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ABSTRACT

In this paper we introduce generating functions of eigenvalues of Daubechies’ localization
operator, study their analytic properties and give analytic continuation of these eigenval-
ues. Making use of generating functions, we establish a reconstruction formula of symbol
functions of Daubechies’ localization operator with rotational invariant symbols.

RESUMEN

Introducimos funciones generadas por los autovalores del operador de localización de
Daubechies, estudiamos sus propiedades analíticas y damos continuación analítica de los
autovalores. Haciendo uso de las funciones generadas, establecemos la fórmula de recon-
strucción de funciones símbolo del operador de localización de Daubechies con símbolos
rotacional invariante.
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1 Introduction

The Daubechies (localization) operator was introduced by Ingrid Daubechies in [4], where she

mainly treated localization operators with rotational invariant symbols. In particular, she

expressed eigenvalues as Mellin transforms of symbol functions. She also proved that Her-

mite functions are eigenfunctions of localization operators with rotational invariant symbols.

So far, the theory of localization operators has been studied by several researchers in various

fields ([2], [5], [7], [10], [11], [12]).

In this paper we will study analytic properties of generating functions of eigenvalues of

Daubechies’ localization operators. We will also give an analytic continuation of eigenvalues

of Daubechies’ localization operator. Making use of generating functions, we will establish

the reconstruction formula of symbol functions of Daubechies’ localization operators with ro-

tational invariant symbol.

For the simplicity, we will confine ourselves to the 1-dimensional case in this paper. In

section 2 we will introduce Daubechies’ localization operator. In section 3 we will give the

analytic continuation of eigenvalues of Daubechies’ localization operator. In section 4 we

will define the generating function of eigenvalues. In final section 5 we will establish the

reconstruction formulas for rotational invariant symbol function.

2 Daubechies’ Localization Operator

According to [4], we define the localization operator PF as follows.

Definition 1 ([4]). Daubechies’ localization operator is

PF ( f )(x)= (2π)−1
ˆ ˆ

R2
F(p, q)φp,q(x)<φp,q, f > dpdq, (1)

where F(p, q) ∈ L1(R2), f (x)∈ L2(R),

φp,q(x)=π−1/4eipxe−(x−q)2/2,

and <φp,q, f > denotes the inner product
ˆ

R

φp,q(x) f (x)dx.

The function F(p, q) is called the symbol function of the operator PF .

Daubechies obtained the following results.
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Proposition 1 ([4]). Suppose that F(p, q) ∈ L1(R2). Then

(i) If F(p, q) ≥ 0, then PF is a positive operator.

(ii) PF is bounded operator. that is,

||PF ( f )||L2 ≤ (2π)−1/2|| f ||L2 ||F||L1 , ( f ∈ L2(R)).

(iii) PF is a trace class operator.

Proposition 2 ([4]). Suppose

F(p, q) = F̃(r2), where r2 = p2 + q2.

Then

(i) The Hermite functions hm(x) are eigenfunctions of the operator PF :

PF (hm)(x)=λmhm(x), m ∈N.

(ii) Secondly,

λm =
1

m!

ˆ ∞

0
e−ssm F̃(2s)ds, m ∈N,

where the Hermite functions hm(x) are defined by

hm(x)= (−1)m(2mm!
p
π)−1/2 exp(x2/2)

dm

dxm
exp(−x2), m ∈N.

For details on Hermite functions, we refer the reader to [6, 7, 10].

In what follows we assume that

(i) F(p, q) ∈ L1(R2).

(ii) F(p, q) is rotational invariant, that is,

F(p, q) = F̃(r2), where r2 = p2 + q2.

3 Analytic Continuation of Eigenvalues of Daubechies

Operator

In this section we consider the analytic continuation of the eigenvalues {λm}∞
m=0. By Proposi-

tion 2 we have

λm =
1

m!

ˆ ∞

0
e−ssm F̃(2s)ds.
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We put

λ(z)=
1

Γ(z+1)

ˆ ∞

0
e−ssz F̃(2s)ds, z ∈C,Re(z)> 0.

where Γ(z) is Euler’s Gamma function.

Then we have the following proposition.

Proposition 3. λ(z) have following properties:

(i) λ(z) is holomorphic in the right half plane Re(z)> 0.

(ii) There exists a positive constant C such that

|λ(z)| ≤
C

p
|z|

e
π
2 |y|, z = x+ i y∈C,x > 0.

(iii) λ(z) interpolates the eigenvalues {λm}∞
m=0, that is,

λ(m) =λm, m ∈N.

