, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, 7). An ideal T
on a topological space (X, 7) is a nonempty collection of subsets of X which satisfies (i) A € Z and
B C A implies B € 7 and (ii) A € T and B € 7 implies AU B € Z. Given a topological space (X, 7)
with an ideal Z on X and if p(X) is the set of all subsets of X, a set operator (.)* : p(X) — p(X), called
a local function [14] of A with respect to 7 and Z, is defined as follows: for A C X, A*(Z,7)={z €
X |UNA ¢T for every U € 7(x)} where 7(z) = {U € 7 | z € U}. We will make use of the basic
facts concerning the local function [11, Theorem 2.3] without mentioning it explicitly. A Kuratowski
closure operator cl*() for a topology 7*(Z,7), called the * — topology, finer than 7 is defined by
cd*(A) = AU A*(Z,7) [16]. When there is no chance for confusion, we will simply write A* for
A*(Z,7) and 7 or 7*(Z) for 7*(Z, 7). int*(A) will denote the interior of A in (X, 7*). If Z is an ideal
on X, then (X, 7,7) is called an ideal space. A subset A of an ideal space (X, 7,7) is 7 — closed or
* — closed [11](resp.x — per fect[10] ) if A* C A(resp.A = A*). A subset A of an ideal space (X, 7,7) is
said to be a t — T — set[8] if int(A) = int(cl*(A)). A subset A of an ideal space (X, 7,7) is said to be
d — I — open|[2](resp. a — T — open [8],pre — I — open [6],semi — I — open [8], strong 3 — T — open[9])
if int(cl*(A)) C c*(int(A))(resp. A C int(cl*(int(A))), A C int(cl*(A4)), A C c*(int(A), A C
cl*(int(cl*(A))). We will denote the family of all § — Z—open (resp. « — Z—open, pre—Z—open,
semi—Z —open, strong 3—Z—open) sets by ZO(X)(resp.aZO(X), PZO(X),SZTO(X), sfZO(X)). The
largest preZ—open set contained in A is called the pre —Z — interior of A and is denoted by pZint(A).
For any subset A of an ideal space (X, 7,7), pZint(A) = ANint(cl*(A)) [15, Lemma 1.5].

2 Subsets of Ideal Topological Spaces

Let (X,7,Z) be an ideal space. A subset A of X is said to be a semi* — I—open set [7] if
A C c(int*(A)). A subset A of X is said to be a semi* — IT—closed set [7] if its complement is a
semi* — IT—open set. Clearly, A is semi* — I—closed if and only if int(cl*(A)) C A if and only if
int(cl*(A)) = int(A) and so semi* — T—closed sets are nothing but t — T—sets. A is said to be a
semipre* — I—closed set if int(cl*(int(A))) C A. Clearly, A is said to be a semipre* — I—closed if
and only if int(cl*(int(A))) = int(A) if and only if A is o* — Z—set [8]. Clearly, X is both semi* —
T—closed and semipre* — IT—closed. The smallest semi* — Z—closed (resp. semipre* — IT—closed) set
containing is called the semi* — T — closure (resp.semipre* — I — closure) of A and is denoted by
SZcl(A)(resp.spZcl(A)). A subset A of an ideal space (X, 1,T) is said to be a Br—set[8] if A=UNV
where U is open and V is a t — Z—set. The easy proof of the following Theorem 2.1 is omitted
which says that the arbitrary intersection of semi* — IT—closed (resp. semipre* — I—closed) set is a
semi* — IT—closed (resp. semipre* — IT—closed) set.

Theorem 2.1. Let (X,7,Z) be an ideal space and A C X. If {A, | « € A} is a family of semi* —
T—closed (resp. semipre* — I—closed) sets, then NA, is a semi* — IT—closed (resp. semipre* —

T—closed) set.

Theorem 2.2. Let (X, 7,7) be an ideal space and A C X. Then the following hold.
(a)SZcl(A) = AU int(cl*(A)).
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(b)spZcl(A) = AU int(cl*(int(A))).
Proof. The proof follows from Theorem 1.3 and Theorem 3.1 of [5].

Every semi* — I—closed set is a semipre* — I—closed set but not the converse as shown by
the following Example 2.3. Theorem 2.4 below shows that the reverse direction is true if the set is
semi—Z—open. Theorem 2.5 gives a characterization of t — I —sets.

