
CUBO A Mathematical Journal

Vol.12, No
¯ 03, (83–97). October 2010

The Semigroup and the Inverse of the Laplacian

on the Heisenberg Group1

APARAJITA DASGUPTA

Department of Mathematics, Indian Institute of Science,

Bangalore–560012, India

email: adgupta@math.iisc.ernet.in

AND

M.W. WONG

Department of Mathematics and Statistics, York University,

4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

email: mwwong@mathstat.yorku.ca

ABSTRACT

By decomposing the Laplacian on the Heisenberg group into a family of parametrized par-

tial differential operators L̃τ,τ ∈ R \ {0}, and using parametrized Fourier-Wigner trans-

forms, we give formulas and estimates for the strongly continuous one-parameter semi-

group generated by L̃τ, and the inverse of L̃τ. Using these formulas and estimates, we

obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Lapla-

cian.

1This research has been supported by the Natural Sciences and Engineering Research Council of Canada.
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RESUMEN

Mediante descomposición del Laplaceano sobre el grupo de Heisenberg en una familia de

operadores diferenciales parciales parametrizados L̃τ,τ ∈R\{0}, y usando transformada de

Fourier-Wigner parametrizada, damos fórmulas y estimativas para la continuidad fuerte

del semigrupo generado por L̃τ, y la inversa de L̃τ. Usando esas fórmulas y estimati-

vas obtenemos estimativas de Sobolev para el semigrupo a un parámetro y la inversa del

Laplaceano.

Key words and phrases: Heisenberg group, Laplacian, parametrized partial differential

operators, Hermite functions, Fourier-Wigner transforms, heat equation, one parameter semi-

group, inverse of Laplacian, Sobolev spaces.
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1 The Laplacian on the Heisenberg Group

If we identify R
2 with the complex plane C via

R
2 ∋ (x, y)↔ z = x+ i y ∈C

and let

H=C×R,

then H becomes a non-commutative group when equipped with the multiplication · given by

(z, t) · (w,s) =
(
z+w, t+ s+

1

4
[z,w]

)
, (z, t),(w,s) ∈H,

where [z,w] is the symplectic form of z and w defined by

[z,w]= 2Im(zw).

In fact, H is a unimodular Lie group on which the Haar measure is just the ordinary Lebesgue

measure dz dt.

Let h be the Lie algebra of left-invariant vector fields on H. A basis for h is then given by

X , Y and T, where

X =
∂

∂x
+

1

2
y
∂

∂t
,

Y =
∂

∂y
−

1

2
x
∂

∂t
,
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and

T =
∂

∂t
.

The Laplacian ∆H on H is defined by

∆H =−(X2 +Y 2 +T2).

A simple computation gives

∆H =−∆−
1

4
(x2+ y2)

∂2

∂t2
+

(
x
∂

∂y
− y

∂

∂x

)
∂

∂t
−

∂2

∂t2
,

where

∆=
∂2

∂x2
+

∂2

∂y2
.

Let g be the Riemannian metric on R
3 given by

g(x, y, t) =




1 0 y/2

0 1 −x/2

y/2 −x/2 1
4
(x2 + y2)




for all (x, y, t) ∈R
3. Then ∆H is also given by

−∆H =
1√

det g

∑

1≤ j,k≤3

∂ j(
√

det gg j,k∂k),

where ∂1 = ∂/∂x, ∂2 = ∂/∂y, ∂3 = ∂/∂t. Since the symbol σ(∆H) of ∆H is given by

σ(∆H)(x, y, t;ξ,η,τ) =
(
ξ+

1

2
yτ

)2

+
(
η−

1

2
xτ

)2

+τ2

for all (x, y, t) and (ξ,η,τ) in R
3, it is easy to see that ∆H is an elliptic partial differential

operator on R
3 but not globally elliptic in the sense of Shubin [11]. Let us recall that ∆H is

globally elliptic if there exist positive constants C and R such that

|σ(∆H)(x, y, t;ξ,η,τ)| ≥ C
(
1+|x|+ |y|+ |t|+ |ξ|+ |η|+ |τ|

)2

whenever

|x|+ |y|+ |t|+ |ξ|+ |η|+ |τ| ≥ R.