(iv) There exists a positive constant C such that

|λm| ≤
C

p
|m|

, m ∈N.

Proof. The proof is as follows.

(i) We can prove the holomorphicity of λ(z) by Morea’s theorem and Lebesgue’s dominated

convergence theorem.

(iii) is obvious.

(iv) follows from (ii) and (iii).

So we will prove statement (ii). By Stirling’s formula,

Γ(z+1)∼ zz e−z
p

2πz, Re(z)> 0
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and e−ssx ≤ e−xxx for s≥ 0, we have

|λ(z)| =
∣

∣

∣

∣

1

Γ(z+1)

ˆ ∞

0
e−ssz F̃(2s)ds

∣

∣

∣

∣

≤
1

|Γ(z+1)|

ˆ ∞

0
e−s|sz | |F̃(2s)|ds

≤
C

|zze−z|
p

2π|z|

ˆ ∞

0
e−ssx|F̃(2s)|ds

≤
Ceyarg(z)

xxe−x
p

2π|z|

ˆ ∞

0
e−xxx|F̃(2s)|ds

≤
C

p
2π|z|

e
π
2 |y|
ˆ ∞

0
|F̃(2s)|ds

≤
C′
p
|z|

e
π
2 |y|.

Remark 1. The function λ(z) is the unique analytic continuation of eigenvalues {λm}∞
m=0 be-

cause of (ii) in Proproposition 3 and Carlson’s theorem [3].

4 Generating Functions of Eigenvalues of Daubechies Op-

erator

In this section we introduce two generating functions Λ(w) and G(t) of the eigenvalues {λm}∞
m=0.

We begin with Λ(w). Put

Λ(w)=
∞
∑

m=0
λmwm, (|w| < 1).

Due to (iv) in Proposition 3, the right-hand side is a convergent series if |w| < 1.

We will show some analytic properties of Λ(w).

Proposition 4. Suppose that {λm}∞
m=0 are eigenvalues of PF . Then

(i) The function Λ(w) is given by the integral

Λ(w)=
ˆ ∞

0
e−s(1−w)F̃(2s)ds, Re(w)< 1.

(ii) Λ(w) is holomorphic in the left-half plane {w ∈C : Re(w)< 1} and is bounded in its closure

{w ∈C : Re(w)≤ 1}.

(iii) Λ(iv)∈ C0(R) for v ∈R, that is, Λ(iv)∈ C(R) and lim|v|→∞Λ(iv)= 0.
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Proof. We prove the three parts.

(i) By (ii) in Proposition 2, we have

Λ(w)=
∞
∑

m=0
λmwm

=
∞
∑

m=0

wm

m!

ˆ ∞

0
e−ssm F̃(2s)ds

=
ˆ ∞

0
e−sF̃(2s)

∞
∑

m=0

(ws)m

m!
ds

=
ˆ ∞

0
e−s(1−w)F̃(2s)ds.

(ii) For Re(w)≤ 1, we have

|Λ(w)| ≤
ˆ ∞

0
|e−s(1−w)||F̃(2s)|ds≤

ˆ ∞

0
|F̃(2s)|ds= ||F̃||L1 .

(iii) Λ(iv) is the Fourier transform of the L1 function e−sF̃(2s), for s≥ 0. Hence it belongs to

C0(Rn) by the Riemann–Lebesgue theorem [9].

Proposition 5. Suppose that F(p, q) is positive. If

limsup
m→∞

λm
1/m = 1,

then w = 1 is a singular point of Λ(w).

Proof. Since F(p, q) is positive, then PF is a positive operator by Proposition 1. Therefore,

all the eigenvalues of PF are nonnegative. By the Cauchy–Hadamard formula, the radius of

convergence of the power series
∞
∑

m=0
λmwm

is 1. By Vivanti’s theorem, w= 1 is a singular point of Λ(w).

Proposition 6. Suppose the support of F̃(2s) is contained in [0,a]. Then there exists a positive

constant C such that

(i) |λm| ≤ C
am

m!
, m ∈N.

(ii) Λ(w) is an entire function of exponential type.

Proof. We prove the two parts of the proposition.
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(i) Since the support of F̃(2s) is contained in the closed interval [0,a], by (ii) in Proposi-

tion 2, we have

λm =
1

m!

ˆ a

0
e−sF̃(2s)sm ds

≤
am

m!

ˆ a

0
|F̃(2s)|ds.

Therefore, the inequality |λm| ≤ C
am

m!
is valid.