Example 2.3. Consider the ideal space (X, 7,7) where X = {a,b,c,d}, 7 = {0,{d}, {a,c},{a,c,d}, X}
and T = {0,{c},{d},{c,d}}. If A ={a}, then

int(cl*(int(A))) = int(cl*(@)) = 0 C A and so A is semipre* — I—closed. Since int(cl*(A)) =
int(cl*({a})) = int({a,b,c}) = {a,c} € {a}, A is not semi* — I—closed.

Theorem 2.4. Let (X, 7,7) be an ideal space and A C X be semipre* — IT—
closed. If A is semi—Z—open, then A is semi* — I—closed.

Proof. If A is semi—Z—open, then A C cl*(int(A)) and so cl*(A) C cl*(int(A)). Now int(cl*(A)) C
int(cl*(int(A))) C A and so A is semi* — I—closed.

Theorem 2.5. Let (X, 7,7) be an ideal space and A C X. Then the following are equivalent.
(a) A is at — T—set.

(b) A is semi* — T—closed.

(c) A is a semipre* — IT—closed Br—set.

Proof. Enough to prove that (c)=(a). Suppose A is a semipre* —I—closed Bz—set. Then A = UNV
where U is open and V is a t — T—set. Now int(cl*(A)) = int(cl*(U NV)) C int(c*(U) Nel*(V)) =
int(c*(U)) Nint(c*(V)) = int(cd*(U)) Nint(V) = int(c*(U) Nint(V)) C int(c*(U Nint(V)) =
int(c*(int(U N'V))) = int(cl*(int(A))) C A and so int(cl*(A)) C int(A). But int(A) C int(cl*(A))
and so int(A) = int(cl*(A)) which implies that A is a t — T—set.

The following Example 2.6 shows that the union of two semi* — Zclosed (resp. semipre* —
T—closed) set is not a semi* — Zclosed (resp. semipre* — IT—closed) set.

Example 2.6. Consider the ideal space(X,7,T) of Example 2.3. If A = {a,c} and B = {d}, then
nt(cl*(A)) = int(cl*({a,c})) = int({a,b,c}) = {a,c} = A and so A is semi* — T—closed and hence
semipre* — I—closed. Also, int(cl*(B)) = int(cl*({d})) = int({d}) = {d} = B. Therefore, B is
semi* — I—closed and so semipre* — I—closed. But int(cl*(int(A U B))) = int(cl*(int({a,c,d}))) =
int(cl*({a,c,d})) = int(X) =X € AUB and so AU B is not semipre* — I—closed and hence AU B
is not semi* — I —closed.

A subset A of an ideal space (X, 7,T) is said to be a Cz—set [8] if A =U NV where U is open
and V is a semipre* —Z—closed set. We will denote the family of all Cz—set by Cz(X). The following
Theorem 2.7 gives a characterization of Br—sets and Cz—sets.

Theorem 2.7. Let (X, 7,7) be an ideal space and A be a subset of X. Then the following hold.
(a) A is a Br—set if and only if there exists an open set U such that A =U N SZcl(A).
(b) A is a Cz—set if and only if there exists an open set U such that A = U N spZcl(A).

Proof. (a) Suppose A is a Br—set. Then A = U NV where U is open and V is a t — T—set.
Since t — IT—sets are semi* — I—closed sets, SZcl(V) = V. Now A = UNA C UnN SZcl(A) C
UNSZ(V)=UNV = A and so A =U N SZcl(A). Conversely, suppose A =U N SZcl(A) for some
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open set U. Since SZcl(A) is semi* — I—closed, int(cl*(SZcl(A))) C SZcl(A). Also, int(SZcl(A)) C
int(cl*(SZcl(A))) C SZcl(A) and so int(SZcl(A)) = int(cl*(SZcl(A))) which implies that SZcl(A) is
at — IT—set. Therefore, A is a Br—set.
(b) The proof is similar to that of (a).

A subset A of an ideal space (X, 7,T) is said to be a Ajz—set (resp. Biz—set [4](azM1—set [1]))
if A=UNV where U is open (resp.cc — IT—open ) and cl*(int(V')) = X. We will denote the family of
all Biz—sets (resp. Aiz—sets) by Bi7(X) (resp.Aiz7(X)). Clearly, Ai7(X) C Biz(X). The following
Theorem 2.8 shows that Byz—sets and Ai7—sets are nothing but o« — Z—open sets.

Theorem 2.8. Let (X,7,7) be an ideal space. Then Bi17(X) = oZO(X) = A1z(X).