The aim of this paper is to give new estimates for the strongly continuous one-parameter

semigroup e−u∆H , u> 0, generated by∆H and the inverse ∆−1
H

of ∆H. More precisely, we use the

Sobolev spaces L2
s(H), s ∈ R, as in [1, 2] to estimate ‖e−u∆H f ‖L2

s (H), u > 0, in terms of ‖ f ‖L2(H)

for all f in L2(H), and to give an estimate for ‖e−u∆H f ‖L2(H) in terms of ‖ f ‖L2
s (H). These Sobolev

spaces are also used to estimate ||∆−1
H

f ||L2
s+2

(H) in terms of || f ||L2
s (H) for all f in L2

s(H).
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The function F on H× (0,∞) given by

F(z, t,u) = (e−u∆H f )(z, t), (z, t) ∈H, u> 0,

is in fact the solution of the initial value problem





∂F
∂u

(z, t,u) =−(∆HF)(z, t,u),

F(z, t,0) = f (z, t),

(z, t) ∈H, u> 0,

(z, t) ∈H,

for the Laplacian ∆H.

Using the same techniques as in [1], we get for all f ∈ L2(H) and u> 0,

(e−u∆H f )(z, t)= (2π)−1/2

ˆ ∞

−∞
e−itτ(e−uL̃τ f τ)(z)dτ, (z, t) ∈H, (1.1)

where L̃τ, τ ∈R\{0}, is given by

L̃τ =−∆+
1

4
(x2+ y2)τ2 − i

(
x
∂

∂y
− y

∂

∂x

)
τ+τ2

and f τ is the function on C given by

f τ(z)= (2π)−1/2

ˆ ∞

−∞
eitτ f (z, t)dt, z ∈C,

provided that the integral exists. In fact, f τ(z) is the inverse Fourier transform of f (z, t) with

respect to t evaluated at τ. In this paper, the nonzero parameter τ can be looked at as Planck’s

constant.

To obtain the estimates in this paper, we use formulas for e−uL̃τ and L̃−1
τ in terms of the τ-

Weyl transforms and the τ-Fourier–Wigner transforms of Hermite functions, τ ∈R\{0}, which

we recall in, respectively, Section 2 and Section 3. The L2-boundedness and the Hilbert–

Schimdt property of τ-Weyl transforms are instrumental in obtaining the estimates.

Basic information on the classical Fourier–Wigner transforms, Wigner transforms and

Weyl transforms can be found in [13] among others.

In Section 2, we introduce the τ-Weyl transforms and prove results on the L2-bounded-

ness and the Hilbert–Schmidt property of the τ-Weyl transforms. The τ-Fourier–Wigner

transforms of Hermite functions are recalled in Section 3. A formula for e−uL̃τ f , u> 0, for ev-

ery function f in L2(C) and an estimate for ‖e−uL̃τ f ‖L2(C), u> 0, in terms of ‖ f ‖Lp(C), 1 ≤ p≤ 2,

are given in Section 4. This formula gives a formula for e−u∆H , u > 0, immediately using the

inverse Fourier transform as indicated by (1.1). In Section 5, we use the family L2
s(H), s ∈R,

of Sobolev spaces with respect to the center of the Heisenberg group as in [1, 2] to ob-

tain Sobolev estimates for e−u∆H f , u > 0, in terms of ‖ f ‖L2(H), and Sobolev estimates for
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‖e−u∆H f ‖L2(H), u > 0, in terms of the Sobolev norms ‖ f ‖L2
s (H) of f in L2

s(H). In Section 6,

we obtain a formula for L̃−1
τ and estimates for L̃−1

τ which are then used to estimate ∆−1
H

. In

Section 7, estimates for ‖∆−1
H

f ‖L2
s+2

(H) in terms of ‖ f ‖L2
s (H) for all f in L2

s(H) are given.

We end this section by putting in perspectives the results in this paper. While the semi-

group and the inverse can be studied in the framework of functional analysis as explained in

[3, 4, 5, 8, 9, 16], the results and methods in this paper are based on explicit formulas in hard

analysis and are related to the works in [1, 2, 6, 7, 10, 12, 14, 15].

