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ABSTRACT

General framework for the generalized proximal point algorithm, based on the notion of
(H,m)— monotonicity, is developed. The linear convergence analysis for the generalized
proximal point algorithm to the context of solving a class of nonlinear variational inclu-
sions is examined, The obtained results generalize and unify a wide range of problems
to the context of achieving the linear convergence for proximal point algorithms.

RESUMEN

Se desarrolla un marco general para el algoritmo de punto proximal generalizado, basado
en la nocién de (H,1n)— monotonia. Se examina el andlisis de convergencia lineal para
el algoritmo de punto proximal generalizado en el contexto de la resolucién de una clase
de inclusiones no lineales variacional. Los resultados obtenidos generalizan y unifican
una amplia gama de problemas en el contexto de lograr la convergencia lineal de los

algoritmos punto proximal.
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1. Introduction

Based on recent advances on linear convergence for proximal point algorithms, we are con-
cerned to develop a general framework for the generalized proximal point algorithm [7] based on
the notion of (H,n)— monotonicity introduced and studied by Fang and Huang [9], and then
achieve a linear convergence to the context of solving a general variational inclusion problem. As
a result, we establish a significant generalization on linear convergence analysis based on proximal
point algorithms/relaxed proximal point algorithms. The generalized version of relaxed proximal
point algorithm generalizes the proximal point algorithm of Rockafellar [25, 26], that in turn gen-
eralizes the algorithm of Martinet [18] for convex programming. It appears that a general class of
problems of variational character, including minimization or maximization of functions, variational
inequality problems, and minimax problems, can be unified into this form.

Let X be a real Hilbert space with the norm ||.|| and the inner product (.,.). We consider the
inclusion problem: find a solution to
0 € M(x), (1.1)

where M : X — 2X is a set-valued mapping on X.

In this communication, we first present the generalized version of proximal point algorithm
based on the notion of (H,n)— monotonicity, and then apply it to approximate a solution to a
general class of nonlinear inclusion problems involving (H,n)— monotone mappings in a Hilbert
space setting. Second, we explore the linear convergence analysis for the generalized proximal point
algorithms for solving a class of nonlinear inclusions. Also, several results on the generalized coco-
ercive and generalized resolvent mappings are demonstrated . The results, thus obtained here, are
significantly general in nature. For more details, we refer the reader [1-38].

2. (H,n)— Monotonicity and Generalized Cocoerciveness

This section deals with some results based on basic properties of (H,1)— monotonicity, and
other results involving (H,n)— monotonicity and the generalized cocoerciveness . Let X denote
a real Hilbert space with the norm |.| and inner product < .,. > . Let M : X — 2X be a
multivalued mapping on X. We shall denote both the map M and its graph by M, that is, the set
{(x,y) : y € M(x)}. This is equivalent to stating that a mapping is any subset M of X x X, and
M(x) ={y : (x,y) € M}. If M is single-valued, we shall still use M(x) to represent the unique y
such that (x,y) € M rather than the singleton set {y}. This interpretation shall much depend on
the context. The domain of a map M is defined (as its projection onto the first argument) by

DM)={xeX:3JyeX:(x,y) e M} ={x € X: M(x) # 0}
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D(T)=X, shall denote the full domain of M, and the range of M is defined by

RM)={yeX:dxeX:(x,y) € M}.

The inverse M~ of M is {(y,x) : (x,y) € M). For a real number p and a mapping M, let
pM = (x,py): (x,y) € M}. If L and M are any mappings, we define

L+M={(x,y+2z):(x,y) €L, (x,z) € M}.

Definition 2.1. Let M : X — 2% be a multivalued mapping on X. The map M is said to be:
(i) (r)— strongly monotone if there exists a positive constant r such that
W —viu—v) >rlu— v||z Y (u, 1), (v,v*) € graph(M).
(ii) (1)— strongly monotone if
(W — v, u—v) > [[u—v|?V(u,u*), (v,v*) € graph(M).
(iii) (m)—relaxed monotone if there exists a positive constant m such that
W — v u—v) > (—m)|lu—v||*V(u,u*), (v,v*) € graph(M).
(iv) (c)— cocoercive if there is a positive constant ¢ such that
(uW —v*u—v) >clu* fv*||2V(u,u*), (v,v*) € graph(M).
Definition 2.2. A mapping M : X — 2% is said to be maximal (m)— relaxed monotone if

(i) M is (m)—relaxed monotone,
(ii) For (u,u*) € X x X, and
(W — v u—v) > (—m)|lu—v||? ¥ (v,v*) € graph(M),

we have u* € M(u).