Proof. Suppose A € B17(X). Then A =U NV where U is « — I—open and cl*(int(V)) = X. Since
V c X =int(cd*(int(V))), V € aZO(X). Since aZO(X) is a topology on X, A € aZO(X) and so
Blz(X) C CYIO(X)

Suppose A € aZO(X). Then A C int(cl*(int(A))) and so A = int(cl*(int(A)))N(X —(int(cl* (int(A)))—
A)) = int(c*(int(A))) N (X — int(cl*(int(A)))) U A). Also, cl*(int((X — int(cl*(int(A)))) U A)) D
c*(int(X —int(cl*(int(A)))) Uint(A)) = cl*(int(X —int(cl*(int(A))))) U c*(int(A)) D cl*(int(X —
c*(int(A))))U cl*(int(A)) D int(X —cl*(int(A)))Ucl* (int(A)) D int((X —cl*(int(A)))Ucl* (int(A)))
int(X) = X. Therefore, A € A17(X) which implies that aZO(X) C A;17(X).

Clearly, A17(X) C B1z(X). This completes the proof.

A subset A of an ideal space (X, T,T) is said to be an RT—open set [17] if A = int(cl*(A)). We
will denote the family of all RI—open sets by RZO(X). In [17], it is established that RIO(X) is a
base for a topology 77 and 7s C 77 C T where 75 is the semiregularization of 7. The following Theorem

)

2.9 gives characterizations of pre—Z—open sets in terms of RZ—open sets.

Theorem 2.9. Let (X,7,7) be an ideal space and A C X. Then the following are equivalent.
(a) A is pre—T—open.

(b) There exists an RI—open set G such that A C G and cl*(G) = cl*(A).

(c)A =GN D where G is RI—open and D is 7" —dense.

(d)A =GN D where G is open and D is T*—dense.

Proof. (a)=-(b). Suppose A is pre—Z—open. If G = int(cl*(A)), then A C G and int(cl*(G)) =
int(cl*(int(cl*(A)))) = int(cl*(A)) = G which implies that G is an RT—open set containing A. Also,
cd*(A) C d*(GQ) = c*(int(cl*(A))) C cl*(A) which implies that cl*(A) = cl*(G). This proves (b).
(b)=(c). Suppose G is an RT—open set such that A C G and cI*(G) = cl*(A). If D = AU (X — G),
then A= GN D and D is 7*—dense. This proves (c).

(c)=(d) is clear.

(d)=(a) follows from Lemma 4.3 of [3].

A subset A of an ideal space (X, 7,T) is said to be a Ayz—set (resp. Baz—set [4](azMa—set [1])
)if A=UnNYV where U is open (resp.c — I—open ) and cl*(V) = X. We will denote the family of
all Aoz—sets (resp. Baz—sets) by Asz(X) (resp.Baz(X)). Clearly, Asz(X) C Baz(X). The following
Theorem 2.10 shows that Asz—sets and Bor—sets are nothing but pre—Z—open sets. Also, it shows
that the converse of Proposition 2.6 of [4] is true.

Theorem 2.10. Let (X, 7,7) be an ideal space. Then Asz(X) = PZO(X) = Baz(X).
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Proof. By Theorem 2.9(d), Axz(X) = PZO(X). Since A2z(X) C Baz(X), it is enough to prove
that Baz(X) C Agz(X). Suppose A € Bayz(X). Then A = UNV where U is o« — Z—open and
cd*(V) = X. Now A C U C int(c*(int(U))) = int(c*(int(U N X))) = int(c*(int(U N c*(V)))) C
int(cl*(int(c*(UNV)))) = int(cd*(UNV)) =int(cl*(A)) and so A € PIO(X). This completes the
proof.

Clearly, A17(X) C A2z (X). The following Example 2.11 shows that an Asz—set need not be
an Ajz—set.

Example 2.11. Consider the ideal space (X,7,T) where X = {a,b,c}, ™ = {0,{c}, X} and T =
{0,{c}}. If A = {a,c}, then A is an Asz—set. But cl*(int(A)) = int(A) U (int(A))* = {c} # X.
Hence A is not an Aiz—set.