2 τ-Weyl Transforms

Let f and g be functions in L2(R). Then for τ in R\{0}, the τ-Fourier–Wigner transform Vτ( f , g)

is defined by

Vτ( f , g)(q, p) = (2π)−1/2|τ|1/2

ˆ ∞

−∞
eiτqy f

(
y+

p

2

)
g
(
y−

p

2

)
dy

for all q and p in R. In fact,

Vτ( f , g)(q, p) = |τ|1/2V ( f , g)(τq, p), q, p ∈ R,

where V ( f , g) is the classical Fourier–Wigner transform of f and g. A proof can be found in

[1].

It can be proved that Vτ( f , g) is a function in L2(C) and we have the Moyal identity

stating that

‖Vτ( f , g)‖L2(C) = ‖ f ‖L2(R)‖g‖L2 (R), τ ∈R\{0}. (2.1)

We define the τ-Wigner transform Wτ( f , g) of f and g by

Wτ( f , g) =Vτ( f , g)∧. (2.2)

Then we have the following connection of the τ-Wigner transform with the usual Wigner

transform.

Theorem 2.1. Let τ ∈R\{0}. Then for all functions f and g in L2(R),

Wτ( f , g)(x,ξ) = |τ|−1/2W( f , g)(x/τ,ξ), x,ξ ∈R,

where W( f , g) is the classical Wigner transform of f and g.

It is obvious that

Wτ( f , g) =Wτ(g, f ), f , g ∈ L2(R). (2.3)
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Let σ ∈ Lp(C), 1≤ p≤∞. Then for all τ in R\{0} and all functions f in the Schwartz space

S (R) on R, we define Wτ
σ f to be the tempered distribution on R by

(Wτ
σ f , g) = (2π)−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ(x,ξ)Wτ( f , g)(x,ξ)dx dξ (2.4)

for all g in S (R), where (F,G) is defined by

(F,G) =
ˆ

Rn

F(z)G(z)dz

for all measurable functions F and G on R
n, provided that the integral exists. We call Wτ

σ

the τ-Weyl transform associated to the symbol σ. It is easy to see that if σ is a symbol in the

Schwartz space S (C) on C, then Wτ
σ f is a function in S (R) for all f in S (R).

We have the following estimate for the norm of the Weyl transform Wτ
σ̂

in terms of the

Lp norm of the symbol σ when σ ∈ Lp(C), 1 ≤ p≤ 2.

Theorem 2.2. Let σ ∈ Lp(C), 1 ≤ p ≤ 2. Then Wτ
σ̂

: L2(R)→ L2(R) is a bounded linear operator

and

‖Wτ
σ̂‖∗ ≤ (2π)−1/p|τ|−(1/2)+(1/p)‖σ‖Lp (C),

where ‖Wτ
σ̂
‖∗ is the operator norm of Wτ

σ̂
: L2(R)→ L2(R).

Proof Let f and g be functions in S (R). Then

(Wτ
σ̂ f , g) = (2π)−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ̂(x,ξ)Wτ( f , g)(x,ξ)dx dξ

= (2π)−1|τ|−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ̂(x,ξ)W( f , g)(x/τ,ξ)dx dξ

= (2π)−1|τ|1/2

ˆ ∞

−∞

ˆ ∞

∞
σ̂(τx,ξ)W( f , g)(x,ξ)dx dξ.

But

σ̂(τx,ξ) = |τ|−1σ̂1/τ(x,ξ), x,ξ ∈R,

where σ1/τ is the dilation of σ with respect to the first variable by the amount 1/τ. More

precisely,

σ1/τ(q, p) =σ(q/τ, p), q, p ∈ R.

So,

(Wτ
σ̂ f , g) = (2π)−1/2|τ|−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ̂1/τ(x,ξ)W( f , g)(x,ξ)dx dξ

= |τ|−1/2(Wσ̂1/τ
f , g),
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where Wσ̂1/τ
is the classical Weyl transform with symbol σ̂1/τ. Thus, it follows from Theorem

21.1 in [14] that Wτ
σ̂

: L2(R)→ L2(R) is a bounded linear operator and

‖Wτ
σ̂‖∗ ≤ |τ|−1/2(2π)−1/p‖σ1/τ‖Lp (C) = (2π)−1/p|τ|−(1/2)+(1/p)‖σ‖Lp (C).

