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ABSTRACT

In this paper we study and obtain the existence of pseudo-almost automorphic solutions

to some classes of second-order abstract differential equations on a Hilbert space. To

illustrate our abstract results, we discuss the existence of pseudo almost automorphic

solutions to the N-dimensional Sine-Gordon boundary value problem.

RESUMEN

En este trabajo se estudia y obtiene la existencia de soluciones casi-seudo automorfas

a algunas clases de ecuaciones diferenciales abstractas de segundo orden en un espacio

de Hilbert. Para ilustrar nuestros resultados abstractos, se discute la existencia de
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soluciones casi-seudo automorfas en el problema de contorno N-dimensional de Sine-

Gordon .
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1 Introduction

In Leiva [36], the existence of (exponentially stable) bounded solutions and almost periodic solu-

tions to the second-order systems of differential equations given by

u′′(t) + cu ′(t) + dAu+ kH(u) = P(t), u ∈ R
n, t ∈ R, (1.1)

where A is an n×n-matrix whose eigenvalues are positive, c, d, k are positive constants, H : R
n 7→

R
n is a locally Lipschitz function, P : R 7→ R

n is a bounded continuous function, were established.

In this paper, using techniques developped in [36], we obtain some reasonable sufficient con-

ditions, which do guarantee the existence of pseudo-almost automorphic solutions to

u′′(t) + au ′(t) + bAu = f(t, u), t ∈ R, (1.2)

where A : D(A) ⊂ H 7→ H is a self-adjoint linear operator whose spectrum consists of isolated

eigenvalues 0 < λ1 < λ2 < ... < λn → ∞ with each eigenvalue having a finite multiplicity γj

equals to the multiplicity of the corresponding eigenspace, a, b > are constants, and the function

f : R × H 7→ H is pseudo-almost automorphic function satisfying some additional conditions.

For that, the main idea consists of rewriting Eq. (1.2) as a first-order differential equation on

X := H × H involving the 2×2-operator matrix B. Indeed, if u is differential, setting z :=

( u

u ′

)

,

Eq. (1.2) can be rewritten in the Hilbert space X in the following form

z ′(t) = Bz(t) + F(t, z(t)), t ∈ R, (1.3)

where B is the 2×2-operator matrix defined by

B =













0 IH

−bA −aIH













(1.4)
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whose domain D(B) is given by D(B) = D(A) × H. Moreover, the semilinear term F appearing in

Eq. (1.3) is defined on R × Xα for some α ∈ (0, 1) by

F(t, u, v) =

(

0

f(t,u)

)

,

where Xα is an intermediate space (see assumption(H.2)).

Under some reasonable assumptions, it will be shown that the linear operator matrix B is

sectorial and that its associated semigroup is exponentially stable.

The concept of pseudo almost automorphy is a powerful generalization of both the notion of

almost automorphy due to Bochner (see [46]) and that of pseudo almost periodicity due to Zhang

(see [21]), which has recently been introduced in the literature by Liang et al. [39, 52, 53]. Such a

concept has recently generated several developments and extensions, see, e.g., [18], [20], [29], [30],

and [40].

The existence of almost periodic solutions to second-order differential equations constitutes

one of the most important topics in qualitative theory of differential equations due essentially to

their applications such thermoelastic plate equations [12, 37] or telegraph equation [43] or Sine-

Gordon equations [36]. Some contributions on the maximal regularity, bounded, almost periodic,

asymptotically almost periodic solutions to abstract second-order differential and partial differential

equations have recently been made, among them are [9], [10], [18], [20], [29], [30], [39], [40], [52],

[53], [54], [55], and [56]. However, to the best of our knowledge, the existence of pseudo-almost

automorphic solutions to second-order differential equations of the form Eq. (1.2) is an untreated

original question, which in fact is the main motivation of the present paper.

The paper is organized as follows: Section 2 is devoted to preliminaries facts needed in the

sequel. In particular, facts related to sectorial operators and hyperbolic semigroups are discussed.

In addition, basic definitions and classical results on the concept of pseudo-almost automorphy are

also given. In Sections 3 and 4, we prove the main result. In Section 5, we provide the reader with

a few examples to illustrate our main result.

2 Preliminaries

In the sequel, A : D(A) ⊂ H 7→ H stands for a self-adjoint (possibly unbounded) linear operator

on the Hilbert space H whose spectrum consists of isolated eigenvalues

0 < λ1 < λ2 < ... < λn → ∞

with each eigenvalue having a finite multiplicity γj equals to the multiplicity of the corresponding

eigenspace. Let {ek
j } be a (complete) orthonormal sequence of eigenvectors associated with the
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eigenvalues {λj}j≥1. Clearly, for each

u ∈ D(A) :=

{

u ∈ H :

∞∑

j=1

λ2
j

∥

∥

∥
Eju

∥

∥

∥

2

< ∞

}

,

Au =

∞∑

j=1

λj

γj∑

k=1

〈u, ek
j 〉e

k
j =

∞∑

j=1

λjEju

where Eju =

γj∑

k=1

〈u, ek
j 〉e

k
j .

