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ABSTRACT

In this paper, we study some aspects of the geometry of leaves of integrable distributions

of lightlike hypersurfaces in indefinite Kenmotsu manifolds, tangent to the structure

vector field. Theorems on parallel vector field, Killing distribution, geodesibility of

lightlike hypersurfaces are obtained. Some characterization Theorems of leaves of in-

tegrable distributions are given. We prove that there exists a distribution, subset of

the screen distribution, in which, under the integrability condition, any totally contact

umbilical leaf is an extrinsic sphere.

RESUMEN

En este trabajo se estudian algunos aspectos de la geometŕıa de las hojas de dis-

tribuciones integrables de las hipersuperficies luminosas en variedades de Kenmotsu

indefinidas, tangentes a la estructura de un campo vectorial. Se obtienen algunos teo-

remas sobre el campo de vectores paralelo, distribución de Killing y geodesbilidad de

hipersuperficies liminosas. Se dan algunos teoremas de caracterización de las hojas de

las distribuciones integrables. Se demuestra que existe una distribucin, subconjunto de
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la distribucin de la pantalla, en la que, bajo la condición de integrabilidad, cualquier

contacto con la hoja umbilical es una esfera extŕınseca.
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1 Introduction

Several authors have studied some properties of Kenmotsu manifolds. In [7], for instance, the

authors partially classified the Kenmotsu manifolds and considered manifolds admitting the trans-

formation which keeps the Riemannian curvature tensor and Ricci tensor invariant.

The present paper aims to investigate the geometry of lightlike hypersurfaces of indefinite

Kenmotsu manifolds, tangent to the structure vector field, with specific attention to the geometry

of leaves of its integrable distributions.

As is well known, the geometry of lightlike submanifolds [4] are different because of the fact

that their normal vector bundle intersects with the tangent bundle. Thus, the study becomes

more difficult and strikingly different from the study of non-degenerate submanifolds. This means

that one cannot use, in the usual way, the classical submanifold theory to define any induced

object on a lightlike submanifold. To deal with this anomaly, the lightlike submanifolds were

introduced and presented in a book by Duggal and Bejancu [4]. They introduced a non-degenerate

screen distribution to construct a nonintersecting lightlike transversal vector bundle of the tangent

bundle. Several authors have studied lightlike hypersurfaces of semi-Riemannian manifolds (see [5]

and many more references therein).

Physically, lightlike hypersurfaces are interesting in general relativity since they produce mod-

els of different types of horizons. On the Latter, the relationship between Killing and geodesic

notions is well specified.

In [4], the authors discussed the Cauchy Riemann (CR) lightlike submanifolds of indefinite

Käehler manifolds in ([4], chapter 6) and proved that, in a totally umbilical real lightlike hyper-

surface of an indefinite Käehler space form, the nonzero mean curvature vector satisfies partial

differential equations which imply that the nonzero mean curvature vector is not parallel. The

usual terminology says that such an umbilical lightlike submanifold is not an extrinsic sphere (see

[3] for more details). As the notion of totally umbilical submanifolds of Kaehlerian manifolds cor-

responds to that of totally contact umbilical submanifolds of Sasakian manifolds [10], the author

in [13] showed that, in a totally contact umbilical lightlike hypersurface of an indefinite Sasakian

space form, the nonzero mean curvature vector also is not parallel. But in [15] it is proved that

any totally contact umbilical leaf of a screen integrable distribution of a lightlike hypersurface in

an indefinite Sasakian space form is an extrinsic sphere.

Considering the mentioned notions above and those given in [6], [11], [12] and [14] on lightlike
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hypersurfaces of indefinite Sasakian manifolds, similar research is needed for the geometry of leaves

of distribution of lightlike hypersurfaces in indefinite Kenmotsu manifolds. It is important to note

that Kenmotsu manifolds are different from Sasakian manifolds.

The paper is organized as follows. In Section 2, we recall some basic definitions for indefinite

Kenmotsu manifolds and lightlike hypersurfaces of semi-Riemannian manifolds. In Section 3, we

give a decomposition of almost contact metric of lightlike hypersurfaces in indefinite Kenmotsu

manifolds, tangent to the structure vector field, supported by an example, as well as Theorems

on Lie derivatives and parallel vector field. In Section 4, we investigate the geometry of leaves of

integrable distributions of lightlike hypersurfaces. We prove that, if a leaf M ′ of the integrable

distribution D0 ⊥ 〈ξ〉 is totally geodesic, then φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution.

