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ABSTRACT

By decomposing the Laplacian on the Heisenberg group into a family of parametrized par-
tial differential operators L;,7 € R\ {0}, and using parametrized Fourier-Wigner trans-
forms, we give formulas and estimates for the strongly continuous one-parameter semi-
group generated by L, and the inverse of L;. Using these formulas and estimates, we
obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Lapla-
cian.
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RESUMEN

Mediante descomposicién del Laplaceano sobre el grupo de Heisenberg en una familia de
operadores diferenciales parciales parametrizados L, 7 € R\ {0}, y usando transformada de
Fourier-Wigner parametrizada, damos férmulas y estimativas para la continuidad fuerte
del semigrupo generado por L;, y la inversa de L;. Usando esas férmulas y estimati-
vas obtenemos estimativas de Sobolev para el semigrupo a un pardametro y la inversa del
Laplaceano.

Key words and phrases: Heisenberg group, Laplacian, parametrized partial differential
operators, Hermite functions, Fourier-Wigner transforms, heat equation, one parameter semi-
group, inverse of Laplacian, Sobolev spaces.
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1 The Laplacian on the Heisenberg Group

If we identify R? with the complex plane C via
R?3(x,y) —z=x+iyeC

and let
H=CxR,

then H becomes a non-commutative group when equipped with the multiplication - given by
1
(z,t)-(w,s)=|z+w,t+s+ Z[z,w] , (z,8),(w,s) eH,
where [z,w] is the symplectic form of z and w defined by
[z,w] =2Im(zw).

In fact, H is a unimodular Lie group on which the Haar measure is just the ordinary Lebesgue
measure dz dt.

Let b be the Lie algebra of left-invariant vector fields on H. A basis for § is then given by
X,Y and T, where

g 0,10
T ox 275t
o 1 0

=5 3%
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and 3
T=—.
ot

The Laplacian Ay on H is defined by
Ap=—(X2+Y2+T2.
A simple computation gives

(a a)a 9%
X— =Y

1 92
Ay =—A— Z(x2 +y?)— +

o2 "oy “ox)or o2
where
% 92
=—+—.
o0x2  dy?

Let g be the Riemannian metric on R? given by

1 0 /2
gy, t)=1 0 1 —x/2
y2 —x/2 a?+y?)

for all (x,v,#) € R3. Then Ay is also given by
1

Ay = 0;(v/detgg;r0r),
Vdetg 15]'%53 ! !

where 01 = 0/0x, 02 = 0/0y, 03 = 0/0t. Since the symbol o(Ay) of Ay is given by

2 2
U(AH)(x,y,tQQt,TI,T): (é+%y‘[) +(77—§xT) +T2

for all (x,y,t) and (£,n,7) in R3, it is easy to see that Ay is an elliptic partial differential
operator on R? but not globally elliptic in the sense of Shubin [11]. Let us recall that Ay is
globally elliptic if there exist positive constants C and R such that

lo (A&, y, &7, 1) = C(1+ [x] + [yl + |t + &l + Il + |71)*

whenever
lx| + 1yl + 12l + IS+ Inl + 7] = R.

The aim of this paper is to give new estimates for the strongly continuous one-parameter
semigroup e 2"y > 0, generated by Ay and the inverse Auful of Ay. More precisely, we use the
Sobolev spaces Lg(l]-l]), seR, as in [1, 2] to estimate ||e_”AHf||L%(H), u >0, in terms of || f |l 2y
forall f in L2(H), and to give an estimate for ||e_”AHf L2y in terms of || f ”LE(H)' These Sobolev
spaces are also used to estimate IIAﬂfnlflle H(H) in terms of ||f||L§(H) for all f in Lg(l]-l]).
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The function F on H x (0,00) given by
Fz,t,u) = (e “™f)z,0), (z,t)eH,u>0,
is in fact the solution of the initial value problem

& e t,u) =—(AuF)z,tu),  (z,H)eH,u>0,
F(z,t,0) = f(z,2), (z,0) €H,

for the Laplacian Ay.
Using the same techniques as in [1], we get for all £ € L2(H) and u > 0,
(0.0} . -
(e 7“2 f)(z, ) = (2m) V2 / e (e Y 2)dT, (z,8)€H, (1.1)

where L;, 7 € R\ {0}, is given by

. 1 0 0
LT=—A+Z(x2+y2)12—i(x@—ya T+712

and f7 is the function on C given by

o0

fi(z)=@n) 2 / e f(z,t)dt, z€C,
—00

provided that the integral exists. In fact, f7(z) is the inverse Fourier transform of f(z,#) with

respect to ¢ evaluated at 7. In this paper, the nonzero parameter 7 can be looked at as Planck’s

constant.