Note that {Ej}j≥1 is a sequence of orthogonal projections on H. Moreover, each u ∈ H can

written as follows:

u =

∞∑

j=1

Eju.

It should also be mentioned that the operator −A is the infinitesimal generator of an analytic

semigroup {S(t)}t≥0, which is explicitly expressed in terms of those orthogonal projections Ej by,

for all u ∈ H,

S(t)u =

∞∑

j=1

e−λjtEju.

In addition, the fractional powers Ar (r ≥ 0) of A exist and are given by

D(Ar) =
{
u ∈ H :

∞∑

j=1

λ2r
j

∥

∥

∥Eju
∥

∥

∥

2

< ∞
}

and

Aru =

∞∑

j=1

λ2r
j Eju, ∀u ∈ D(Ar).

Let (X,
∥

∥

∥ ·
∥

∥

∥) be a Banach space. If L is a linear operator on the Banach space X, then, D(L),

ρ(L), σ(L), N(L), and R(L), stand respectively for the domain, resolvent, spectrum, null-space or

kernel, and range of the operator L. Moreover, one sets R(λ, L) := (λI − L)−1 for all 〈∈ ρ(A).

Furthermore, we set Q = I−P for a projection P. If Y,Z are Banach spaces, then the space B(Y,Z)

denotes the collection of all bounded linear operators from Y into Z equipped with its natural

topology. This is simply denoted by B(Y) when Y = Z.

3 Sectorial Linear Operators

Definition 3.1. A linear operator L : D(L) ⊂ X 7→ X (not necessarily densely defined) is said to

be sectorial if the following hold: there exist constants ω ∈ R, θ ∈
(π

2
, π
)

, and M > 0 such that
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ρ(L) ⊃ Sθ,ω,

Sθ,ω :=

{

λ ∈ C : λ 6= ω,
∣

∣

∣
arg(λ−ω)

∣

∣

∣
< θ

}

, (3.1)

and ‖R(λ, L)‖ ≤
M

∣

∣

∣λ−ω
∣

∣

∣

, λ ∈ Sθ,ω. (3.2)

The class of sectorial operators is very rich and contains most of classical operators encountered

in the literature. Two examples of sectorial operators are given below.

Example 3.1. Let p ≥ 1 and let X = Lp(0, 1) be the Lebesgue space equipped with its norm
∥

∥

∥
·
∥

∥

∥

p

defined by

‖ϕ‖p =

( ∫1

0

∣

∣

∣ϕ(x)
∣

∣

∣

p

dx

)1/p

.

Define the linear operator A on Lp(0, 1) by

D(A) =
{
u ∈W2,p(0, 1) : u ′(0) = u ′(1) = 0

}
, A(ϕ) = ϕ′′, ∀ϕ ∈ D(A).

It can be checked that the operator A is sectorial on Lp(0, 1).

Example 3.2. Let p ≥ 1 and let Ω ⊂ R
d be open bounded subset with C2 boundary ∂Ω. Let

X := Lp(Ω) be the Lebesgue space equipped with the norm, ‖ · ‖p defined by,

‖ϕ‖p =

( ∫

Ω

∣

∣

∣ϕ(x)
∣

∣

∣

p

dx
)1/p

.

Define the operator A as follows:

D(A) = W2,p(Ω) ∩W1,p
0 (Ω), A(ϕ) = ∆ϕ, ∀ϕ ∈ D(A),

where ∆ =

d∑

k=1

∂2

∂x2
k

is the Laplace operator.

It can be checked that the operator A is sectorial on Lp(Ω).

It is well-known that [41] if A is sectorial, then it generates an analytic semigroup (T(t))t≥0,

which maps (0,∞) into B(X) and such that there exist M0,M1 > 0 with
∥

∥

∥
T(t)

∥

∥

∥
≤M0e

ωt, t > 0, (3.3)
∥

∥

∥t(A−ω)T(t)
∥

∥

∥ ≤M1e
ωt, t > 0. (3.4)

In this paper, we suppose that the semigroup (T(t))t≥0 is hyperbolic, that is, there exist a

projection P and constants M,δ > 0 such that T(t) commutes with P, N(P) is invariant with

respect to T(t), T(t) : R(Q) 7→ R(Q) is invertible, and the following hold
∥

∥

∥T(t)Px
∥

∥

∥ ≤Me−δt
∥

∥

∥x
∥

∥

∥ for t ≥ 0, (3.5)
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∥

∥

∥T(t)Qx
∥

∥

∥ ≤Meδt
∥

∥

∥x
∥

∥

∥ for t ≤ 0, (3.6)

where Q := I− P and, for t ≤ 0, T(t) := (T(−t))−1.

Recall that the analytic semigroup (T(t))t≥0 associated with A is hyperbolic if and only if

σ(A) ∩ iR = ∅,

see details in [28, Prop. 1.15, pp.305].