A subset A of an ideal space (X, 1,7) is said to be an azNs—set [1] if A = U NV where U is
a—T—open and V is x—closed. We will denote the family of all az N5—sets of an ideal space (X, 7,7)
by azN5(X). A subset A of an ideal space (X, 7,7) is said to be an T—locally closed [6] (resp. weakly
I—locally closed [13]) set if A = U NV where U is open and V is a x—perfect (resp. *—closed) set.
By Theorem 2.9 of [15], A is weakly T—locally closed if and only if A = U N cl*(A) for some open
set U. The family of all weakly T—Ilocally closed sets is denoted by WILC(X). Clearly, every weakly
I—locally closed set is an az Ns—set but not the converse as shown by the following Example 2.12.
Theorem 2.13 below gives a characterization of az N5—sets.

Example 2.12. [4, Example 2.2]Consider the ideal space (X,7,Z) where X = {a,b,c},
7 = {0,{a},{a,c}, X} and T = {0,{b},{c}, {b,c}}. If A = {a,b}, then int(cl*(int(4))) =
int(cl*(int({a,b}))) = int(cl*({a})) = int({a,b,c}) = X D A and so A is « — T—open and hence
an azNs—set. But there is no open set U such that A = U N cl*(A) where cl*(A) = X. Hence A is
not a weakly T—Ilocally closed set.

Theorem 2.13. Let (X,7,7) be an ideal space and A C X. Then A is azNs—set if and only if
A=Unc*(A) for some U € aZO(X).

Proof. If A is an azNs—set, then A = U NV where U is « — I—open and V is x—closed. Since
AcCV, cd*(A) ccad*(V) =V and soUnNc*(A) cUNV = A C Und*(A) which implies that
A =Uncl*(A). Conversely, suppose A = U Ncl*(A) for some U € aZO(X). Since cl*(A) is x—closed,
A is an az N5—set.

A subset A of an ideal space (X, T,T) is said to be an TR—closed set [1] if A = cl*(int(A)). A subset
A of an ideal space (X, T,T) is said to be an al A —set [4](az No—set [1]) (resp.Azp—set [1]) if A= UNV
where U is an a«—Z—open (resp. open) set and V is an TR—closed set. Azr—sets are called as Az—sets
in [4]. We will denote the family of all a« A;—sets (resp.Arr—sets) by aAz(X)(resp.Azr(X)). Clearly,
every Arrp—set is an auAr—set but the converse is not true [4, Example 2.2]. Theorem 2.14 below
shows that atAj—sets are nothing but semi—Z—open sets which shows that the reverse direction of
Proposition 2.4 of [4] is true and each such set is both a strong 3 — IT—open set and an az Ns—set.

Theorem 2.14. Let (X, 7,7) be an ideal space. Then aAz(X) = sBZ0O(X) NazNs(X) = STO(X).

Proof. Suppose A € aAz(X). Then A=UNV where U € oZO(X) and V is an TR—closed set. Now
A=UNV Cint(cd*(int(U))) Ncl*(int(V)) C c*(int(c*(int(U))) Nint(V)) = cl*(int(cl* (int(U)) N
int(V))) C el*(int(c*(int(U)Nint(V)))) = cl*(int(c* (int(UNV)))) = c*(int(UNV)) = cl*(int(A)) C
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cl*(int(cl*(A))) and so A € sBIO(X). Since V is x—closed, A € arNs(X) and so aAz(X) C
sBTO(X) N azN5(X). Conversely, suppose A € sBZO(X) N azN5(X). A € sfZO(X) implies that
A C c*(int(cd*(A))) and A € azNs(X) implies that A = U N cl*(A) where U € aZO(X). Since
A C U A C Uncd*(int(cd*(A)) c Unc*(A) = A and so A = U N cl*(int(cl*(A))). Since
cl*(int(cl*(A))) is TR—closed, A € aAz(X) and so sBZO(X) N azN5(X) C aAz(X). Therefore,
aAz(X) = sfTO(X) NazN5(X).

