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ABSTRACT

In this paper we recall recent results that are direct consequences of the fact that
(Woo (1), we0 (1)) is a Banach algebra. Then we define the set W; = D;woo and charac-
terize the sets W; (A) where A is either of the operators A, £, A(A), or C(A). Afterwards
we consider the sets [A1,Agly, of all sequences X such that A1 (1) (|Ag (1) X|) € W; where
A1 and Aj are of the form C (&), C* (&), A(¢), or AT (§) and it is given necessary conditions
to get [A1(1),Aq (”)]W, in the form W;. Finally we apply the previous results to statis-
tical convergence. So we have conditions to have xj, — L(S(A)) where A is either of the
infinite matrices D1/;C(1)C (1), D1/ A A (1), D1 AA)C (1). We also give conditions to
have xj, — 0(S(A)) where A is either of the operators D1,;,C* (1)A(u), D1;,CT (1)C (p),
D1/7C+ ner (#)7 or Dl/TA(A)C+ (:u)
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RESUMEN

Recordamos resultados recientes que son consecuencia directa del hecho de que (wxo(A),
Woo(A)) es una algebra de Banach. Entonces nosotros definimos el conjunto W; = D;weo
y caracterizamos los conjuntos W; (A) donde A es uno de los siguientes operadores A, X,
A(A), o C(A). Después consideramos los conjuntos [AI,A2]W, de todas las sucesiones X
tal que A1 (1) (|42 () X|) € Wy donde A y Ag son de la forma C(é), C* (&), A), 0 AT (&)
y son dadas condiciones necesarias para obtener [A1(1),Ag (“)]Wz en la forma W;. Final-
mente, aplicamos los resultados previos para tener x;, — L(S(A)) donde A es una de las
matrices infinitas D1/,C(1)C (1), D1/ AW A (g), D1/ A(A)C (). Nosotros también damos
condiciones para tener x; — 0(S(A)) donde A es uno de los operadores Dl/TC+ (A)A(u),
Dy:C* (W (), Dy C* (MC (), 0 Dyyr ADICT ().

Key words and phrases: Banach algebra, statistical convergence, A—statistical convergence,
infinite matrix.

Math. Subj. Class.: 40C05, 40F05, 40J05, 46A15.

1 Introduction

In this paper we consider spaces generalizing the well-known sets w® and we, introduced
and studied by Maddox [12, 13]. Recall that w® and wo, are the sets of strongly summable

and strongly bounded sequences. In [15] Malkowsky and Rakocevi¢ gave characterizations

0w, or weo and wZ, and between w®, w, or we and I1. In [2] de

Malafosse defined the spaces wq (1), wff)(ﬂt) and wg (A) of all sequences that are a—strongly

of matrix maps between w

bounded, summable and summable to zero respectively. For instance recall that w, (1) is the
set of all sequences (x,), such that 1/, an:l |xm| = @O (1) as n tends to infinity. It was
shown that these spaces can be written in the form s, s(;) and sg under some condition on «
and A.

More recently in [5] it was shown that if A is a sequence exponentially bounded then
(Woo (1), we0(A)) is a Banach algebra. This result led to consider bijective operators mapping
between wy, (1). Here we will use these results to study sets of the form W; = D;woo,, W; (A(1)),
W; (C (1)) and W; (C + (/1)) generalizing the well-known set of strongly bounded sequences co, =
Woo (A (1)) where p, = n for all n. These results lead to the study of statistical convergence
which was introduced by Steinhaus in 1949, see [16], and studied by several authors such as
Fast [7], Fridy, Orhan [8-11] and Connor. Here we will deal with the notion of A— statistical
convergence which generalizes the notion of statistical convergence, see [6], where A belongs
to a special class of operators.
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The paper is organized as follows. In Section 2 among other things we recall a recent

result on the operators A, and Ag considered as map from wqy (1) to itself. In Sections 3
and 4 our aim is to give necessary conditions to have W; (A) in the form W; when A is either
one of the matrices A(1), C(1) or C*(1). Then we consider spaces generalizing the well-
known set of all strongly bounded sequences [C,A] = ¢, defined and studied by Maddox.
Then we will define the sets [A1,Az]y, of all sequences X with A1 (1) (|A2 (1) X|) € W; where
A1 and Ay are of the form C (&), C* (&), A(é), or A (¢) and we will give necessary conditions
to get [A1(1),A2(y)] in the form W;. In Section 5 we apply these results to A— statistical
convergence, where A is equal to D1;A1A92 and A1, Ag are of the form C (&), A(¢é), A(u), or
C* ().