Definition 3.2. Let α ∈ (0, 1). A Banach space (Xα,
∥

∥

∥ ·
∥

∥

∥

α
) is said to be an intermediate space

between D(A) and X, or a space of class Jα, if D(A) ⊂ Xα ⊂ X and there is a constant c > 0 such

that
∥

∥

∥x
∥

∥

∥

α
≤ c
∥

∥

∥x
∥

∥

∥

1−α∥
∥

∥x
∥

∥

∥

α

A
, x ∈ D(A), (3.7)

where
∥

∥

∥ ·
∥

∥

∥

A
is the graph norm of A.

Concrete examples of Xα include D((−Aα)) for α ∈ (0, 1), the domains of the fractional

powers of A, the real interpolation spaces DA(α,∞), α ∈ (0, 1), defined as the space of all x ∈ X

such
[

x
]

α
= sup

0<t≤1

∥

∥

∥t1−αAT(t)x
∥

∥

∥ < ∞.

with the norm
∥

∥

∥x
∥

∥

∥

α
=
∥

∥

∥x
∥

∥

∥+
[

x
]

α
,

the abstract Hölder spacesDA(α) := D(A)
‖.‖α

as well as the complex interpolation spaces [X, D(A)]α,

see Lunardi [41] for details.

For a hyperbolic analytic semigroup (T(t))t≥0, one can easily check that similar estimations

as both Eq. (3.5) and Eq. (3.6) still hold with the α-norms
∥

∥

∥ ·
∥

∥

∥

α
. In fact, as the part of A in

R(Q) is bounded, it follows from Eq. (3.6) that

∥

∥

∥
AT(t)Qx

∥

∥

∥
≤ C ′eδt

∥

∥

∥
x
∥

∥

∥
fort ≤ 0.

Hence, from Eq. (3.7) there exists a constant c(α) > 0 such that

∥

∥

∥T(t)Qx
∥

∥

∥

α
≤ c(α)eδt

∥

∥

∥x
∥

∥

∥ for t ≤ 0. (3.8)

In addition to the above, the following holds
∥

∥

∥
T(t)Px

∥

∥

∥

α
≤
∥

∥

∥
T(1)

∥

∥

∥

B(X,Xα)

∥

∥

∥
T(t− 1)Px

∥

∥

∥
, t ≥ 1,

and hence from Eq. (3.5), one obtains

∥

∥

∥
T(t)Px

∥

∥

∥

α
≤M ′e−δt

∥

∥

∥
x
∥

∥

∥
, t ≥ 1,
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where M ′ depends on α. For t ∈ (0, 1], by Eq. (3.4) and Eq. (3.7),
∥

∥

∥
T(t)Px

∥

∥

∥

α
≤M ′′t−α

∥

∥

∥
x
∥

∥

∥
.

Hence, there exist constants M(α) > 0 and γ > 0 such that
∥

∥

∥
T(t)Px

∥

∥

∥

α
≤M(α)t−αe−γt

∥

∥

∥
x
∥

∥

∥
for t > 0. (3.9)

3.1 Pseudo-Almost Automorphic Functions

Let BC(R,X) (respectively,

BC(R × Y,X)) denote the collection of all X-valued bounded continuous functions (respectively,

the class of jointly bounded continuous functions F : R × Y 7→ X). The space BC(R,X) equipped

with the sup norm defined by
∥

∥

∥u
∥

∥

∥

∞
= sup

t∈R

∥

∥

∥u(t)
∥

∥

∥,

is a Banach space. Furthermore, C(R,Y) (respectively, C(R×Y,X)) denotes the class of continuous

functions from R into Y (respectively, the class of jointly continuous functions F : R × Y 7→ X).

Definition 3.3. A function f ∈ C(R,X) is said to be almost automorphic if for every sequence of

real numbers (s ′n)n∈N, there exists a subsequence (sn)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.

If the convergence above is uniform in t ∈ R, then f is almost periodic in the classical Bochner’s

sense. Denote by AA(X) the collection of all almost automorphic functions R 7→ X. Note that

AA(X) equipped with the sup-norm turns out to be a Banach space.

Among other things, almost automorphic functions satisfy the following properties.

Theorem 3.1. [46] If f, f1, f2 ∈ AA(X), then

(i) f1 + f2 ∈ AA(X),

(ii) λf ∈ AA(X) for any scalar λ,

(iii) fα ∈ AA(X) where fα : R → X is defined by fα(·) = f(· + α),

(iv) the range Rf :=
{
f(t) : t ∈ R

}
is relatively compact in X, thus f is bounded in norm,

(v) if fn → f uniformly on R where each fn ∈ AA(X), then f ∈ AA(X) too.



124 Toka Diagana and Ahmed Mohamed CUBO
13, 3 (2011)

In addition to the above-mentioned properties, we have the the following property due to

Bugajewski and Diagana [15]:

(vi) if g ∈ L1(R), then f ∗ g ∈ AA(R), where f ∗ g is the convolution of f with g on R.

Let (Y,
∥

∥

∥ ·
∥

∥

Y
) be another Banach space.