To obtain the estimates in this paper, we use formulas for e Lt and ﬂ;l in terms of the -
Weyl transforms and the 7-Fourier—Wigner transforms of Hermite functions, 7 € R\ {0}, which
we recall in, respectively, Section 2 and Section 3. The L2-boundedness and the Hilbert—
Schimdt property of 7-Weyl transforms are instrumental in obtaining the estimates.

Basic information on the classical Fourier—Wigner transforms, Wigner transforms and
Weyl transforms can be found in [13] among others.

In Section 2, we introduce the 7-Weyl transforms and prove results on the L2-bounded-
ness and the Hilbert—Schmidt property of the 7-Weyl transforms. The t-Fourier—Wigner
transforms of Hermite functions are recalled in Section 3. A formula for e %L f,u>0, for ev-
ery function f in L2(C) and an estimate for ||e_”f’ff||Lz(C), u>0,intermsof || flizr(c), 1= p =2,
are given in Section 4. This formula gives a formula for e “%%, 1 > 0, immediately using the
inverse Fourier transform as indicated by (1.1). In Section 5, we use the family L%(l]—l]), sER,
of Sobolev spaces with respect to the center of the Heisenberg group as in [1, 2] to ob-
tain Sobolev estimates for e %A f,u >0, in terms of ||fll; 2, and Sobolev estimates for
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||e_”AHf||Lz(H), u > 0, in terms of the Sobolev norms ”f||L§(|]-u) of f in L2(H). In Section 6,
we obtain a formula for ;! and estimates for L;! which are then used to estimate Anful. In
Section 7, estimates for IIA[If,]1 £l L2,,00 in terms of || f| L2@H) for all f in LE(H) are given.

We end this section by putting in perspectives the results in this paper. While the semi-
group and the inverse can be studied in the framework of functional analysis as explained in
[3,4,5,8,9, 16], the results and methods in this paper are based on explicit formulas in hard
analysis and are related to the works in [1, 2, 6, 7, 10, 12, 14, 15].

2 71-Weyl Transforms
Let f and g be functions in L2(R). Then for 7 in R\ {0}, the 7-Fourier—Wigner transform V,(f,g)
is defined by
(o0} . - <
Vi(f,8)q,p) = (2n)‘1/2|r|”2/ " (y+5)e(v-5)dy
for all ¢ and p in R. In fact,

Vi(f,)g,p) = IT1V2V(f,e)1q,p), q,pER,

where V(f,g) is the classical Fourier—Wigner transform of f and g. A proof can be found in

[1].

It can be proved that Vi(f,g) is a function in L2(C) and we have the Moyal identity
stating that

||Vr(f,g)||L2(q:) = ||f||L2(uqa)||g||L2(u;g), TeR\{0}. 2.1

We define the 7-Wigner transform W;(f,g) of f and g by

Wi (f,8) =V:(f,)". (2.2)

Then we have the following connection of the 7-Wigner transform with the usual Wigner
transform.

Theorem 2.1. Let 7 € R\ {0}. Then for all functions f and g in L2(R),
Wi (f,8)(x, &) = [T 2W(f, g)x/t,8), x,E€R,

where W(f,g) is the classical Wigner transform of f and g.

It is obvious that
Wi(f,8) =Wi(g,f), f.geL*R). 2.3)
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Let 0 € LP(C), 1 < p < oo. Then for all 7 in R\ {0} and all functions f in the Schwartz space
F(R) on R, we define W] f to be the tempered distribution on R by

WIf,g)=@m) V2 / / o, W (f, @), &) dx dé (2.4)

for all g in #(R), where (F,G) is defined by
(F,G) =/ F(2)G(z)dz

for all measurable functions F and G on R", provided that the integral exists. We call W}
the 7-Weyl transform associated to the symbol o. It is easy to see that if ¢ is a symbol in the
Schwartz space .#(C) on C, then W} is a function in S (R) for all f in F(R).

We have the following estimate for the norm of the Weyl transform W; in terms of the
L? norm of the symbol ¢ when 0 € LP(C),1<p <2.