2 Well Known Results

For a given infinite matrix A = (@, )n,m=1 We define the operators A, for any integer n = 1,
by

Apn(X)= )Y anm¥m 1)

m=1

where X = (x,),>1, the series intervening in the second member being convergent. So we are
led to the study of the infinite linear system

A, X)=b, n=12,.. (2)

where B = (b,),>1 is a one-column matrix and X the unknown, see [2-5]. The equations (2)
can be written in the form AX = B, where AX = (A, (X)),>1- In this paper we shall also
consider A as an operator from a sequence space into another sequence space.

We will write s for the set of all complex sequences and ¢, for the set of all bounded
sequences.

Let E and F be any subsets of s. When A maps E into F we write that A € (E,F).
So for every X e E, AX € F, (AX € F means that for each n = 1 the series defined by y, =
o1 AnmXm is convergent and (y,),>1 € F).

Body Math For any subset E of s, we put

Body Math
AE={Yes : Y =AX for some X € E}. 3)

If F is a subset of s, we shall denote

F(A)=Fy={Xes :Y=AX€F}. 4)
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In all what follows we will use the set

U'={un)ps1€s: un>0foralln}

and the notation e = (1,...,1,...). So for A =(A,),>1 € U* we will consider the sets of strongly
bounded and strongly summable sequences, respectively, that is

1 n
Weo(A) = {X=(xn)n21€s : sup— Y Ixm|<oo},
n An m=1
1 n
W) = {X=@upz1€5: lim — Y |x,|=0
n—»ooAn el

and

wD)={X =(xy)p=1€5 : X—lec€ w?(1) for some [ eC}

were studied by Malkowsky, with the concept of exponentially bounded sequences, see [3].
Recall that Maddox [12, 13], defined and studied the sets weo (1) = Weo, wo(A) = w? and w(A) =
w where A, =n for all n.

A Banach space E of complex sequences with the norm |||z is a BK space if each projection
P, :X — P,X = x, is continuous. A BK space E is said to have AK if every sequence X =
(xn)n=1€ E has a unique representation X = Z‘,’f’:lxnen where e, is the sequence with 1 in the
n-th position and 0 otherwise.

Recall that a nondecreasing sequence A = (1,),>1 € U™ is exponentially bounded if there

is an integer m = 2 such that for all non-negative integers v there is at least one term

Ay € Ig:;) — [mv,mv+1

—1]. It was shown (cf. [14, Lemma 1]) that a non-decreasing sequence
A = (An)n=1 1s exponentially bounded if and only if there are reals s < ¢ such that for some
subsequence (An; ),

O<s<—4

<t<lforalli=1,2,..;

nj+1
such a sequence is called an associated subsequence. Consider now the norm

1 n
1X112 = sup| = 3 lxml|.
n

n m=1

In [5] it was shown that if A = (A,),,»1 € U" is exponentially bounded the class (weo (1), weo (1))
is a Banach algebra with the norm

||AX||/1)

AN oo (1), w00 (A =SUP( (5)
(Woo(1),woo(A)) X£0 ”X”/'l
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For p = (pn),; consider now the following matrices

A = 1 —pn and A, =

It can easily be shown that if p = (p,),.; and (A4+1/An)y>1 € foo then A} € (Weo (1), Weo (A)).
We also see that A, € (Woo (1), weo (1)) for p, (An-1/A1)5>2 € £oo. Recall the next result which is
a direct consequence of [5, Theorem 5.1 and Theorem 5.12].

Lemma 2.1. Let A€ U" be a sequence exponentially bounded.

G) If

— (A S 1
lim( n+1)<ooand lim ‘pn‘<_7, (6)
n—oo\ A, n—oo Tim (AXH)

n—oo n

for given B € woo (1) the equation A;X =B has a unique solution in weo (A).

(i) If )
IEJPn‘ < %, (7

lim
n—oo n

then for any given B € wo (1) the equation ApX = B has a unique solution in we, (A).