Definition 3.4. A jointly continuous function F : R × Y 7→ X is said to be almost automorphic

in t ∈ R if t 7→ F(t, x) is almost automorphic for all x ∈ K (K ⊂ Y being any bounded subset).

Equivalently, for every sequence of real numbers (s ′n)n∈N, there exists a subsequence (sn)n∈N such

that

G(t, x) := lim
n→∞

F(t+ sn, x)

is well defined in t ∈ R and for each x ∈ K, and

lim
n→∞

G(t− sn, x) = F(t, x)

for all t ∈ R and x ∈ K.

The collection of such functions will be denoted by AA(Y,X).

For more on almost automorphic functions and related issues, we refer the reader to the

excellent book by N’Guérékata [46].

Define

PAP0(R,X) :=

{

f ∈ BC(R,X) : lim
T→∞

1

2T

∫T

−T

∥

∥

∥f(s)
∥

∥

∥ds = 0

}

.

Similarly, PAP0(Y,X) will denote the collection of all bounded continuous functions F : R ×

Y 7→ X such that

lim
T→∞

1

2T

∫T

−T

∥

∥

∥
F(s, x)

∥

∥

∥
ds = 0

uniformly in x ∈ K, where K ⊂ Y is any bounded subset.

Definition 3.5. (Liang et al. [39] and Xiao et al. [52]) A function f ∈ BC(R,X) is called pseudo

almost automorphic if it can be expressed as f = g+φ, where g ∈ AA(X) and φ ∈ PAP0(X). The

collection of such functions will be denoted by PAA(X).

The functions g and φ appearing in Definition 3.5 are respectively called the almost automor-

phic and the ergodic perturbation components of f.

Definition 3.6. A bounded continuous function F : R × Y 7→ X belongs to AA(Y,X) whenever it

can be expressed as F = G+Φ, where G ∈ AA(Y,X) and Φ ∈ PAP0(Y,X). The collection of such

functions will be denoted by PAA(Y,X).

We now collect a few useful properties of pseudo almost automorphic functions.
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Proposition 3.1. If g ∈ L1(R), f ∈ PAA(R), then f ∗ g ∈ PAA(R), where f ∗ g is the convolution

of f with g on R.

The proof of Proposition 3.1 is based upon [15] and [16].

A substantial result is the next theorem, which is due to Xiao et al. [52].

Theorem 3.2. [52] The space PAA(X) equipped with the sup norm
∥

∥

∥ ·
∥

∥

∥

∞
is a Banach space.

The next composition result, that is Theorem 3.3, is a consequence of [40, Theorem 2.4] and

is crucial for the proof of the main result of the paper.

Theorem 3.3. Suppose f : R × Y 7→ X belongs to PAA(Y,X); f = g + h, with x 7→ g(t, x) being

uniformly continuous on each bounded subset K of Y uniformly in t ∈ R, that is, for each ε > 0

there exists δ > 0 such that x, y ∈ K and
∥

∥

∥
x − y

∥

∥

∥
< δ yields

∥

∥

∥
g(t, x) − g(t, y)

∥

∥

∥
< ε for all t ∈ R.

Furthermore, we suppose that there exists L > 0 such that

∥

∥

∥
f(t, x) − f(t, y)

∥

∥

∥
≤ L

∥

∥

∥
x− y

∥

∥

∥

Y

for all x, y ∈ Y and t ∈ R.

Then the function defined by h(t) = f(t,ϕ(t)) belongs to PAA(X) provided ϕ ∈ PAA(Y).

We also have:

Theorem 3.4. [52] If f : R × Y 7→ X belongs to PAA(Y,X) and if x 7→ f(t, x) is uniformly

continuous on each bounded subset K of Y uniformly in t ∈ R, then the function defined by h(t) =

f(t,ϕ(t)) belongs to PAA(X) provided ϕ ∈ PAA(Y).

4 Main results

Consider the differential equation

u ′(t) = Lu(t) + F(t, u(t)), t ∈ R, (4.1)

where L : D(L) ⊂ X 7→ X is sectorial and F : R × Xα 7→ X is jointly continuous.

Fix once and for all α,β such that 0 ≤ α < β < 1. To study the existence and uniqueness of

pseudo-almost automorphic solutions to Eq. (4.1) we make the following additional assumptions

(H.1) The operator L is sectorial on X and generates a hyperbolic (analytic) semigroup (T(t))t≥0.

(H.2) Let 0 < α < 1. Then Xα = D((−Aα)), or Xα = DA(α, p), 1 ≤ p ≤ +∞, or Xα = DA(α), or

Xα = [X, D(A)]α.
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(H.3) The function F : R × X 7→ X is given such that u 7→ F(t, u) is unformly continuous on each

bounded subset B of X uniformly in t ∈ R. Furthermore, F is Lipschitz in the following sense:

there exists L > 0 for which

∥

∥

∥F(t, u) − F(t, v)
∥

∥

∥

β
≤ L

∥

∥

∥u− v
∥

∥

∥

α

for all u, v ∈ X and t ∈ R.