�

We have the following result for the Hilbert–Schmidt norm of the Weyl transform Wτ
σ̂

in

terms of the L2 norm of the symbol σ when σ ∈ L2(C).

Theorem 2.3. Let σ ∈ L2(C). Then Wτ
σ̂

: L2(R)→ L2(R) is a Hilbert–Schmidt operator and

‖Wτ
σ̂‖HS = (2π)−1/2‖σ‖L2(C),

where ‖Wτ
σ̂
‖HS is the Hilbert–Schmidt norm of Wτ

σ̂
: L2(R)→ L2(R).

Proof Let f and g be functions in S (R). Then

(Wτ
σ̂ f , g) = (2π)−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ̂(x,ξ)Wτ( f , g)(x,ξ)dx dξ

= (2π)−1/2|τ|−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ̂(x,ξ)W( f , g)(x/τ,ξ)dx dξ

= (2π)−1/2|τ|1/2

ˆ ∞

−∞

ˆ ∞

∞
σ̂(τx,ξ)W( f , g)(x,ξ)dx dξ.

But

σ̂(τx,ξ) = |τ|−1/2σ̂1/τ(x,ξ), x,ξ ∈R,

where σ1/τ is the dilation of σ with respect to the first variable by the amount 1/τ, i.e.,

σ1/τ(q, p) =σ(q/τ, p), q, p ∈ R.

So,

(Wτ
σ̂ f , g) = (2π)−1|τ|−1/2

ˆ ∞

−∞

ˆ ∞

−∞
σ̂1/τ(x,ξ)W( f , g)(x,ξ)dx dξ

= |τ|−1/2(Wσ̂1/τ
f , g),

where Wσ̂1/τ
is the classical Weyl transform with symbol σ̂1/τ. Thus, it follows from Theorem

7.5 in [13] that Wτ
σ̂

: L2(R)→ L2(R) is a Hilbert–Schmidt operator and

‖Wτ
σ̂‖HS = |τ|−1/2‖Wσ̂1/τ

‖HS

= (2π)−1/2|τ|−1/2‖σ1/τ‖L2(C)

= (2π)−1/2‖σ‖L2(C).

�
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3 Fourier–Wigner Transforms of Hermite Functions

For τ ∈R\{0} and for k = 0,1,2, . . . , we define eτ
k

to be the function on R by

eτk(x)= |τ|1/4ek(
√
|τ|x), x ∈R.

Here, ek is the Hermite function of order k defined by

ek(x)=
1

(2kk!
p
π)1/2

e−x2/2Hk(x), x ∈R,

where Hk is the Hermite polynomial of degree k given by

Hk(x)= (−1)kex2/2

(
d

dx

)k

(e−x2

), x ∈R.

For j,k = 0,1,2, . . . , we define eτ
j,k

on R
2 by

eτj,k =Vτ(eτj , eτk).

The following theorem gives the connection of {eτ
j,k

: j,k = 0,1,2, . . . } with {e j,k : j,k =
0,1,2, . . . }, where

e j,k =V (e j , ek), j,k = 0,1,2, . . . .

A proof can be found in [1].

Theorem 3.1. For τ ∈R\{0} and for j,k = 0,1,2, . . . ,

eτj,k(q, p) = |τ|1/2e j,k

(
τ

p
|τ|

q,
√

|τ|p
)
, q, p ∈ R.

Theorem 3.2. {eτ
j,k

: j,k = 0,1,2, . . . } forms an orthonormal basis for L2(R2).

Theorem 3.2 follows from Theorem 3.1 and Theorem 21.2 in [13] to the effect that {e j,k :

j,k = 0,1,2, . . . } is an orthonormal basis for L2(R2).

Theorem 3.3. For j,k = 0,1,2, . . . ,

L̃τeτj,k = (2k+1+|τ|)|τ|eτj,k .

Theorem 3.3 can be proved using Theorem 3.1, Theorem 3.3 in [2] and Theorem 22.2

in [13] telling us that for j,k = 0,1,2, . . . , e j,k is an eigenfunction of L1 corresponding to the

eigenvalue 2k+1 and the fact that, L̃τ = Lτ+τ2.
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4 A Formula and an Estimate for e−uL̃τ , u > 0

Let τ ∈R\{0}. Then a formula for e−uL̃τ , u> 0, is given by the following theorem.