If A € STO(X), then A € sBZO(X) by Proposition 1(d) of [9]. Moreover, if V.= AU (X —
cl*(int(A))), then A = VNel*(int(A)). Also, int(cl*(int(V))) = int(cl* (int(AU(X —cl*(int(A)))))) D
int(cl* (int(A)Uint (X —cl*(int(A))))) = int(cl* (int(A)) U cl* (int(X —cl*(int(A))))) D int(cl*(int(A))
U int(X — c*(int(4)))) D int(int(cl*(int(A)) U (X — cl*(int(A))))) = int(X) = X D V and so
V is o — I—open. Therefore, A € azN5(X) and hence STO(X) C sBZO(X) N azN5(X). Con-
versely, suppose A € sBZO(X) N azNs(X). A € azN5(X) implies that A = U NV where U is
a —I—open and V is x—closed. Since A € sBZ0O(X), A C cl*(int(cl*(A))) = cd*(int(c*(UNV))) C
cl*(int(cl* (int(cl* (int(U))) NV))) C

c*(int(cl* (int(cl* (int(U)))) N V) = c*(@int(c*(int(U)) N V) = c*(int(c*(int(U))) Nint(V)) C
c*(int(c* (int(U) Nint(V)))) = c*(int(c* (int(UNV)))) = c*(int(UNV)) = cl*(int(A)). Therefore,
A € STO(X) which implies that sfZO(X) N azNs(X) C STO(X). Hence sBZO(X) N azNs(X) =
STO(X).

Corollary 2.15. Let (X, 7,7) be an ideal space and A C X. Then the following are equivalent.
(a) A is o — IT—open.

(b) A is pre—T—open and semi—Z—open [4, Proposition 1.1].

(c) A is a Baz—set and aAz—set[4, Theorem 2.3].

Proof. (a) and (b) are equivalent by Proposition 1.1 of [4]. (b) and (c) are equivalent by Theorem
2.10 and Theorem 2.14.

Corollary 2.16. Let (X, 7,7) be an ideal space and A C X. Then the following are equivalent.
(a) A is open.

(b) A is a« — T—open and Azg — set.

(c) A is pre—T—open and Azr—set.

(d) A is a — I—open and weakly T—locally closed.

(e) A is « — T—open and Br—set.

(f) A is o — IT—open and Cz—set.

Proof. (a) and (b) are equivalent by Theorem 2.1 of [4].
That (b) implies (c) is clear.

(c) and (d) are equivalent by Proposition 2.2 of [4].

(d) implies (e) and (e) implies (f) are clear.

(f) implies (a) follows from Proposition 3.3 of [8].

A subset A of an ideal space (X, T,T) is said to be a Asr—set (resp.Bsz—set [4](azN1—set [1]) )
if A=U NV where U is open (resp.c — Z—open ) and cl*(int(V)) C V. We will denote the family of
all Asz—sets (resp. Bsz—sets) by Asz(X) (resp.Bsz(X)). Clearly, Asz(X) C Bsz(X). The following
Example 2.17 shows that the reverse direction is not true. Example 2.18 below shows that Aoz —sets
and Asz—sets are independent concepts. Theorem 2.19 below gives a characterization of Azpr—sets
in terms of Asz—sets.
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Example 2.17. Consider the ideal space (X, 7,ZT) of Example 2.12. If A = {a, b}, then int(cl*(int(A)))
= int(cl*(int({a,b}))) = int(cl*({a})) = int(X) =X D A and so A is an oo — IT—open set and hence
A is a Bsz—set. Since cl*(int(A)) € A and X is the only open set containing A, A is not an Asz—set.

Example 2.18. (a) Consider the ideal space (X,7,Z) of Example 2.12. If A = {a,b}, then A is not
an Asr—set. Since c*(A) = AU A* = {a, b} UX = X, and so A is an Asz—set.

(b) Consider the ideal space (X, 7,T) where X = {a,b,c,d}, 7 ={0,{d},{a,c},
{a,¢,d}, X} and T = {0,{c},{d},{c,d} }. If A = {a,b,c}, then cl*(int(A)) = int(A) U (int(A))* =
{a,c}U{a,b,c} = {a,b,c} = A and so A is an Agz—set. Since cI*(A) = AUA* ={a,b,c} # X, A is

not an Aaz—set.
Theorem 2.19. Let (X, 7,Z) be an ideal space . Then Azr(X) = SZO(X) N Asz(X).

Proof. Suppose A € Azr(X). Clearly, A € A3z (X). By Theorem 3.3 of [1], A € STO(X). Therefore,
Azr(X) C STO(X)NAsz(X). Conversely, suppose A € STO(X)NAsz(X). A € Asz(X) implies that
A=UnNV where U is open and cl*(int(V)) C V. A € STO(X) implies that A C cl*(int(A)) and so
A=Anc*(int(A) = UNV)Ncd*(int(UNV)) cUNc*(int(UNV)) =UnNc*Unint(V)) C
Uncd*U)ne*@int(V)) CcUNV = A and so A = UNcd*(int(UNV)) = U N cl*(int(A)). Since
cl*(int(A)) is TR—closed, A € Azg(X). Therefore, Azr(X) = STO(X) N Asz(X).