Set S1u(t) := S11u(t) − S12u(t) and S2u = S22u− S23u, where

S11u(t) :=

∫t

−∞

T(t− s)PF1(s, u(s))ds, S12u(t) :=

∫∞

t

T(t− s)QF1(s, u(s))ds

for all t ∈ R.

Definition 4.1. Under assumption (H.1), a function u : R 7→ Xα is said to be a mild solution to

Eq. (4.1) provided that

u(t) = T(t− s)u(s) +

∫t

s

T(t− r)F(r, u(r))dr (4.2)

for each ∀t ≥ s, t, s ∈ R.

Consider the differential equation

u ′(t) = Lu(t) + g(t), t ∈ R, (4.3)

where g : R 7→ X is continuous.

Theorem 4.1. Under assumptions (H.1)-(H.2), if g ∈ B(R,X), then we have:

(i) Eq.(4.3) has a unique bounded mild solution u : R 7→ Xα, which can be explicitly given by

u(t) =

∫t

−∞

T(t− s)Pg(s)ds−

∫∞

t

T(t− s)Qg(s)ds. (4.4)

(ii) If g ∈ PAA(Xα), then u ∈ PAA(Xα).

Proof. (i) Since g is bounded, we can easily show that u given above is well-defined. Moreover, u

satisfies

u(t) = T(t− s)u(s) +

∫t

s

T(t− r)g(r)dr

for each ∀t ≥ s, t, s ∈ R.
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The continuity and uniqueness of u is also clear. For the boundedness in Xα, using (3.8) and

(3.9), we obtain

∥

∥

∥u(t)
∥

∥

∥

α
≤ c

∥

∥

∥u(t)
∥

∥

∥

β

≤ c

∫ t

−∞

∥

∥

∥T(t− s)Pg(s)
∥

∥

∥

β
ds+ c

∫+∞

t

∥

∥

∥T(t− s)Qg(s)
∥

∥

∥

β
ds

≤ cM(β)

∫ t

−∞

e− δ
2

(t−s)(t− s)−β
∥

∥

∥g(s)
∥

∥

∥ds+ cc(β)

∫+∞

t

e−δ(s−t)
∥

∥

∥g(s)
∥

∥

∥ds

≤ cM(β)
∥

∥

∥
g
∥

∥

∥

∞

∫+∞

0

e−σ

(

2σ

δ

)−β
2dσ

δ
+ cc(β)

∥

∥

∥
g
∥

∥

∥

∞

∫+∞

0

e−δσdσ

≤ cM(β)δαΓ(1− β)
∥

∥

∥g
∥

∥

∥

∞
+ cc(β)δ−1

∥

∥

∥g
∥

∥

∥

∞
,

and hence

∥

∥

∥
x(t)

∥

∥

∥

α
≤ c
∥

∥

∥
x(t)

∥

∥

∥

β
≤ c ′c

[

M(β)δβΓ(1− β) + c(β)δ−1
]∥

∥

∥
g
∥

∥

∥

∞ ,α
. (4.5)

It remains to prove (ii). For that, we first consider the first integral in the expression of Eq.

(4.4) and denote it Su. Now write g = φ+ ζ where φ ∈ AA(Xα) and ζ ∈ PAP0(Xα). Clearly, Su

can be rewritten as

(Su)(t) =

∫t

−∞

T(t− s)Pφ(s)ds+

∫t

−∞

Tt− s)Pζ(s)ds.

Set

Φ(t) =

∫t

−∞

T(t− s)Pφ(s)ds, and Ψ(t) =

∫t

−∞

T(t− s)Pζ(s)ds

for each t ∈ R.

The next step consists of showing that Φ ∈ AA(Xα) and Ψ ∈ PAP0(Xα). Indeed, since

φ ∈ AA(Xα), for every sequence of real numbers (τ ′n)n∈N there exists a subsequence (τn)n∈N such

that

ψ(t) := lim
n→∞

φ(t+ τn)

is well defined for each t ∈ R, and

lim
n→∞

ψ(t− τn) = φ(t)

for each t ∈ R.

Set Φ1(t) =

∫t

−∞

T(t− s)Pψ(s)ds for all t ∈ R.

Now
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Φ(t+ τn) −Φ1(t) =

∫t+τn

−∞

T(t+ τn − s)Pφ(s)ds−

∫t

−∞

T(t− s)Pψ(s)ds

=

∫t

−∞

T(t− s)Pφ(s+ τn)ds−

∫t

−∞

T(t− s)Pψds

=

∫t

−∞

T(t− s)P
(

φ(s+ τn) −ψ(s)
)

ds

Using Lebesgue Dominated Convergence Theorem, one can easily see that

∥

∥

∥

∫t

−∞

T(t− s)P
(

φ(s+ τn) −ψ(s)
)

ds
∥

∥

∥

α
→ 0 as n → ∞, t ∈ R.

Thus

Φ1(t) = lim
n→∞

Φ(t+ τn), t ∈ R.

Similarly, one can easily see that

Φ(t) = lim
n→∞

Φ1(t− τn), t ∈ R.

Therefore, Φ ∈ AA(Xα).