Moreover, if the second fundamental form of M ′ is parallel with respect to the Levi-Civita con-

nection ∇ ′, then M ′ is totally geodesic (Theorem 4.3). A characterization of a leaf of D0 ⊥ 〈ξ〉 is

given (Theorem 4.4). We show that any totally contact umbilical leaf of an integrable distribution

D̂ of a lightlike hypersurface is an extrinsic sphere (Theorem 4.5).

2 Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact structure (φ, ξ, η), i.e.

φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (2.1)

Then (φ, ξ, η, g) is called an indefinite almost contact metric structure on M if (φ, ξ, η) is an

almost contact structure on M and g is a semi-Riemannian metric on M such that, for any vector

field X, Y on M (see [2] for Riemannian case)

η(X) = g(ξ, X), g(φX,φ Y) = g(X, Y) − η(X)η(Y). (2.2)

If, moreover, (∇Xφ)Y = g(φX, Y)ξ − η(Y)φX, where ∇ is the Levi-Civita connection for the

semi-Riemannian metric g, we call M an indefinite Kenmotsu manifold [9].

A plane section σ in TpM is called a φ-section if it is spanned by X and φX, where X is

a unit tangent vector field orthogonal to ξ. The sectional curvature of a φ-section σ is called a

φ-sectional curvature. If a Kenmotsu manifold M has constant φ-sectional curvature c, then, by

virtue of the Proposition 12 in [9], the curvature tensor R of M is given by

R(X, Y)Z =
c − 3

4

{
g(Y, Z)X − g(X,Z)Y

}
+

c + 1

4

{
η(X)η(Z)Y

−η(Y)η(Z)X + g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ + g(φ Y,Z)φX

− g(φX,Z)φY − 2g(φX, Y)φZ
}

, X, Y, Z ∈ Γ(TM). (2.3)

A Kenmotsu manifold M of constant φ-sectional curvature c will be called Kenmotsu space form

and denoted M(c).
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Let (M,g) be a (2n + 1)-dimensional semi-Riemannian manifold with index s, 0 < s < 2n + 1

and let (M,g) be a hypersurface of M, with g = g|M. M is a lightlike hypersurface of M if g is of

constant rank 2n − 1 and the normal bundle TM⊥, defined as

TM⊥ =
⋃

p∈M

{
Yp ∈ TpM : gp(Xp, Yp) = 0, ∀Xp ∈ TpM

}
, (2.4)

is a distribution of rank 1 on M [4]. A complementary bundle of TM⊥ in TM is a rank 2n − 1

non-degenerate distribution over M. It is called a screen distribution and is often denoted by

S(TM). In general, S(TM) is not canonical (thus it is not unique). A lightlike hypersurface

endowed with a specific screen distribution is denoted by the triple (M,g, S(TM)). As TM⊥ lies

in the tangent bundle, the following result has an important role in studying the geometry of a

lightlike hypersurface.

Theorem 2.1. [4] Let (M,g, S(TM)) be a lightlike hypersurface of (M,g). Then, there exists

a unique vector bundle N(TM) of rank 1 over M such that for any non-zero section E of TM⊥

on a coordinate neighborhood U ⊂ M, there exists a unique section N of N(TM) on U satisfying

g(N,E) = 1 and g(N,N) = g(N,W) = 0, ∀W ∈ Γ(S(TM)|U ).