Theorem 2.2. Let 0 € LP(C),1<p <2. Then W} :L2(R) — L%(R) is a bounded linear operator
and
IWZ I, < @m) VP~ WP g Ly ),

where IIW; I« is the operator norm of W; :L2(R) — L2(R).
Proof Let f and g be functions in .#(R). Then

(Wif,g)

(2m) 12 / / 6(x,OW(f,8)x,§)dxd
= @n) Y72 / / 6(x, OOW(F,g)x/t,&)dxdé
= @) V2 / / 61, OW(f,8)(x, ) dxdé.

But

62,8 = |7 o (x,8), x,E€R,

where 01/, is the dilation of o with respect to the first variable by the amount 1/7. More
precisely,

UI/T(q,p)ZU(q/T’p)’ qﬂPER'
So,

Wire) = @ [ [ e oW ow odrds

17 2 Wy £, 2),
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where Wy is the classical Weyl transform with symbol 67/;. Thus, it follows from Theorem

21.11in [14] that W} : L2(R) — L2(R) is a bounded linear operator and
IWZI < 1717 2@m) YPlloykliLe ) = @m) Pl Y2 P g Ly ).

O

We have the following result for the Hilbert—Schmidt norm of the Weyl transform W; in
terms of the L2 norm of the symbol ¢ when o € L2(C).

Theorem 2.3. Let o € L2(C). Then w; : L2(R) — L2(R) is a Hilbert—Schmidt operator and
IWZlas =) 2ol 20,

where IIWg s is the Hilbert—Schmidt norm of Wg :L2(R) — L2(R).

Proof Let f and g be functions in .#(R). Then

Wif.g) = Qo / / &, OWL(F, ), ) dx

@n) V2712 / / 6(x, OW(f,8)x/t,8)dxdE

= ©2n) 2712 / / 6(tx, EOW(F, g)(x, &) dxdE.

But
6(rx,8) = 11 2675 (x,0), x,E€R,

where o/, is the dilation of o with respect to the first variable by the amount 1/7, i.e.,
Ul/T(q,p)ZU(q/T’p)’ q’pER’

So,

Wif,e) = @o Yo ™¥2 / / T (x, OW(F, 8)x, &) dxdé
= |1 2 Ws.fl0),

where Wy is the classical Weyl transform with symbol 1;. Thus, it follows from Theorem

7.5 in [13] that W} : L2(R) — L%(R) is a Hilbert—Schmidt operator and

-1/2
Wilazs = 1t1”"“I1Wsp lms
~1/2,_-1/2
(2m) |7l lo1 L2

@) 2ol )
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3 Fourier-Wigner Transforms of Hermite Functions

For 1 e R\ {0} and for £ =0,1,2,..., we define e}e to be the function on R by

et ()= |71V er(V/I7lx), xeR.

Here, ¢}, is the Hermite function of order % defined by

1

T o 2I(x), xeR,
(Qkk!\/ﬁ)l/z

ep(x) =
where H}, is the Hermite polynomial of degree & given by
d \*
Hp(x)= (—l)ke’c2/2 (—) (e_xz), x€R.
dx
For j,k=0,1,2,..., we define e;.k on R? by
e;’k = VT(e;,eZ).
The following theorem gives the connection of {e; = 7,k =0,1,2,

0,1,2,...}, where
€k :V(ej’ek), .],k = 0,1,2,....

A proof can be found in [1].
Theorem 3.1. For 1 € R\ {0} and for j,k=0,1,2,...,

T
e’ (q,p)=lr|1/2e-k(—q, I7] ) g.peR.
J.k J» /|‘L'|

...} with {e;; : j,kb =

Theorem 3.2. {e;. i :J,k=0,1,2,...} forms an orthonormal basis for L2(R?).

Theorem 3.2 follows from Theorem 3.1 and Theorem 21.2 in [13] to the effect that {e;, :

J,k=0,1,2,...} is an orthonormal basis for L2(R?).

Theorem 3.3. For j,k=0,1,2,...,

I:Te;-’k =2k+1+ |T|)|T|e;,k.

Theorem 3.3 can be proved using Theorem 3.1, Theorem 3.3 in [2] and Theorem 22.2

in [13] telling us that for j,k = 0,1,2,..., e;; is an eigenfunction of L;
eigenvalue 2% + 1 and the fact that, L, = L, + 72.

corresponding to the
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4 A Formula and an Estimate for e‘”if, u>0

Let T € R\ {0}. Then a formula for e‘”I:T, u > 0, is given by the following theorem.