When 1 is a strictly increasing sequence tending to infinity we obtain similar results on
the Banach algebra (w®(1),w® (1)) with the norm [| Al (1).0u(A)-

3 On the Sets W, (A) Where A is Either A(1), C(1) or C*(A)

In the following we will use the operators represented by C (1) and A(A1). Let U be the set of
all sequences (u,),>1 With u, # 0 for all n. We define C (1) for 1 =(1,),>1 €U, by
1
— ifm=<=n,
[CDlpm =1 An
0 otherwise.
We will write C(W)T =C* (1), C(e) =2, =* = 2T, and for A, = n, the matrix C1 = C((n),) is
called the Cesaro operator. If It can be proved that the matrix A(A) with

An ifm=n,
[AMlpm =3 -Ano1 fm=n-1landn=2,

0 otherwise,
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is the inverse of C (1), see [2, 3]. We will use the following sets

r = {XeU+: 1im(x”‘1)<1},
n—oo\ x,

rt = {XeU+: lim(xn+1)<1}.
n—oo\ x,

Note that X eI't ifand only if /X €T

For given sequence T = (7,),>1 € U*, we write D, for the diagonal matrix defined by
[D+1,, = Tn for all n. For any subset E of s, we write

D.E-= {Xz(xn)nzles : (x—”) EE}.

Tn

We put W; =D, we, for te U, that is

1 & |xml
W =4X: I Xllw, =sup|— Z —|<ooy.
n n m=1 Tm
It can easily be seen that W; = wo,(D1/;) is a BK space with norm ||{lw,, (cf. [17, Theorem
4.3.6, p. 52]). In all that follows we will use the convention that the entries with subscripts
strictly less than 1 are equal to zero. Then we are interested in the study of the following sets
where A, TeU™.

W:(AA) = {X Sup(l Z i|/1mxm_Am—lxm—ﬂ)<OO},
n n ., =1Tm
W€y = {X:supt Y [—2 3 )<
T = -S%panI AT = Xk o,
Wo(Ct ) = {x:supe 3 [E T )
i ' npnm:1 Tm f=m M ’

Note that for 1, =n and 7 = e, W;(A(1)) is the well known set of all strongly and bounded
sequences Co,. We obtain the following result that is a direct consequence of Lemma 2.1.

Proposition 3.1. (i) If 7 € T then the operators A and X are bijective from W into itself and

W (A)=W;, W, (2)=W,.

(ii) a) If A\t €T then
W (C () =W),.

b) If T €T then
W (AA)) = Wr//l-
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(iii) Let t€T". Then

a) the operators A* and X" are bijective from W; into itself and

W, (Z%) = W,

b) the operator C™ (M) is bijective from W, into W, and

W: (CT (1) = Wy

Proof. (i) By Lemma 2.1 where p, =7,-1/7, and A, = n for all n, we easily see that if

T 1
Tim 2L < -1,

n—oo Tp lim,, oo (nT—l)

that is 7 € T', then Dy, AD; is bijective from wy, to itself. This means that A is bijective from
D,wo to itself. Since X is also bijective from D;wq, to itself, this shows W;(A) = W; and
W (Z)=W,.

(i1)) We have X € W, (C (1)) if and only if X € D j;wo = W);. This means that X € W, ()
and by (i) the condition A7 € ' implies W3, (Z) = W,;. Then W,;(C(1)) = Wy, and C(A) is
bijective from Wy, to W;. Since A(1)=C (M)~! we conclude A(1) bijective from W; to W;; and
Wi (A(L)) = W;. We deduce that for 1 € I', W; (A(A)) = W,3.

(iii) a) By Lemma 2.1 with p, = 7,+1/7, and A, = n we have A; =Dy;ATD; and A" is
bijective from D;w, = W; into itself for 7 € I'* and it is the same for Z*. Now the equation
>*X =Y for Y € W; is equivalent to

o0
)" %m =yn for all n. 8
m=n

We deduce (8) has a unique solution X = (y, — Yn+1)p=1 = ATY € W; and W, (£7) = W,.
b) We have
W, (C* (1) = {X :* D1y X € Wy} = Dy Wy (5F).

Now as we have seen above since 7 € I't we get W; (Z+) =W; and
W (CT (D) =DaW; (27) =D W; =Wj,.

This gives the conclusion. O
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4 Calculations in New Sequence Spaces

4.1 The sets [C,Aly,, [C,Cly., [C+’A]W,’ [C+,C]WT and [C+,C+]WT.
In [4], were defined and studied the sets
[A1,Ag]= [Al (1),Az (/J)] = {X €s: A1 () (|A2 (/J)XD EDTZOO}

where |X| = (Ix,1),51, A1 and Ag of the form C (&), C* (&), A(é), or A*(é) for Ee U*. It was
given necessary conditions to get [A1(1),A2 ()] in the form s,.