(ii) Since

|Λ(w)| ≤
ˆ a

0
|F̃(2s)|e−s(1−u) ds

≤ ea|u|
ˆ a

0
|F̃(2s)|ds,

we have

|Λ(w)| ≤ Cea|u|, w = u+ iv ∈C.

Now we consider following formal power series:

∞
∑

m=0
m!λm t−m−1.

In general, the series on right-hand side is divergent. But this formal power series is an

asymptotic expansion of the Hilbert transform of F̃(2s)e−s. Namely, if we put

G(t) =
ˆ ∞

0

F̃(2s)e−s

t− s
ds, t ∈C\[0,∞],

then G(t) has following properties.

Proposition 7. For the function G(t) we have

(i) G(t) is Laplace transform of Λ(w).

(ii)
∞
∑

m=0
m!λm t−m−1 is an asymptotic expansion of G(t).

Proof.
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(i) By (ii) in Proposition 4, Λ(w) is bounded in left-half plane. So we can consider the

Laplace transform of Λ(w) along the negative real axis:
ˆ −∞

0
Λ(w)e−tw dw =

ˆ −∞

0

{

ˆ ∞

0
e−s(1−w)F̃(2s)ds

}

e−tw dw

=
ˆ ∞

0
F̃(2s) e−s

{

ˆ −∞

0
ew(s−t)dw

}

ds

=
ˆ ∞

0

F̃(2s)e−s

t− s
ds

=G(t), for Re t< 0.

(ii) Secondly,

G(t) =
ˆ ∞

0

F̃(2s)e−s

t− s
ds

=
1

t

ˆ ∞

0

F̃(2s)e−s

1− st−1
ds

=
1

t

ˆ ∞

0
F̃(2s)e−s

{ N
∑

m=0
(st−1)m +

(st−1)N+1

1− st−1

}

ds

=
N
∑

m=0
m!λm t−m−1 +

1

tN+1

ˆ ∞

0

F̃(2s)e−ssN+1

t− s
ds.

Hence if |t| ≥ R and 0< δ≤ arg(t) ≤ 2π−δ, then we have

|G(t)−
N
∑

m=0
m!λm t−m−1| ≤

(N +1)!

R sinδ

λN+1

|t|N+1

≤ C
N!

p
N +1

R sinδ|t|N+1
.

Proposition 8. Suppose that support of F̃(2s) is contained in [0,a]. Then

(i) G(t) is holomorphic in C\[0,a].

(ii)
∞
∑

m=0
m!λm t−m−1 converges in |t| > a.

Proof.

(i) From the assumption on the support of F̃(2s), we have

G(t) =
ˆ a

0

F̃(2s)e−s

t− s
ds.

So G(t) is holomorphic in C\[0,a].



CUBO
12, 3 (2010)

Eigenvalues of Daubechies’ Localization Operator 211

(i) By (i) in Proposition 6,

|λm| ≤ C
am

m!
, m ∈N.

Hence
∞
∑

m=0
m!λm t−m−1

converges if |t| > a.

Remark 2. The function Λ(w) is the Borel transform of G(t). For details on the Borel and

Hilbert transforms, we refer the reader to [1, 8, 9].

5 Reconstruction of Symbol Functions

In this section we establish our main results.

Theorem 1. The function

F̃(2s) = (2π)−1es
F(Λ(iv))(s),

is valid in distribution sense, where

F(Λ(iv))=
ˆ ∞

−∞
e−isv)

Λ(iv)dv

is Fourier transform of Λ(iv).

Proof. By (i) in Proposition 4, we have

Λ(iv)=
ˆ ∞

0
e−s(1−iv)F̃(2s)ds

=
ˆ ∞

0
eisv e−sF̃(2s)ds.

This means that Λ(iv) is the inverse Fourier transform of e−sF̃(2s). Since F̃(2s) is an L1-

function, then e−sF̃(2s) is a tempered distribution. Hence, as tempered distribution, we have

F̃(2s) = esF(Λ(iv))(s).

Theorem 2. The function F̃(2s) is given by the formula

F̃(2s) = es lim
t→0

−1

2πi
(G(s+ it)−G(s− it)) .
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Proof. It is well known that the boundary value

lim
t→0

−1

2πi
[G(s+ it)−G(s− it)]

is the inverse map of the Hilbert transform [8]. Since G(t) is Hilbert transform of e−sF̃(2s),

we have

lim
t→0

−1

2πi
(G(s+ it)−G(s− it)) = e−sF̃(2s).
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