Theorem 4.1. Let f ∈ L2(C). Then for u> 0,

e−uL̃τ f = (2π)1/2
∞∑

k=0

e−(2k+1+|τ|)|τ|uVτ(Wτ

f̂
eτk, eτk),

where the convergence of the series is understood to be in L2(C).

Proof Let f ∈ L2(C). Then from Theorem 3.3 we have for u> 0

e−uL̃τ f =
∞∑

k=0

∞∑

j=0

e−(2k+1+|τ|)|τ|u( f , eτj,k)eτj,k = e−|τ|
2u e−uLτ f , (4.1)

where the series is convergent in L2(C). Now, using the formula for e−uLτ f in [2] and (4.1), we

get

e−uL̃τ f = (2π)1/2
∞∑

k=0

e−(2k+1+|τ|)|τ|uVτ(Wτ

f̂
eτk, eτk)

for all f in L2(C) and u> 0. �

For all τ in R\ {0}, we have the following estimate for the L2 norm of e−uL̃τ f , u > 0, in

terms of the Lp norm of f .

Theorem 4.2. Let τ ∈R\{0}. Then for all functions f in Lp(C), 1≤ p≤ 2,

‖e−uL̃τ f ‖L2(C) ≤ (2π)−(1/p)+(1/2)|τ|−(1/2)+(1/p)e−τ
2u 1

2sinh(|τ|u)
‖ f ‖Lp (C).

Proof By Theorem 4.1, the Moyal identity (2.1) and the fact that

‖eτk‖L2(R) = 1, k = 0,1,2, . . . ,

we get

‖e−uL̃τ f ‖L2(C) ≤ (2π)1/2e−(|τ|+|τ|2)u
∞∑

k=0

e−2k|τ|u‖Wτ

f̂
eτk‖L2(R), u> 0. (4.2)

Applying Theorem 2.2 to (4.2), we get

‖e−uL̃τ f ‖L2(C)

≤ (2π)−(1/p)+(1/2)|τ|−(1/2)+(1/p)e−(|τ|+|τ|2)u

(
∞∑

k=0

e−2k|τ|u
)
‖ f ‖Lp (C)

= (2π)−(1/p)+(1/2)|τ|−(1/2)+(1/p)e−|τ|
2u 1

2sinh(|τ|u)
‖ f ‖Lp(C),

as asserted.

�
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5 Sobolev Estimates for e−∆H, u > 0

Let s ∈ R. Then we define L2
s(H) to be the set of all tempered distributions f in S

′
(H) such

that f τ(z) is a measurable function and

ˆ

C

ˆ ∞

−∞
|τ|2s| f τ(z)|2dτdz <∞.

For every f in L2
s(H), we define the norm ‖ f ‖L2

s (H) by

‖ f ‖2

L2
s (H)

=
ˆ

C

ˆ ∞

−∞
|τ|2s| f τ(z)|2dτdz.

Then it can be shown easily that L2
s(H) is an inner product space in which the inner product

( , )L2
s (H) is given by

( f , g)L2
s (H) =

ˆ

C

ˆ ∞

−∞
|τ|2s f τ(z)gτ(z)dτdz

for all f and g in L2
s(H).

Theorem 5.1. Let s ≥ 1. Then for u > 0, e−u∆H : L2(H) → L2
s(H) is a bounded linear operator

and

‖e−u∆H f ‖L2
s (H) ≤

cs

2us
‖ f ‖L2(H), f ∈ L2(H),

where

cs = sup
τ∈R\{0}

(|τ|s/sinh |τ|).