Similarly in the following we will put
[A1,Azly, = [A1 (1), A2 (1)]yy, ={X €s : A1 (D) (|A2 (1) X|) € W}

for A, u, € U*. We can explicitly write the previous sets [A1,Asly, as follows.

1 n m
[C,Aly, = {Xﬁsup = Z ) |Hkxk—,uk—1xk—1|)<00},
n \ =1 AnTm (21
1 1 o1&
[C,C] = X :sup|— —
W { ”p nn;& AmekZN ; )) }
[CT,Aly, = {X:sup 1 i L OZO: i‘ﬂkxk_ﬂk 1%p-1] || <00t
' n A\ i\ Tm o AR
131 & 11 |&
Ct,Cly = AX:sup|= Y [=— Y ——
[ ]WT { lip nmxz“l ka:Z Ap g ; )) }
12 1 &1
ct,ct = {X:sup|=- — — 2l <oot.
€,C ]y, { npnmz:”_zllm)) }

Note that if A, = u, for all n we get the well known set of sequences that are strongly
bounded [C, Aly, = ¢ (1). We can state the following.

Theorem 4.1. Let A, u,te U™,

(@) If A\t €T then
[C,Alw, = Wy

(ii) if A1, Aut €T then
[C,C]W, =Waur;

(iii)) if teT" and At €T then
[C+’A]WT = W/lr/p;
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(iv)ifteTt and Aut €T then

[C+’C]W, = W/I;n;

() ift, ATeT™ then
[C+’C+]W, = Wapur.

Proof. In the following we will use the fact that for any ¢ e U* we have |X| € W; if and only if
Xe Wg.

(i) We have C (1) (|A (1) X |) € W; if and only if |A (u) X | € W, (C (1)) and by Proposition 3.1,
since At € T we get W; (C (1)) = Wy,. Then by Proposition 3.1 (ii) we have Wy, (A (1)) = Wiz
and we conclude A (i) X € W), if and only if X € Wy, (A (1)) = Wiz, that is [C,Aly, = Waz.

(ii) Here we have C (1) (|C (1) X|) € W; if and only if |C (1) X | € W; (C (1)); and since AT € T
by Proposition 3.1 we have W; (C (1)) = Wy;. So X €[C,Cly, if and only if C (1) X € Wy, that
is X € W), (C (1)). Then by Proposition 3.1 (i) a) Aut € T implies W), (C (1)) = Waur and we
have shown (ii).

(iii) For any given X € [C+’A]W, we have A(u)X € W (C* (1)) and for 7 € I'* we have
W (C* (1)) = W),. Now the condition A7 € T implies X € [C+’A]W, ifand only if X € Wy, (A (1)) =
W)/ and we have shown (iii).

(iv) Let X € [C+’C]W,' We have 7 € I'* implies W, (C* (1)) = W), and so X € [C+’C]W,
if and only if C (1) X € Wj,. Now since Aut € I' we have Wy, (C (1)) = Wiy and we conclude
[C+’C]W, =Wapur.

(v) As above X € [C+’C+]W, if and only if C* (1) X € W; (C* (1)) and the condition 7 € T'*
implies W; (C* (1)) = W),. Since At € I'* we conclude W), (C* () = Wy, that is [C+’C+]W, =
WMLT- |

Now we are led to study sets of the form [A,Az]W, for Ag € {A,A, C+}.

4.2 The sets [A,Aly., [A,Cly, and [A’C+]WT

Using the convention pp = 0, and the notation A(u) Xm = UmXm — Mm-1Xm—1 for m = 1 we
explicitly have

1 &1
ALy, = {X:sup(—z—|am|A(u)xm|—am_lm(u)xm_ln)<oo},
n n,=1Tm
12 1 1 1 m—1
ACly. = {X:sup|= Y — [Am|— A ,
[A,Clyw, { Sgp(nmg’lfm | kg,lxk m1| k;lxk )<00}
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J<oo}.

As a direct consequence of Proposition 3.1 we also obtain the following results.