Definition 2.3. Let M : X — 2X be a mapping on X. The map M is said to be:

(i) Nonexpansive if
u” = v < Ju—v[|V(u,u’), (v,v") € graph(M).
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(ii) Firmly nonexpansive if

[u* —vi||* < (u* — v, u—w)V (u,u*), (v,v*) € graph(M).
(iii) (c)—Firmly nonexpansive if there exists a constant ¢ > 0 such that
lut = v < Jlu—=v]? = clu—v— (W = vV (u,u), (v,v*) € graph(M).
(iv) (c)—Firmly nonexpansive if there exists a constant ¢ > 0 such that
[lw* —v*||2 <cu —vi,u—v)V(u,u), (v,v*) € graph(M).

Proposition 2.1. Let H: X — X be an (r,1)—strongly monotone mapping and let M : X — 2X
be an (H,1)—- monotone mapping. Then the operator (H 4+ pM)~' is single-valued.

Definition 2.4. Let H: X — X be an (r,1)—strongly monotone mapping and let M : X — 2X be
an (H,n)— monotone mapping. Then the generalized resolvent operator ]X‘H : X — X is defined by

Jorg (W) = (H +pM) ™' (u).

Definition 2.5. Let H, T : X — X be two mappings. Then map T is said to be:
(i) Monotone with respect to H if
(T(x) = T(y),H(x) = H(y)) 2 0V (x,y) € X.
(ii) (r) — strongly monotone with respect to H if there exists a positive constant r such that

(T(x) = T(y),H(x) = H(y)) = (1)]lx —y[> ¥ (x,y) € X.

(iii) (v, a)-relaxed cocoercive with respect to H if there exist positive constants y and o« such that
(T(x) = T(y), H(x) = H(y)) > =y[IT(x) = TW)II* + «|x —y|I?

V(x,y) € X.

Definition 2.6. A map n: X x X — X is said to be:

(i) (n)— monotone if
(x—y,mx,y)) >0V (x,y) € X.
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(ii) (t)-strongly monotone if there exists a positive constant t such that

(x—ynxy)) > tx—y[*V(x,u) € X.

(iii) (7)-Lipschitz continuous if there exists a positive constant T such that

ImGx Y < Tllx —yll.

Definition 2.7. Let M : X — 2X be a multivalued mapping on X, and let 1 : X x X — X be another
mapping. The map M is said to be:

(i) (n)— monotone if

(U —v* n(u,v)) >0V (u,u"), (v,v*) € graph(M).

(ii) (r,n)— strongly monotone if there exists a positive constant r such that

(w' =V mlu,v)) 2 w2V (u,ut), (v, ") € graph(M).

(iii) (1,m)— strongly monotone if

<‘LL* _V*’Tl(uﬂ’» 2 ||LL—V||2V (IL, u*)) (V1V*) € gTaph(M)
(iv) (m,n)—relaxed monotone if there exists a positive constant m such that
(W' = v m(u,v) > (=m)u—v||*V (u,u*), (v,v*) € graph(M).

(v) (c,m)— cocoercive if there is a positive constant ¢ such that

*

<'LL _V*)T](U»V» Z C”u* _v*sz(u)u*)» (V)V*) S graph(M)

Definition 2.8. [9] Let H: X — X be (r)— strongly monotone. The map M : X — 2% is said to be
H— monotone if

(i) M is monotone,

(ii)) R(H+ pM) =X for p > 0.
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Definition 2.9.Let H: X — X be (r,1)— strongly monotone. The map M : X — 2% is said to be
to (H,m)— monotone if

(i) M is (n)— monotone,

(i) R(H+ pM) = X for p > 0.

Definition 2.10. A map M : X — 2X is said to be (1)- monotone if

(i) M is (n)— monotone,

(ii) R(I 4+ pM) =X for p > 0.

3. Generalized Proximal Point Algorithms

This section deals with the generalized proximal point algorithm and its application to ap-
proximation solvability of the inclusion problem (1) based on the (H,n)-monotonicity. Furthermore,
some results connecting the (H,n)— monotonicity and corresponding generalized resolvent operator
are established, that generalize the results on the generalized cocoerciveness and H— monotonicity
[9], while the auxiliary results on (H,1)— monotonicity and general maximal monotonicity are
obtained.

Lemma 3.1. [9] Let X be a real Hilbert space, let H : X — X be (r)—strongly monotone, and let
M : X — 2X be H— monotone. Then the generalized resolvent operator associated with M and
defined by

M (w) = (H + M)~ () Vu € X,

is (1/r)— Lipschitz continuous.