Throughout the paper, all manifolds are supposed to be paracompact and smooth. We denote

Γ(E) the set of smooth sections of the vector bundle E. Also by ⊥ and ⊕ we denote the orthogonal

and nonorthogonal direct sum of two vector bundles. By Theorem 2.1 we may write down the

following decompositions

TM = S(TM) ⊥ TM⊥,

TM = TM ⊕ N(TM) = S(TM) ⊥ (TM⊥ ⊕ N(TM)). (2.5)

Let ∇ be the Levi-Civita connection on (M,g), then by using the second decomposition of (2.5)

and considering a normalizing pair {E,N} as in Theorem 2.1, we have the Gauss and Weingarten

formulae in the form,

∇XY = ∇XY + h(X, Y), and ∇XV = −AVX + ∇⊥
XV, (2.6)

for any X, Y ∈ Γ(TM|U ), V ∈ Γ(N(TM)), where ∇XY, AVX ∈ Γ(TM) and h(X, Y), ∇⊥
XV ∈

Γ(N(TM)). ∇ is an induced symmetric linear connection on M, ∇⊥ is a linear connection on

the vector bundle N(TM), h is a Γ(N(TM))-valued symmetric bilinear form and AV is the shape

operator of M concerning V.

Equivalently, consider a normalizing pair {E,N} as in Theorem 2.1. Then (2.6) takes the form,

∇XY = ∇XY + B(X, Y)N and ∇XN = −ANX + τ(X)N, (2.7)

for any X, Y ∈ Γ(TM|U ), where B, AN, τ and ∇ are called the local second fundamental form,

the local shape operator, the transversal differential 1-form and the induced linear torsion free
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connection, respectively, on TM|U . It is important to mention that B is independent of the choice

of screen distribution, in fact, from (2.7), we obtain B(X, Y) = g(∇XY, E) and τ(X) = g(∇⊥
XN,E).

Let P be the projection morphism of TM on S(TM) with respect to the orthogonal decompo-

sition of TM. We have,

∇XPY = ∇∗
XPY + C(X, PY)E, and ∇XE = −A∗

EX − τ(X)E, (2.8)

where ∇∗
XPY and A∗

EX belong to Γ(S(TM)). C, A∗
E and ∇∗ are called the local second funda-

mental form, the local shape operator and the induced connection on S(TM). The induced linear

connection ∇ is not a metric connection and we have, for any X, Y ∈ Γ(TM|U ),

(∇Xg)(Y, Z) = B(X, Y)θ(Z) + B(X,Z)θ(Y), (2.9)

where θ is a differential 1-form locally defined on M by θ(·) := g(N, ·). Also, we have, g(A∗
EX, PY) =

B(X, PY), g(A∗
EX,N) = 0, B(X, E) = 0.

Using (2.7), the curvature tensor fields R and R of M and M, respectively, are related as

R(X, Y)Z = R(X, Y)Z + B(X,Z)ANY − B(Y, Z)ANX

+ {(∇XB)(Y, Z) − (∇YB)(X,Z) + τ(X)B(Y, Z) − τ(Y)B(X,Z)} N, (2.10)

where (∇XB)(Y, Z) = X.B(Y, Z) − B(∇XY, Z) − B(Y,∇XZ). (2.11)

3 Lightlike hypersurfaces of indefinite Kenmotsu manifolds

Let (M,φ, ξ, η, g) be an indefinite Kenmotsu manifold and (M,g) be a lightlike hypersurface of

(M,g), tangent to the structure vector field ξ (ξ ∈ TM). If E is a local section of TM⊥, then

g(φE, E) = 0, and φE is tangent to M. Thus φ(TM⊥) is a distribution on M of rank 1 such

that φ(TM⊥) ∩ TM⊥ = {0} . This enables us to choose a screen distribution S(TM) such that

it contains φ(TM⊥) as a vector subbundle. If we consider a local section N of N(TM), since

g(φ N,E) = −g(N,φ E) = 0, φ E belongs to S(TM). Since g(φ N,N) = 0, φ N ∈ Γ(S(TM)).

From (2.1), we have g(φ N,φE) = 1. Therefore, φ(TM⊥) ⊕ φ(N(TM)) is a non-degenerate vector

subbundle of S(TM) of rank 2. If M is tangent to the structure vector field ξ, then, we may

choose S(TM) so that ξ belongs to S(TM). Using this and g(φE, ξ) = g(φN, ξ) = 0, there exists a

non-degenerate distribution D0 of rank 2n − 4 on M such that

S(TM) =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >, (3.1)

where 〈ξ〉 is the distribution spanned by ξ, that is, 〈ξ〉 = Span{ξ}. It is easy to check that the

distribution D0 is invariant under φ, i.e. φ(D0) = D0.