Theorem 4.1. Let f € L%(C). Then for u >0,
~ [ee]
e—quf — (27_[)1/2 Z e—(2k+l+|T\)\T|uVT(Wf‘Eez,ez )’
k=0
where the convergence of the series is understood to be in L%(C).
Proof Let f € L%(C). Then from Theorem 3.3 we have for u > 0
A S U DN v )
e f= Z Ze (f,ej,k)ej,kze e f, 4.1)
k=07=0
where the series is convergent in L2(C). Now, using the formula for e L7 f in [2] and (4.1), we
get

= (o)
e—uL-[f — (27_[)1/2 ];09_(2k+1+‘rl)|ﬂuVr(W}g92,e;)

for all £ in L2(C) and u > 0. O

For all 7 in R\ {0}, we have the following estimate for the L? norm of e~ul f,u>0,in

terms of the L? norm of f.

Theorem 4.2. Let 1 € R\ {0}. Then for all functions [ in LP(C),1<p <2,

||e_”ETf||L2(a:) < (2n)_(1/p)+(1/2)lrl_(1/2”(1/")6_’2”—2 Sh () 1£1lLr(©)-
Proof By Theorem 4.1, the Moyal identity (2.1) and the fact that
lepllz 2@ =1, k=0,1,2,...,
we get
le ™ L7 Fll 2 < (2m)Y2e T+ i e‘z’*"'”nW}e;e I 2@y u>0. (4.2)

k=0
Applying Theorem 2.2 to (4.2), we get

le ™ Fllzac)

_ _ _ 2y, [ & _
< (2n) WRIHUR)| WD +(Up),~(lrl+Ir] )u( . 2kr|u) Il
k=0
2 1
= () WPHUD) W2+ (W) plrfPu ’
7| 2emn(rl0) £ e (o)

as asserted.
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5 Sobolev Estimates for e " u >0

Let s € R. Then we define L2(H) to be the set of all tempered distributions f in &' (H) such
that f7(z) is a measurable function and

// |T|2s|fr(z)|2drdz<oo.
CJ -0

For every f in L2(H), we define the norm | f|| L2ap by

(e o)
||f||i§(H)=/C/ 721" (2)Pdr de.

Then it can be shown easily that LE(IHI) is an inner product space in which the inner product
(, )Lg(H) is giVen by

(f: 82 = / / 7> fT(2)g" (2)dTdz
CJ-0
for all f and g in L2(H).

Theorem 5.1. Let s = 1. Then for u >0, e %20 : L2(H) — L%(H) is a bounded linear operator
and

_ C
le™ 3 Fllpzen < 55 1f Iz2ay,  f ELPGD),

where
cs = sup (|7|*/sinh|7|).
TeR\{0}

Proof Let u >0 and f € L2(H). Then by (1.1), Fubini’s theorem, Plancherel’s theorem and
Theorem 4.2 with p =2,

le™ 125, = / / % 1(e " A £) (2)|2d T d 2
— / 28 (/l( uAHf)T(Z)I2dZ)dT
= / 7|28 ( / I(e_”L’fT)(z)IZdz)dr

* 2 L
= / T2 lle ™ T2, dT

(o0}

1 00 e—2rzu|.[|2s
= / ———— I3z, dT
4\ /_o sinh?(|7|u)

I e IR
— d
4/00 sinh?(|7|u) @I dz

IA
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_ 1 N
T 4qy2s+l /oo sinh2(|7|w) (/|f(2 7/u)| dZ)dT

where f is the inverse Fourier transform of f with respect to ¢. So, using a simple change of
variable and letting

Cs= sup (I7/*/sinh?|7)),
TeR\{0}

we get

le™ 4 I 2 = 55 / ( / If(z, r)|2dz) = ufan(H)
and this completes the proof. [l

The following result complements Theorem 5.1.

Theorem 5.2. Let s < —1. Then for u >0, e % :Lg([HI) — L2(H) is a bounded linear operator
and

Nfl2gy, fELIED,

—uA -
e U Hf”Lz(H)SQu—S

where

c_s = sup(|7| " ®sinh|7]).
7€{0}

The proof of Theorem 5.2 is very similar to that of Theorem 5.1 and is hence omitted.