Let us now show that Ψ ∈ PAP0(Xα). First, note that s 7→ Ψ(s) is a bounded continuous

function. It remains to show that

lim
T→∞

1

2T

∫T

−T

∥

∥

∥
Ψ(t)

∥

∥

∥

α
dt = 0.

Again using Eq. (3.9) it follows that

lim
T→∞

1

2T

∫T

−T

∥

∥

∥
Ψ(t)

∥

∥

∥

α
dt ≤ lim

T→∞

M(α)

2T

∫T

−T

∫+∞

0

s−αe− δ
2

s
∥

∥

∥
ζ(t− s)

∥

∥

∥

α
dsdt

≤ lim
T→∞

M(α)

∫+∞

0

s−αe− δ
2

s 1

2T

∫T

−T

∥

∥

∥
ζ(t− s)

∥

∥

∥

α
dtds.

Let

Γs(T) =
1

2T

∫T

−T

∥

∥

∥ζ(t− s)
∥

∥

∥

α
dt.

Since PAP0(Xα) is translation invariant it follows that t 7→ ζ(t− s) belongs to PAP0(Xα) for each

s ∈ R, and hence

lim
T 7→∞

1

2T

∫T

−T

∥

∥

∥
ζ(t− s)

∥

∥

∥

α
dt = 0

for each s ∈ R.
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One completes the proof by using the Lebesgue Dominated Convergence Theorem and the

fact Γs(T) 7→ 0 as T → ∞ for each s ∈ R.

The proof for the second integral in the expression of Eq. (4.4) is similar to that of Su(·) and

hence moitted. (In that case, one makes use of Eq. (3.8) rather than Eq. (3.9).)

Using the composition of pseudo-almost automorphic functions and Theorem 4.1, it is easy to

see that the following technical lemmas hold.

Lemma 4.1. Under assumptions (H.1)-(H.2)-(H.3), then the integral operator S1 defined above

maps PAA(Xα) into itself.

Lemma 4.2. Under assumptions (H.1)-(H.2)-(H.3), the integral operator S1 defined above is a

contraction whenever L is small enough.

Proof. Let v,w ∈ PAA(Xα). Now,

∥

∥

∥S11v(t) − S11w(t)
∥

∥

∥

α
≤

∫t

−∞

M(α)(t− s)−αe− δ
2

(t−s)
∥

∥

∥F1(s, v(s)) − F1(s,w(s))
∥

∥

∥ds

≤ c

∫ t

−∞

M(α)(t− s)−αe− δ
2

(t−s)
∥

∥

∥F1(s, v(s)) − F1(s,w(s))
∥

∥

∥

β
ds

≤ LcM(α)

∫ t

−∞

(t− s)−αe− δ
2

(t−s)
∥

∥

∥
v(s) −w(s)

∥

∥

∥
ds

≤ Lc ′cM(α)

∫t

−∞

(t− s)−αe− δ
2

(t−s)
∥

∥

∥
v(s) −w(s)

∥

∥

∥

α
ds.

Similarly,

∥

∥

∥S12v(t) − S12w(t)
∥

∥

∥

α
≤

∫∞

t

c(β)e−δ(t−s)
∥

∥

∥F1(s, v(s)) − F1(s,w(s))
∥

∥

∥ds

≤ cc(β)

∫∞

t

e−δ(t−s)
∥

∥

∥F1(s, v(s)) − F1(s,w(s))
∥

∥

∥

β
ds

≤ Lcc(β)

∫∞

t

e−δ(t−s)
∥

∥

∥
v(s) −w(s)

∥

∥

∥
ds

≤ Lcc ′c(β)

∫∞

t

e−δ(t−s)
∥

∥

∥
v(s) −w(s)

∥

∥

∥

α
ds.

Consequently,
∥

∥

∥S1v− S1w
∥

∥

∥

∞ ,α
≤ Lcc ′

(

M(α)Γ(1− α)(2δ−1)1−α + c(β)δ−1
)∥

∥

∥v−w
∥

∥

∥

∞ ,α

and hence S1 is a contraction whenever L is small enough.
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Theorem 4.2. Suppose assumptions (H.1)-(H.2)-(H.3) and that L is small enough, then the auton-

mous differential equation Eq. (4.1) has a unique pseudo almost automorphic solution u satisfying

u = S1u.

Proof. This is an immediate consequence of Lemma 4.1, Lemma 4, Lemma 4.2, and the Banach

fixed point theorem.

5 Pseudo Almost Automorphic Solutions to Some Second-

Order Differential Equations

We have previously seen that each u ∈ H can be written in terms of the sequence of orthogonal

projections En as follows:

u =

∞∑

n=1

γn∑

k=1

〈u, ek
n〉e

k
n =

∞∑

n=1

Enu.

Moreover, for each u ∈ D(A),

Au =

∞∑

j=1

λj

γj∑

k=1

〈u, ek
j 〉e

k
j =

∞∑

j=1

λjEju.