Example 3.1. We consider the 7-dimensional manifold M
7

=
{
x ∈ R

7 : x7 6= 0
}
, where x =

(x1, x2, ..., x7) are the standard coordinates in R
7. The vector fields e1 = x7

∂
∂x1

, e2 = x7
∂

∂x2
, e3 =

x7
∂

∂x3
, e4 = x7

∂
∂x4

, e5 = −x7
∂

∂x5
, e6 = −x7

∂
∂x6

, e7 = −x7
∂

∂x7
are linearly independent at each
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point of M
7
. Let g be the semi-Riemannian metric defined by g(ei, ej) = 0, ∀ i 6= j, i, j = 1, 2, ..., 7

and g(ek, ek) = 1, ∀k = 1, 2, 3, 4, 7, g(em, em) = −1, ∀m = 5, 6. Let η be the 1-form defined

by η(·) = g(·, e7). Let φ be the (1, 1) tensor field defined by φe1 = −e2, φe2 = e1, φe3 =

−e4, φe4 = e3, φe5 = −e6, φe6 = e5, φe7 = 0. Then, using the linearity of φ and g, we

have φ
2
X = −X + η(X)e7, g(φX,φ Y) = g(X, Y) − η(X)η(Y), for any X, Y ∈ Γ(TM

7
). Thus,

for e7 = ξ, (φ, ξ, η, g) defines an almost contact metric structure on M
7
. Let ∇ be the Levi-

Civita connection with respect to the metric g. Then, we have [ei, e7] = ei, ∀ i = 1, 2, ..., 6 and

[ei, ej] = 0, ∀ i 6= j, i, j = 1, 2, ..., 6. The metric connection ∇ of the metric g is given by

2g(∇XY, Z) = X(g(Y, Z)) + Y(g(Z,X)) − Z(g(X, Y)) − g(X, [Y, Z])

−g(Y, [X,Z]) + g(Z, [X, Y]),

which is known as Koszul’s formula. Using this formula, the non-vanishing covariant derivatives

are given by ∇e1
e1 = −e7, ∇e2

e2 = −e7, ∇e3
e3 = −e7, ∇e4

e4 = −e7, ∇e5
e5 = e7,∇e6

e6 =

e7, ∇e1
e7 = e1, ∇e2

e7 = e2, ∇e3
e7 = e3, ∇e4

e7 = e4, ∇e5
e7 = e5,∇e6

e7 = e6. From these

relations, it follows that the manifold M
7

satisfies ∇Xξ = X − η(X)ξ. Hence, M
7

is indefinite

Kenmotsu manifold. We now define a hypersurface M of (M
7
, φ, ξ, η, g) as M = {x ∈ M

7
: x5 =

x2}. Thus, the tangent space TM is spanned by {Ui}1≤i≤6, where U1 = e1, U2 = e2 − e5, U3 =

e3, U4 = e4, U5 = e6, U6 = ξ and the 1-dimensional distribution TM⊥ of rank 1 is spanned

by E, where E = e2 − e5. It follows that TM⊥ ⊂ TM. Then M is a 6-dimensional lightlike

hypersurface of M
7
. Also, the transversal bundle N(TM) is spanned by N = 1

2
(e2 + e5) . Using

the almost contact structure of M
7

and (3.1), D0 is spanned by
{
F, φF

}
, where F = U3, φF = −U4

and the distributions 〈ξ〉, φ(TM⊥) and φ(N(TM)) are spanned, respectively, by ξ, φE = U1 +

U5 and φN = 1
2
(U1 − U5). Hence, M is a lightlike hypersurface of M

7
.

Moreover, from (2.5) and (3.1) we obtain the decompositions

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ TM⊥, (3.2)

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ N(TM)). (3.3)

Now, we consider the distributions on M, D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D ′ := φ(N(TM)). Then

D is invariant under φ and

TM = D ⊕ D ′ ⊥ 〈ξ〉. (3.4)

Let us consider the local lightlike vector fields U := − φ N, V := − φ E. Then, from (3.4), any