[A’C+]W, Am _Am—l

12 1
{X:sup(— Y =
n \n

m=1Tm

00 xp
k;,n Hr

k=m-1Hk

Theorem 4.2. Let A, u, Te U*. Then

(@) If 1, T/A €T then
[A,Alw, = WT//lu'

(i) If 1, T/ A €T then
[A,C]W, = WT,u//l-

(iii) If 7, /A €T then
[A’C+]WT = Wru/r-

Proof. (i) Let X €[A,Aly,. Since 7 €T we have W; (A(1)) = Wy, and A(A) |A(u) X| € W; means
A(u) X € Wy/5. We conclude Wy (A (u)) = Wyypy for /A €T

(ii) Reasoning as above since 7 € I' we have X € [A,Cly, if and only if C (p)X € W;/n. We
conclude since the condition 7p/A € T implies Wy (C (1)) = Wepa.

(iii) Here under the conditions 7, 7/4 € I't, we have X € [A,C+]WT if and only if X €
Wi (C+ (H)) = Wry//l- O

The previous results can be applied to the case when we is replaced by w?.

4.3 The sets [Al,Az]WTo

Using the Banach algebra (wo ), w° (1)) we get similar results to those given above replacing
Weo () by w?%(1) and W, by WTO =D, w". Note that X € WT0 if and only if

1 & lxml

-0 (n—o0).

no=1 Tm
By [17, Theorem 4.3.6, p. 52] the set WT0 is a BK space with AK normed by [[w,. So we can
state the following.

Proposition 4.3. Let A, ueU™.
; _wo .
(@) If A\t €T then [C,A]W? = W/W#,

(i) if At, Apt €T then [C,Clyo =W}, ;

(iti) if T € T* and AT €T then [C*,A]yo = Wfﬂu;
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(iv) if TeT* and Apt €T then [C*,Cly0 = WY

pr’
() if T, At then [C+,C+]W$ :W/(l)m;

(vi) if T, TIA €T then [A,Alyo =W,

(vir) if 7, Tw/A €T then [A,Clyo = WTOH/A;

(viid) if T, T/A € T then [A,C*|yo = W] .
We immediatly get the next remark.

Remark 4.4. It can easily be seen that in Proposition 4.3 each of the sets [A1,A2]W$ is equal
to WT0 (A1A2). This result is a direct consequence of the previous proofs and of the fact that WT0
is of absolute type, that is | X| € WT0 ifand only if X € WTO.

These results can be applied to statistical convergence.

5 Application to A—Statistical Convergence

In this section we will give conditions to have x;, — L (S (A)) where A is either of the infinite
matrices D1/;,C(1)C (u), D1zAA)A(p), or D1AA)C (). Then we give conditions to have
xp, — 0(S(A)) where A is either of the operators D1,;C" (A)A (), D1,C* (W) C (1), D1,C* (1)
C* (1) and D1/ AV C™ (p).

The sequence X = (x,),~1 is said to be statiscally convergent to the number L if

1
lim —|{k<n:lxp —L|=¢}=0forall e>0,

n—oon
where the vertical bars indicate the number of elements in the enclosed set. In this case we
will write xp — L(S) or st —limX = L.

Let A € (E,F) for given L € C and for every ¢ > 0 we will use the notation
Ic(A)={k=<n:|[AX]-L|=¢},

(where we assume that every series [AX], = Ap(X) =X 7°_; agmXn for k = 1 is convergent).
We will say that X = (x,),,»1 is A— statistically convergent to L if for every € >0,

1
lim — |7, (A)I=0.
n—oopn

Then we will write x; — L(S(A)) and for A =1, x;, — L(S(I)) means that st —lim X = L, (cf.
[6]).

Now we require a lemma where we will put 7 le = I=q n)n=1 for given triangle T, that
is T' = (tnmIn,m=1 With t,n, #0 and t,m = 0if m > n for all n, m.



CUBO

132 Bruno de Malafosse & Vladimir Rakodevié

12, 3 (2010)

We can state the following.

Lemma 5.1. If X — LI € w°(T') then x;, is T— statistically convergent to L.

Proof. The condition X -Lle w?(T) means that T (X —LZ) e w’. Since
TX-Le=T(X-LT 'e)=T(X-LI)

for any £ > 0 we have

12 1
yn = — 2 ITXl-Li=— 3 |[T(X-L])]|

m k=1 n k=1
1 ~

> 1y -y
kel (T)
1

= — £
kel (T)

> Slk<n:ITX-Lizé)l.
n

We conclude that X — Ll € w(T) implies y, — 0 (n — oo) and x3 — L(S(T)). O

We are led to state the next results.