Therefore, for all z :=

(

u

v

)

∈ D = D(B) = D(A) × H, we obtain the following

Bz =









0 IH

−bA −aIH

















u

v









=









v

−bAu− av









=

















∞∑

n=1

Env

−b

∞∑

n=1

λnEnu− a

∞∑

n=1

Env

















=

∞∑

n=1









0 1

−bλn −a

















En 0

0 En

















u

v









=

∞∑

n=1

AnPnz,
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where

Pn :=









En 0

0 En









, n ≥ 1,

and

An :=









0 1

−bλn −a









, n ≥ 1. (5.1)

Now, the characteristic equation for An is given by

λ2 + aλ+ λnb = 0 (5.2)

whose eigenvalues are given by

λn
1 :=

−a+
√

a2 − 4λnb

2
and λn

2 :=
−a−

√

a2 − 4λnb

2
.

Since a > 0 it follows that all roots of Eq. (5.2) are nonzero. Moreover, the real part of each

of its roots is: −a/2 < 0. Therefore, there exists ω ∈
(π

2
, π
)

such that ρ(L) ⊃ Sω, where

Sω :=

{

z ∈ C \ {0} :
∣

∣

∣ arg z
∣

∣

∣ < ω

}

.

On the other hand, one can show without difficulty that An = K−1
n JnKn, where Jn, Kn and

K−1
n are respectively given by

Jn =









λn
1 0

0 λn
2









, Kn =









1 1

λn
1 (t) λn

2









,

and

K−1
n =

1

λn
1 − λn

2









−λn
2 1

λn
1 −1









.

For λ ∈ Sω and z ∈ X, one has

R(λ,B)z =

∞∑

n=1

(λ−An)−1Pnz

=

∞∑

n=1

Kn(λ− JnPn)−1K−1
n Pnz.
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Hence,

∥

∥

∥R(λ,B)z
∥

∥

∥

2

≤
∞∑

n=1

∥

∥

∥KnPn(λ− JnPn)−1K−1
n Pn

∥

∥

∥

2

B(X)

∥

∥

∥Pnz
∥

∥

∥

2

≤
∞∑

n=1

∥

∥

∥
KnPn

∥

∥

∥

2

B(X)

∥

∥

∥
(λ− JnPn)−1

∥

∥

∥

2

B(X)

∥

∥

∥
K−1

n Pn

∥

∥

∥

2

B(X)

∥

∥

∥
Pnz

∥

∥

∥

2

.

Moreover, for z :=

(

z1

z2

)

∈ X, we obtain

∥

∥

∥KnPnz
∥

∥

∥

2

=
∥

∥

∥Enz1 + Enz2

∥

∥

∥

2

+
∥

∥

∥λn
1Enz1 + λn

2Enz2

∥

∥

∥

2

≤ 3
(

1+
∣

∣

∣λn
1

∣

∣

∣

2)∥
∥

∥z
∥

∥

∥

2

.

Thus, there exists C1 > 0 such that

∥

∥

∥KnPnz
∥

∥

∥ ≤ C1

∣

∣

∣λn
1

∣

∣

∣

∥

∥

∥z
∥

∥

∥ for all n ≥ 1.

Similarly, for z :=

(

z1

z2

)

∈ X, one can show that there is C2 > 0 such that

∥

∥

∥
K−1

n Pnz
∥

∥

∥
≤
C2
∣

∣

∣λn
1

∣

∣

∣

∥

∥

∥
z
∥

∥

∥
for all n ≥ 1.

Now, for z ∈ X, we have

∥

∥

∥(λ− JnPn)−1z
∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













1
λ−λn

1

0

0 1
λ−λn

2

























z1

z2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤
1

|λ− λn
1 |2

∥

∥

∥
z1

∥

∥

∥

2

+
1

|λ− λn
2 |2

∥

∥

∥
z2

∥

∥

∥

2

.

Let λ0 > 0. Define the function

η(λ) :=
1+

∣

∣

∣
λ
∣

∣

∣

∣

∣

∣λ− λn
2

∣

∣

∣

.

It is clear that η is continuous and bounded on the closed set

Σ :=

{

λ ∈ C :
∣

∣

∣
λ
∣

∣

∣
≤ λ0,

∣

∣

∣
arg λ

∣

∣

∣
≤ ω

}

.
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On the other hand, it is clear that η is bounded for
∣

∣

∣λ
∣

∣

∣ > λ0. Thus η is bounded on Sω. If we take

N = sup






1+
∣

∣

∣λ
∣

∣

∣

∣

∣

∣λ− λ
j
n

∣

∣

∣

: λ ∈ Sω, n ≥ 1 ; j = 1, 2,





.

Therefore,
∥

∥

∥(λ− JnPn)−1z
∥

∥

∥ ≤
N

1+
∣

∣

∣
λ
∣

∣

∣

‖z‖, λ ∈ Sω.

Consequently,
∥

∥

∥R(λ,B)
∥

∥

∥ ≤
K

1+
∣

∣

∣
λ
∣

∣

∣

for all λ ∈ Sω and t ∈ R.

In view of the above, B is sectorial. Let (eτB)τ≥0 be the nalytic semigroup associated with it.