Corollary 2.20. Let (X, 7,7) be an ideal space and A C X. Then the following are equivalent.
(a)A € Azr(X).

(b)A S SIO(X) N A31(X).

(C) Ae OéAz(X) N AgI(X).

(d)A € sBTO(X) NazNs(X) N Azz(X).

(e)A € sBZTO(X)NWILC(X).

Proof. (a), (b), (c) and (d) are equivalent by Theorem 2.14 and Theorem 2.19.
(a) and (e) are equivalent by Theorem 2.10 of [15].

By Remark 3.3 of [8], every Br—set is a Cz—set but the reverse direction is not true. The following
Theorem 2.22 gives characterizations of Bz—sets in terms of Cz—sets. A subset A of an ideal space
(X, 7,7) is said to be an aBr—set (az N3—set [1]) if A= UNV where U € aZO(X) and V'is at—T—set.
A subset A of an ideal space (X, 1,T) is said to be an aCz—set [4](azNy—set [1]) if A=U NV where
U € aZO(X) and Vis a o — I—set. Clearly every aBBr—set is an aCz—set [1, Proposition 3.2(c)]
but not the converse [1, Example 3.4]. We will denote the family of all aBr—sets (resp.aCz—sets)
in (X,7,7) by aBz(X) (resp.aCz(X)). We define Dz(X) = {A C X | int(A) = pZint(A)} and if
A € Dz, then A is called a Dz—set. The following Lemma 2.21 characterizes alBz—sets and aCz—sets,
the proof, which is similar to the proof of Theorem 2.7, is omitted. Corollary 2.23 follows from
Theorem 2.22.

Lemma 2.21. Let (X,7,Z) be an ideal space and A be a subset of X. Then the following hold.
(a) A is a aBz—set if and only if there exists an oo — T—open set U such that A =U N SZcl(A).
(b) A is an aCz—set if and only if there exists an a« — IT—open set U such that A =U N spZcl(A).

Theorem 2.22. Let (X, 7,Z) be an ideal space and A C X. Then the following are equivalent.
(a) A is a Dr—set and a Cz—set.
(b) A is a 6 —I—open set and a Cz—set.
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(c) A is a Bz—set.
(d) A is an aBz—set and a Cz—set.

Proof. (a)=(b). Suppose A € Dz(X)NCz(X). If A € Dz(X), then int(A) = pZint(A). Now
int(cl*(A)) = cl*(A) Nint(cl*(A)) C cd*(ANint(cl*(A))) = cl*

(pZint(A)) = cl*(int(A)) and so A is a 6 — T—open set. This proves (b).

(b)=(c). Suppose A is a 6 — IT—open set and a Cz—set. Then, by Theorem 2.4 of [12], int(cl*(A)) =
int(cl*(int(A))) and so AUint(cl*(A)) = AUint(cl*(int(A))) which implies that SZcl(A) = spZcl(A).
If A is a Cz—set, then Theorem 2.7, A = U N spZcl(A) for some open set U and so A =U N SZcl(A)
for some open set U which implies that A is a Br—set.

(c)=(a). Clearly, every Br—set is a Cz—set. If A is a Bz—set, then A = U NV where U is open and
int(cl*(V)) = int(V). Now pZint(A) = AN int(cl*(A)) = Anint(cd*(UNV)) C Anint(c*(U) N
cd*(V)) = Anint(cl*(U)) Nint(c*(V)) = (UNV)Nint(c*(U)) Nint(V) = UNint(V) = int(UNV) =
int(A). But always, int(A) C pZint(A) and so int(A) = pZint(A) which implies that A is a Dz—set.
This proves (a).

(c)=(d) is clear.

(d)=(c). If A is an aBBz—set, then A = U NV where U is a — T—open and int(cl*(V)) = int(V).
Now A C U implies that A C int(cl*(int(U))) and so int(cl*(A)) C int(cl*(int(cl*(int(V))))) =
int(cl*(int(U))) Cint(cl*(U)). Again,A C V implies that int(cl*(A)) C int(cl*(V)) = int(V'). There-
fore,

int(cl*(A)) C int(cd*(U)) Nint(V) C cd*(int(U) Nint(V)) C cd*(int(U NV)) = cl*(int(A)) and so
int(cl*(A)) = int(cl*(int(A))) which implies that A U int(cl*(A))

= A U int(cl*(int(A))). Hence STcl(A) = spZcl(A). Since A is a Cz—set, by Theorem 2.7, A =
G N spZcl(A) for some open set G and so A = G N SZcl(A). Therefore, A is a Br—set.