Theorem 5.2. (i) Let A1, Aruel. If

d —-L{A _ Ap_1Tp—1—Ap—ofp_oTh—
lim lz |xk (ArtrTr + (He—1+ He) Ak—1Th—1 — Ah—20k—2Tk 2]| -0 )
n—oon ;= AktrTh

then xp, — L (S (D1;C(1)C (1)), that is for every € >0

o1 1 &1 (d
r}g&; {ksn: Akal;Z(j;xj)_L 25} =0.
(ii) Let 7, T/A€T. If
lim 2 3 2K —L(iii ) rj) =0
n—oon =y Tk HE o1 A j=1

then xy, — L (S (D1 A A (1)), that is for every € >0

1
{ksn:

lim —
n—oon

1
ﬁ [/lkA(u)xk _Ak—lA(ﬂ)xk—l] —-L|=

(iit) Let 7, tw/AeT. If

1 A _ k-1
lim =Y M g - (“_k_M)zr,+_ka ~0
n—oon ;= UpTh M M1l 3
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then xj, — L (S (D1:A)C (u))), that is for every € >0

1 1A Ap_p)isl 2
lim = |[{k<n:|— (—k—ﬂ)zxﬁ—kxk ~L|=eb|=0.
n—con, e 1) 5 e

Proof. (i) First by Proposition 4.3 (ii) and Remark 4.4, we easily see that for Ar, Aru eI’ we
have W2 (C(1)C (u)) = W? . Then putting T' = D1,,C (1) C (u) we get

At
w’ (1) =W (CAC (1) =Wy, (10)
Thenl=T"le=A (1) A(V)D+e for each n with
Ln=[A() AN Dre], = AnpinTn + (Hn-1+ Hn) An-1Tn-1— An—2Hn-2Tn—2 (11)

Using (10) and (11) we see that condition (9) is equivalent X —LI € w(T). We conclude by
Lemma 5.1 that x; — L(S(T')). This completes the proof of (i).

(ii) By Proposition 4.3 (vi) and Remark 4.4, since 7, 7/A € T we have W (A(V)A (u)) = Wro//m
Then putting 7" = D1, A(A) A (u) we get

w® (') = W2 (A)A (1)) = W

T/Au” (12)

Since I’ = T""le = C (1) C(A)D+e we have

I, =[C(r)C\)Dre], = Z (er)foralln

J=1
By Lemma 5.1 we conclude xj, — L (S (D1 A(A) A (p))) for all X with

A
AeHE _
T

n—oon

lim 1 Z |xk Ll
k=

This shows (i1).

(iii) Again by Proposition 4.3 (vii) and Remark 4.4, since 7, /A € T we have W2 (A1) C (u)) =

WTOH/A' Then putting T = D1, AA)C (i) we get

W’ (T") =W (AC (1) = WD, . (13)

Writing I = T"~'e = A (1) C (1) D, e we successively get

D;e=(1p)p>1,C(A)Dse = ((Z Tl-)/itn)
i=1

n=1
and

n n—1
_[En . _Hn1 .
A(p)C(A)Dre = (/1 YT T i—lel)

n ;=1 n— n=>1
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So for each n we have

I = [A(u)C(W)Dye], (’;" ’;" 1)21,

n

We conclude that for every X with

nll_r%lon Z |xk Ll RTh =0
then x, — L (S (T")). Finally we easily get
1 (2 n A,_q ol
[T"X], = — (,u_: ;xi - ,UZ—I lzzlxl)
1]|(A
) (?Z‘u: 1)2% n”’
This shows (iii). O

We are led to illustrate the previous results with some examples where we must have in
mind that the condition x3/7; — 0 (2 — co) implies X € WT0 .

Example 5.3. The condition

lim —
n—oon

=0. (14)

1 1
{ksn: 2_k

Indeed it is enough to apply Theorem 5.2 (i) with Aj, =k, 15, = 2*/k and ur =1 for all k. Note
that if x3/2% — TL/4 (k — o0) then xj, — L (S (D n/any, C1Z)).

We can also state the next application.