6 Two Formulas and an Estimate for L !

Let T € R\ {0}. Then a formula for L;l is given by the following theorem.

Theorem 6.1. Let f € L%(C). Then

1

-1, _ 1/2
r f=Cm) Z(2k+1+|r|)|r|

T(W}ez,eZ),
where the convergence of the series is understood to be in L*(C).

Proof Let f € L?(C). Then

1
2k +1+[7)DI7|

(>

u[\/Jg

(f.e;z)es s, (6.1)

where the series is convergent in L2(C). Now, by Plancherel’s theorem and (2.2)—(2.4),

(frely) = /C fVi(eTep)@)dz = /C FOV(eT,e ) g
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/ FOWe],ef ) d¢ = @m)"2(Wge],e?) (6.2)
C
for j,k=0,1,2,.... Similarly, for j,2=0,1,2,..., and g in L%(C), we get

(] .8 = (g,e] ) = @m)"*(Wle} ) = (2m) (€], Wie},). (6.3)

So, by (6.1)—(6.3), Fubini’s theorem and Parseval’s identity,

o0

_1 _ P ————
(L:°f.8) = 2= Zo(zk+1+|r|)lrl

S 1

= 2 — (WZe%, Wi 6.4
Y GV Tel, Wiep). (6.4)

Z(Wrez,eE)(e},ngez)

By Plancherel’s theorem and (2.2)—(2.4),

(Wiej, Wge) = (@m) 12 /C E@Wile}, Wiep)(2)dz

(27[)—1/2 / WT(WfEeZ , ez )(Z)%dz
C

(om)12 / V.(Wiej, ep)2)g@dz ©65)
C

for £ =0,1,2,.... Thus, by (6.4), (6.5) and Fubini’s theorem,

. _ ey 1
Cife) = @Y e

S 1
om)Y2 — V.(Wlel,e! 6.6
@m (,§0<2k+1+|f|)|1| (Wiep.ex).8 6.6)

(VT(W}e}e,eZ),g)

for all f and g in L2(C). Thus, by (6.6),

W'E T T
L @ha 1o Ve

for all f in L%(C). O

The formula (6.4) is an important formula in its own right and we upgrade it to the status
of a theorem.

Theorem 6.2. For all T € R\ {0}, the inverse I:;l of the parametrized partial differential oper-
ators L, is given by
x 1

! = —(W}e} ,Wiel L.
e o(2k+1+|TI)IT|( ewWeer)h [8€LO
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For all 7 in R\ {0}, we have the following estimate for the L2 norm of I:;l f in terms of the
L2 norm of f.

Theorem 6.3. Let T € R\ {0}. Then for all functions f in L?(C),
WL iz < 111721 lz2co)-

Proof Let f and g be functions in L2(R). Then by Theorems 2.3 and 6.2,

~ 1 &
-1
IL7f.81 = 2HW};0|(W;e;,ngep|
< 2 Wils W)
= |T|2 7 HS g HS
1
= W”f"m(c)"g”m((@)
and this completes the proof. [l

7 Sobolev Estimates for A ;!

We have the following simple result giving the connection of A[;ﬂl with f,;l, 7 € R\ {0}, which
can be proved easily using the elementary properties of the Fourier transform and the Fourier

inversion formula.

Theorem 7.1. Let f € L2(H). Then

(0.0}

(At )z, 0) = (2m) V2 / e (LYY 2)dT, (z,t)eH.

—00

We can now give the following theorem, which can be seen as another manifestation of
the ellipticity of Ay.

Theorem 7.2. Let s € R. Then Ay': LE(H) — L2, ,(H) and

185 Fllzz oy S I liz2ge, £ ELIQD.
Proof By Fubini’s theorem, Plancherel’s theorem, Theorems 6.3 and 7.1,
—10,2 _ O 2542 A1 T2
1Ay f"Lgﬂ(H) = /C/_oclfl Ay ) (2)I°drdz

/ |r|2(s+2)( / AR ) (2)Pdz|dT
- C

(oo}
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= / |r|2<s+2’( / |(£;1ff)(z)|2dz)dr
—00 C

o0
2(s+2) 7 -1 2
/_ [T PEDNLT 1oy

o0

* 2 2
S T
/_ TP 17122 o dT

(0.0}

/ |r|28( / IfT(Z)Izdz)dr
—00 C

/ / 17121/ (2)12d v dz
CJ -0

2
112250

IA

as asserted. O
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