Let us show that (eτB)τ≥0 is exponentially stable.

Now

eτBz =

∞∑

n=0

K−1
n Pne

τJnPnKnPnz, z ∈ X.

On the other hand, we have

∥

∥

∥
eτBz

∥

∥

∥
=

∞∑

n=0

∥

∥

∥
K−1

n Pn

∥

∥

∥

B(X)

∥

∥

∥
eτJnPn

∥

∥

∥

B(X)

∥

∥

∥
KnPn

∥

∥

∥

B(X)

∥

∥

∥
Pnz

∥

∥

∥
,

with for each z =

(

z1

z2

)

∥

∥

∥
eτJnPnz

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













eλn
1 τEn 0

0 eλn
2 τEn

























z1

z2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤
∥

∥

∥eλn
1 τEnz1

∥

∥

∥

2

+
∥

∥

∥eλn
2 τEnz2

∥

∥

∥

2

≤ e−aτ
∥

∥

∥
z
∥

∥

∥

2

.

Therefore,
∥

∥

∥eτB
∥

∥

∥ ≤ Ce−aτ, τ ≥ 0. (5.3)

It is now clear that if L is small enough, then the second-order differential equation Eq. (1.3)

has at most one solution
(

u

v

)

∈ Xα = Hα × H,

which in addition is pseudo almost automorphic. Therefore, Eq. (1.2) has a unique solution

u ∈ Hα, which in addition is pseudo almost automorphic.
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6 Examples

6.1 1-Dimensional Sine-Gordon Equation

Let L > 0 and and let J = (0, L). Let H = L2(J) be equipped with its natural topology. Our main

objective here is to study the existence of pseudo almost automorphic solutions to a somewhat

general one-dimensional Sine-Gordon equation with Dirichlet boundary conditions, which had been

studied in the literature especially by Leiva [36] in the following form

∂2u

∂t2
+ c

∂u

∂t
− d

∂2u

∂x2
+ k sinu = p(t, x), t ∈ R, x ∈ J (6.1)

u(t, 0) = u(t, L) = 0, t ∈ R (6.2)

where c, d, k are positive constants, p : R × J 7→ R is continuous and bounded.

Precisely, we are interested in the following system of second-order partial differential equations

∂2u

∂t2
+ a

∂u

∂t
− b

∂2u

∂x2
= Q(t, x, u), t ∈ R, x ∈ J (6.3)

u(t, 0) = u(t, L) = 0, t ∈ R (6.4)

where a, b > 0 and Q : R × J× L2(J) 7→ L2(J) is pseudo-almost automorphic.

Let us take

Av = −v′′ for all u ∈ D(A) = H
1
0(J) ∩ H

2(J)

and suppose that Q : R × J × L2(J) 7→ H
β
0 (J) is pseudo-almost automorphic. Moreover, Q is

Lipschitz in the following sense: there exists L ′′ > 0 for which
∥

∥

∥
Q(t, x, u) −Q(t, x, v)

∥

∥

∥

H
β

0
(J)

≤ L ′′
∥

∥

∥
u− v

∥

∥

∥

2

for all u, v ∈ L2(J), x ∈ J and t ∈ R.

Consequently, the system Eq. (6.3) - Eq. (6.4) has at most one solution u ∈ PAA(H1
0(J))

when L ′′ is small enough.

6.2 N-dimensional Sine-Gordon Equation

Let Ω ⊂ R
N (N ≥ 1) be a open bounded subset with C2 boundary Γ = ∂Ω and let H = L2(Ω)

equipped with its natural topology ‖ · ‖L2(Ω). Here, we are interested in the N-dimensional Sine-

Gordon studied in the previous example, that is, the system of second-order partial differential

equations given by
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∂2u

∂t2
+ a

∂u

∂t
− b∆u = R(t, x, u), t ∈ R, x ∈ Ω (6.5)

u(t, x) = 0, t ∈ R, x ∈ ∂Ω (6.6)

where a, b > 0, and R : R ×Ω× L2(Ω) 7→ L2(Ω) is jointly continuous.

Define the linear operator A as follows:

Au = −∆u for all u ∈ D(A) = H
1
0(Ω) ∩ H

2(Ω).

For each µ ∈ (0, 1), we take Hµ = D((−∆)µ) = H
µ
0 (Ω) ∩ H

2µ(Ω) equipped with its µ-norm ‖ · ‖µ.

Suppose that R : R × Ω × L2(Ω) 7→ H
β
0 (Ω) is pseudo-almost automorphic. Moreover, R is

Lipschitz in the following sense: there exists L ′′′ > 0 for which

∥

∥

∥
R(t, x, u) − R(t, x, v)

∥

∥

∥

β
≤ L ′′′

∥

∥

∥
u− v

∥

∥

∥

2

for all u, v ∈ L2(Ω), x ∈ Ω and t ∈ R.

Therefore, the system Eq. (6.5) - Eq. (6.6) has at most one solution u ∈ PAA(H1
0(Ω)) when

L ′′′ is small enough.
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