Example 5.4. Iflim,Hm(l/n)Zg:1 kal/k2k =0 then x;, — L (S (D(z—n)nAcl)), that is for each

>0
1
{k<n >g}

lim —
n—oon

This result is a direct consequence of Theorem 5.2 (iii) with Ap =1, 1}, = 2k and ur =k for all

k. Again note that we have x;, — L (S (D(2-ny, AC1)) if x/k2* — 0 (k — c0).

1(1 1 )kl
=0.

1
BTRCT) AN
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In the following we will use the previous Proposition 4.3 and the expressions of
WO (C* DA (W) = [C*Alya, WE(CTWC (W) = [C7,Clyas WO (CNIC* (1) = [C*.C ]y
and W7 (A()C* () = [A,C*]yy0. We now require a lemma which is a direct consequence
of Lemma 5.1.

Lemma 5.5. Let A be an infinite matrix. If X € w®(A) then

xp — 0(S(A)).

we deduce the next results.

Theorem 5.6. (i) Let 1€ and At €T If

1 n
lim =y %, 2o (15)

then xj, — 0(S (D1:C* (M)A (p))), that is for every € >0

1 1 o0 cAr e — . .
lim—{ksn:—ZM ngzo. (16)
n—oon Tk iZh A;
(it) Let e T and Aut € T. If
1 n
lim £y L g 17)

n—con ;=1 ApUpTk

then xp — 0(S (D1:C* (M) C (1)), that is for every € >0

lim = esn:| =3 225 a|[zel|=0 (18)
im = |{k<n:|—) —|=) «x;||=e}|[=0.
n—oon Tk i=p Ai \ i j=1 /
(iii) Let T, At If
1 n
im £y L (19)
n—oon (= Ar Uk Tk
then xp — 0(S (D1:C* (V) C* (1)), that is for every € >0
1 121 (&g
lim = il - = =0. 2
nLngon { kz/l (Z/,t]) EH 0 20)

(iv) Let 7, T/AeT*. If
1& A2
lim L 3 Al
TN 21 HETE

then xj, — 0(S (D1 A C* (), that is for every € >0

lim 1 =0. (21)

n—oon
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Proof. (i) Condition (15) implies X € W/(l)r u and by Proposition 4.3 and Remark 4.4 since 7€ I'*
and At € T we have W/(l)r/ﬂ =W2(C* (M)A (p)) and X € W2 (C*(A)A(n)). Now it can be easily
seen that

1 (o)
[Dl/TC (A)A _Zﬁ’
Tn iy A;

so by Lemma 5.5 with A = D1,C*(1)A(u) we conclude x; — 0(S (D1,C* (A)A(u))). This
shows (i).

(ii) Here condition (17) means X € W/%” and by Proposition 4.3 and Remark 4.4 since

7e€l* and Aur €T we have W0 _=W?(C*(1)C (u)) and X € W2 (C* (1) C (u)). Now since
Aut T T

i

[D1:C*(VC (u =—ZA( Y x )

Tn j=n Hi j=1
by Lemma 5.5 where A’ = D1,C*(1)C (u), we conclude x; — 0(S (D1,C*(1)C (u))). So we
have shown (ii).

(ili) can be obtained reasoning as above with A” = D1,C*(A)C* (1) and so xz — 0
(S (DurCT WC (1),

(iv) can also be obtained similarly. It is enough to put A” = D1,A(A)C* (). An elemen-
tary calculation gives

[A"X], == |Ap—Ap-1) Y, =+ =y
i=k-1Hi  He
and we conclude that x; — 0(S (D1;A(A1)C* (u))), that is (21). O

We can state the next example

Example 5.7. for each ¢ >0 and for every X € Wy, we have x; — 0(S (D), Z*C((3")n))),

that is
1
{ksn: 8}

lim —

n—oopn
It is enough to apply Theorem 5.6 (ii) with 1, = 27%, up = 3% and A, = 1 for all k. So if
(2/3)% %3, — 0 (k — 00) then (22) holds.

=0. (22)
i=1

koo 1 i
Jj=1

We also have the next example.
Example 5.8. From Theorem 5.6 (iit) with Ap = up =k and 13, = 27 the condition

. 1 k|xk|
lim 2 =0
nl—>oonkZ k2
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implies x3, — 0(S (D), C1C7)) that is, for each £ >0
. g}

. {ksn:zkfl(fﬁ)

lim — -
n—oon i=p L \j=i J

=0. (23)

As in the previous cases (23) holds if 2% x/k% — 0 (k — co).
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