Proof Let u > 0 and f ∈ L2(H). Then by (1.1), Fubini’s theorem, Plancherel’s theorem and

Theorem 4.2 with p= 2,

‖e−u∆H f ‖2

L2
s (H)

=
ˆ

C

ˆ ∞

−∞
|τ|2s|(e−u∆H f )τ(z)|2dτdz

=
ˆ ∞

−∞
|τ|2s

(ˆ

C

|(e−u∆H f )τ(z)|2dz

)
dτ

=
ˆ ∞

−∞
|τ|2s

(ˆ

C

|(e−uL̃τ f τ)(z)|2dz

)
dτ

=
ˆ ∞

−∞
|τ|2s‖e−uL̃τ f τ‖2

L2(C)
dτ

≤
1

4

(
ˆ ∞

−∞

e−2τ2u|τ|2s

sinh2(|τ|u)
‖ f τ‖2

L2(C)
dτ

)

≤
1

4

ˆ ∞

−∞

|τ|2s

sinh2(|τ|u)

(ˆ

C

| f τ(z)|2dz

)
dτ
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=
1

4u2s+1

ˆ ∞

−∞

|τ|2s

sinh2(|τ|u)

(ˆ

C

| f̌ (z,τ/u)|2dz

)
dτ,

where f̌ is the inverse Fourier transform of f with respect to t. So, using a simple change of

variable and letting

Cs = sup
τ∈R\{0}

(|τ|2s/sinh2|τ|),

we get

‖e−u∆H f ‖2

L2
s (H)

≤
Cs

4u2s

ˆ ∞

−∞

(ˆ

C

| f̌ (z,τ)|2dz

)
dτ=

Cs

4u2s
‖ f ‖2

L2(H)

and this completes the proof. �

The following result complements Theorem 5.1.

Theorem 5.2. Let s ≤−1. Then for u > 0, e−u∆H : L2
s(H) → L2(H) is a bounded linear operator

and

‖e−u∆H f ‖L2(H) ≤
c−s

2u−s
‖ f ‖L2

s (H), f ∈ L2
s(H),

where

c−s = sup
τ∈{0}

(|τ|−ssinh |τ|).

The proof of Theorem 5.2 is very similar to that of Theorem 5.1 and is hence omitted.

6 Two Formulas and an Estimate for L̃−1
τ

Let τ ∈R\{0}. Then a formula for L−1
τ is given by the following theorem.

Theorem 6.1. Let f ∈ L2(C). Then

L̃−1
τ f = (2π)1/2

∞∑

k=0

1

(2k+1+|τ|)|τ|
Vτ(Wτ

f̂
eτk, eτk),

where the convergence of the series is understood to be in L2(C).

Proof Let f ∈ L2(C). Then

L̃−1
τ f =

∞∑

k=0

∞∑

j=0

1

(2k+1+|τ|)|τ|
( f , eτj,k)eτj,k, (6.1)

where the series is convergent in L2(C). Now, by Plancherel’s theorem and (2.2)–(2.4),

( f , eτj,k) =
ˆ

C

f (z)Vτ(eτ
j
, eτ

k
)(z)dz =

ˆ

C

f̂ (ζ)Vτ(eτ
j
, eτ

k
)∧(ζ)dζ
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=
ˆ

C

f̂ (ζ)Wτ(eτ
j
, eτ

k
)(ζ)dζ= (2π)1/2(Wf̂ eτk, eτj) (6.2)

for j,k = 0,1,2, . . . . Similarly, for j,k = 0,1,2, . . . , and g in L2(C), we get

(eτj,k, g) = (g, eτ
j,k

)= (2π)1/2(Wτ
ĝ

eτ
k
, eτ

j
)= (2π)1/2(eτj ,W

τ
ĝ eτk). (6.3)

So, by (6.1)–(6.3), Fubini’s theorem and Parseval’s identity,

(L̃−1
τ f , g) = 2π

∞∑

k=0

1

(2k+1+|τ|)|τ|

∞∑

j=0

(Wτ

f̂
eτk, eτj )(e

τ
j ,W

τ
ĝ eτk)

= 2π
∞∑

k=0

1

(2k+1+|τ|)|τ|
(Wτ

f̂
eτk,Wτ

ĝ eτk). (6.4)