Theorem 3.1. Let X be a real Hilbert space, let H : X — X be (r,n)—strongly monotone, and let
M : X = 2X be (H,n)- monotone. Then the following statements are equivalent:

(i) An element u € X is a solution to (1).

(ii) For an u € X, we have
w=Jpl (H (W),

where
My(w) = (H +pM) T (u).
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Next, we introduce a generalization to the relaxed proximal point algorithm.

Algorithm 3.1. Let H : X — X be a single-valued mapping, let M : X — 2X be a set-valued
(H,n)— monotone mapping on X with 0 € range(M), and let the sequence {x*} be generated by
the iterative procedure

H(x*1) = (1 — o )JH(x¥) + oy Vk > 0, (3.1)
and y* satisfies
[y* = HOY 1 (HO) < 8iclly* — HEM),

Pk

where ]m,H =(H+peM)™ T, 3% 8k < 00, &k — 0 and,

{81}, {oach {prc} S [0, 00)

are scalar sequences.

Theorem 3.2 Let X be a real Hilbert space, let H : X — X be (r,1)—strongly monotone, and
let M : X — 2X be (H,n)—monotone. Let 1 : X x X — X be (t)—Lipschitz continuous. For an
arbitrarily chosen initial point x°, suppose that the sequence {x¥} is generated by Algorithm 3.1.
Suppose that Ho]g/]l“H is (A,m)—cocoercive for A > 1, that is, for all u,v € X,

(HU g n(HW)) = HOSE 1 (H)),n(H(w), H(v))

> AHOM q(HW) = HOM 1 (H©)|I1% (3.2)

Then the sequence {x*} converges linearly to a solution of (1.1) with convergence rate

for A>T, T<A Y750k <00, 8k — 0, ax <1 and,

{6k}a{(xk}v{pk} c (0,00)

are scalar sequences.
Proof. Suppose that x* is a zero of M. From Theorem 3.1, it follows that any solution to (1) is a
fixed point of ]m‘HoH. For all k > 0, we express

H(Zk+1) — (‘I — o(k)H(Xk) —|— O(kH( myH(H(Xk)))'
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Next, we find the estimate using the appropriate implications of (3.2) that

o, (H(X))))

H(x*)||?

|mk“)HwW:nwmwﬂ)+mmmHmwm
——W—meHwWMM ))II*
= (1 —o)?|H(X*) — H(x ||2
+ 2000(1 — o) (H(X¥) — Hx), HOM 1 (H(x9))) — H(J
+ wmmm(wmf(mﬁm M2
< (1= o) HIH(xS) — H(x™)|)?
+ 2001 — ) I||H k)~ H(x)|2
—rwwuw(wm HOM L (Hx)))[2
< (1= o) H(x) — H)||1?
- zocku—ak)§||H<xk>—H(x*)||2
+ o [HOM [(H() — HOM L (H(x)1?
< (1— o) H(x" H(x*)||2—|—20ck(1—ock)%HH(xk -
2.2
+ T HER) — HEx)
2
[1—mmﬂ—w1—m&%—%g;—f§ﬂmﬂﬁd—H

where T < A.
It follows from the above inequality that

IH(Z*"T) — H(x) || < 0 [[H(x*) — H(x")],
where
0y = \/1 2001 (1 —ak)%—%f—%].
Since H(x**T1) = (1 — aq JH(x¥) + ogey¥, it implies
HT) = H(xM) = oac(y* — H(x"))

On the other hand, we have

[Hx*T) — HZ )|
ok lly® —H Upk H( (x*N)||
o lly — .

IA
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Finally, we estimate

[HMT) — H(x*)|| < [[HZHTT) = H(x)|| + [[HT) = HEZ)|
< HET) = HE) || 4 oacdicl[u® — HER))
< HET) = HE) |+ 8k [HFT) = HX) |
< HET) = HO) |+ 8l[HOETT) = Hx)| + [H(x) = H(x*)|]
< BkfIHO®) — HO) |+ 8i[HT) — H(x)|
+ Ok[H(x®) = H(xM).

This implies that

9k+5k

[HEEH) = ) | < S

||H —HxY, (3.4)

where

Oy + o1

lim sup = lim sup Oy

It follows that ||[H(x*) — H(x*)|| — 0 as k — oo. Since H is (r,n)—strongly monotone, we have

* T *
[H(x*) — H) || > =|]x* —x*.
T

Therefore, we conclude that

T * *
Tl — ") < M)~ HE)| = 0.

This completes the proof.

Received: September 2010. Revised: November 2010.
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