Corollary 2.23. Let (X,7,Z) be an ideal space. Then the following hold.

(a) Every Br—set is a Dr—set.

(b) Every Br—set is a alBr—set.

(c) Every Dz—set is a 0 — IT—open set (Proof follows from (a)=(b) of Theorem 2.22).

The following Theorem 2.24 characterizes al3z—open sets in terms of § — I—open sets and
aCz—open sets. Example 2.25 below shows that § — T—openness and aCz—openness are indepen-
dent concepts.

Theorem 2.24. Let (X, 7,Z) be an ideal space. Then aBBz(X) =6ZO(X) N aCz(X).

Proof. Clearly, aBz(X) C aCz(X). If A € aBz(X), then A = UNV where U is @ — IT—open
and Visat—T—set. A C U implies that int(cl*(A)) C int(cl*(U)) C int(cl*(int(cl*(int(U))))) C
int(cl*(int(U))) C c*(int(U)). Also, A C Vimplies that int(cl*(A)) C int(cl*(V)) = int(V) and so
int(cl*(A)) C c*(int(U)) Nint(V) C cd*(int(U) Nint(V)) = c*(int(UNV)) = cl*(int(A). Therefore,
A € 6IO(X). Hence aBz(X) C 6ZO(X) N aCz(X). Conversely, suppose A € dZO(X) N aCz(X).
A € 0Z0(X) implies that int(cl*(A)) = int(cl*(int(A))) and so STcl(A) = spZcl(A). A € aCz(X)
implies that A = U N spZcl(A) for some oo — Z—open set U by Lemma 2.21 and so A = U N SZcl(A)
for some o — IT—open set U which implies that A € aBz(X). Therefore, 0ZO(X)NaCz(X) C aBz(X).
This completes the proof.

Example 2.25. (a) Let X = {a,b,¢,d}, 7 = {0,{d},{a,b},{a,b,d}, X} and T = {0,{c} }. If
A = {a,c}, then int(cl*(int(A))) = int(cl*(int({a,c}))) = int(cl*(B)) = O = int(A). Therefore, A is
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an o — I—set and hence an aCr—set. But int(cl*(A)) = int({a,b,c}) = {a,b} and cl*(int(A)) =
cl*(0) = 0 and so A is not a § — I —set.

(b) Let X = {a,b,c,d}, 7 = {0,{a},{c}, {a,c}, X} and T = {0,{a} }. If A = {a,b,c}, then A is
neither open nor an o* —Z—set and so A is not an aCz—set. But int(cl*(A)) = int({a,b,c,d}) = X
and cl*(int(A)) = cl*({a,c}) = X and so A is a § — T—set.

An ideal space (X, 7,T) is said to be x—extremally disconnected [7] if the 7% —closure (x—closure)
of every open set is open. Clearly, Bsz(X) C aCz(X). By Example 3.6 of [1] the reverse direction
is not true. The following Theorem 2.26 shows that for x—extremally disconnected spaces, the two
collection of sets coincide. Example 2.27 below shows that aCz(X) = Bsz(X) does not imply that
the space is x—extremally disconnected.

Theorem 2.26. Let (X, 7,7) be a x—extremally disconnected ideal space. Then Bsz(X) = aCz(X).

Proof. Enough to prove that aCz(X) C Bsz(X). Suppose A € aCz(X). Then A = UNV where U is
a —Z—open and int(cl*(int(V'))) = int(V). Since (X, 7,7) is x—extremally disconnected, cl*(int(V))
is open and so int(V) = int(cl*(int(V))) = cl*(int(V)). Therefore, A € Bsz(X). This completes the
proof.

Example 2.27. Consider the ideal space (X,7,Z) where X = {a,b,c}, 7 = {0,{b},{c}, {b,c}, X}
and T ={0,{a}}. If A={b}, A is open and cl*(A) = {b} U {a,b} = {a,b}, which is not open. Hence
(X, 7,7) is not x—extremally disconnected but p(X) = aC7(X) = Bsz(X).

Received: November 2008. Revised: February 2009.
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