By Plancherel’s theorem and (2.2)–(2.4),

(Wτ

f̂
eτk,Wτ

ĝ eτk) = (2π)−1/2

ˆ

C

ĝ(z)Wτ(eτ
k
,Wτ

f̂
eτ

k
)(z)dz

= (2π)−1/2

ˆ

C

Wτ(Wτ

f̂
eτk, eτk)(z) ĝ(z)dz

= (2π)−1/2

ˆ

C

Vτ(Wτ

f̂
eτk, eτk)(z)g(z)dz (6.5)

for k = 0,1,2, . . . . Thus, by (6.4), (6.5) and Fubini’s theorem,

(L̃−1
τ f , g) = (2π)1/2

∞∑

k=0

1

(2k+1+|τ|)|τ|
(Vτ(Wτ

f̂
eτk, eτk), g)

= (2π)1/2

(
∞∑

k=0

1

(2k+1+|τ|)|τ|
Vτ(Wτ

f̂
eτk, eτk), g

)
(6.6)

for all f and g in L2(C). Thus, by (6.6),

L̃−1
τ f = (2π)1/2

∞∑

k=0

1

(2k+1+|τ|)|τ|
Vτ(Wτ

f̂
eτk, eτk)

for all f in L2(C). �

The formula (6.4) is an important formula in its own right and we upgrade it to the status

of a theorem.

Theorem 6.2. For all τ ∈R\{0}, the inverse L̃−1
τ of the parametrized partial differential oper-

ators L̃τ is given by

(L̃−1
τ f , g) = 2π

∞∑

k=0

1

(2k+1+|τ|)|τ|
(Wτ

f̂
eτk,Wτ

ĝ eτk), f , g ∈ L2(C).
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For all τ in R\{0}, we have the following estimate for the L2 norm of L̃−1
τ f in terms of the

L2 norm of f .

Theorem 6.3. Let τ ∈R\{0}. Then for all functions f in L2(C),

‖L̃−1
τ f ‖L2(C) ≤ |τ|−2‖ f ‖L2(C).

Proof Let f and g be functions in L2(R). Then by Theorems 2.3 and 6.2,

|(L̃−1
τ f , g)| ≤ 2π

1

|τ|2
∞∑

k=0

|(Wτ

f̂
eτk,Wτ

ĝ eτk)|

≤ 2π
1

|τ|2
‖Wτ

f̂
‖HS‖Wτ

ĝ‖HS

=
1

|τ|2
‖ f ‖L2(C)‖g‖L2 (C)

and this completes the proof. �

7 Sobolev Estimates for ∆−1
H

We have the following simple result giving the connection of ∆−1
H

with L̃−1
τ , τ ∈ R\ {0}, which

can be proved easily using the elementary properties of the Fourier transform and the Fourier

inversion formula.

Theorem 7.1. Let f ∈ L2(H). Then

(∆−1
H

f )(z, t)= (2π)−1/2

ˆ ∞

−∞
e−itτ(L̃−1

τ f τ)(z)dτ, (z, t)∈H.

We can now give the following theorem, which can be seen as another manifestation of

the ellipticity of ∆H.

Theorem 7.2. Let s ∈ R. Then ∆−1
H

: L2
s(H)→ L2

s+2(H) and

‖∆−1
H

f ‖L2
s+2

(H) ≤ ‖ f ‖L2
s (H), f ∈ L2

s(H).

Proof By Fubini’s theorem, Plancherel’s theorem, Theorems 6.3 and 7.1,

‖∆−1
H

f ‖2

L2
s+2

(H)
=
ˆ

C

ˆ ∞

−∞
|τ|2(s+2)|(∆−1

H
f )τ(z)|2dτdz

=
ˆ ∞

−∞
|τ|2(s+2)

(ˆ

C

|(∆−1
H

f )τ(z)|2dz

)
dτ
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=
ˆ ∞

−∞
|τ|2(s+2)

(ˆ

C

|(L̃−1
τ f τ)(z)|2dz

)
dτ

=
ˆ ∞

−∞
|τ|2(s+2)‖L̃−1

τ f τ‖2
L2(C)

dτ

≤
ˆ ∞

−∞
|τ|2s‖ f τ‖2

L2(C)
dτ

=
ˆ ∞

−∞
|τ|2s

(ˆ

C

| f τ(z)|2dz

)
dτ

=
ˆ

C

ˆ ∞

−∞
|τ|2s| f τ(z)|2dτdz

= ‖ f ‖2

L2
s (H)

,

as asserted. �
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