X ∈ Γ(TM) is written as X = RX + QX + η(X)ξ, QX = u(X)U, where R and Q are the projection

morphisms of TM into D and D ′, respectively, and u is a differential 1-form locally defined on M

by u(·) := g(V, ·). Applying φ to X and using (2.1), one obtains φ X = φX + u(X)N, where φ is a

tensor field of type (1, 1) defined on M by φX := φ RX. Also, we obtain

φ2 X = − X + η(X)ξ + u(X)U, (3.5)

∇Xξ = X − η(X)ξ, ∀X ∈ Γ(TM). (3.6)
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For the sake of future use, we have the following identities: for any X, Y ∈ Γ(TM),

B(X, ξ) = 0, (3.7)

C(X, ξ) = θ(X), (3.8)

B(X,U) = C(X,V) (3.9)

(∇Xu)Y = −B(X,φY) − u(Y)τ(X) − η(Y)u(X), (3.10)

(∇Xφ)Y = g(φX, Y)ξ − η(Y)φX − B(X, Y)U + u(Y)ANX. (3.11)

Proposition 3.1. Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M with

ξ ∈ TM. The Lie derivative of g with respect to the vector field V is given by, for any X, Y ∈ Γ(TM),

(LVg)(X, Y) = X(u(Y)) + Y(u(X)) + u([X, Y]) − 2u(∇XY). (3.12)

Proof: The proof follows by direct calculation.

The relation (3.12) can be rewritten as, for any X, Y ∈ Γ(TM),

(LVg)(X, Y) = (∇Xu)Y + (∇Yu)X. (3.13)

As the geometry of a lightlike hypersurface depends on the chosen screen distribution, it is impor-

tant to investigate the relationship between geometrical objects induced by two screen distributions.

We ask the following question: Is the Lie derivative LV (3.12) independent of the choice of a screen

distribution S(TM)? The answer is negative because of the differential 1-form τ which appears

in the relation (3.10) and which is not unique. Indeed, we prove the following with respect to a

change in S(TM).

Note that the 1-dimensional distribution TM⊥ is independent of the choice of a screen distri-

bution and hence so is also V := −φE (E ∈ TM⊥).

Suppose a screen S(TM) changes to another screen S(TM) ′. Following are the transformation

equations due to this change (see details in [4], page 87).

W ′
i =

2n−1∑

j=1

W
j
i(Wj − ǫjcjE),

N ′ = N −
1

2
{

2n−1∑

i=1

ǫi(ci)
2}E + W,

τ ′(X) = τ(X) + B(X,W),

∇ ′
XY = ∇XY + B(X, Y){

1

2
(

2n−1∑

i=1

ǫi(ci)
2)E − W}, (3.14)

where W =
∑2n−1

i=1 ciWi, {Wi} and {W ′
i } are the local orthonormal bases of S(TM) and S(TM) ′

with respective transversal sections N and N ′ for the same null section E. Here ci and W
j
i are

smooth functions on U and {ǫ1, ..., ǫ2n−1} is the signature of the basis {W1, ...,W2n−1}. The Lie
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derivatives LV and L ′
V of the screen distributions S(TM) and S(TM) ′, respectively, are related

through the relation [12]:

(L ′
Vg)(X, Y) = (∇ ′

Xu)Y + (∇ ′
Yu)X

= −B(X,φY) − u(Y)τ ′(X) − η(Y)u(X) − B(Y,φX)

−u(X)τ ′(Y) − η(X)u(Y)

= −B(X,φY) − u(Y) (τ(X) + B(X,W)) − η(Y)u(X)

−B(Y,φX) − u(X) (τ(Y) + B(Y,W)) − η(X)u(Y)

= (LVg)(X, Y) − u(X)B(Y,W) − u(Y)B(X,W). (3.15)

The Lie derivative LV is unique, that is, LV is independent of S(TM), if and only if, the second

fundamental form h (or equivalently B) of M vanishes identically on M.

If a (2n + 1)-dimensional Kenmotsu manifold M has a constant φ-sectional curvature c, then

the Ricci tensor Ric and the scalar curvature r are given by [9]

Ric =
1

2
(n(c − 3) + c + 1) g −

1

2
(n + 1)(c + 1)η ⊗ η. (3.16)

This means that M is η-Einstein. Since M is Kenmotsu and η-Einstein, by Corollary 9 in [9], M is

an Einstein one and consequently, c + 1 = 0, that is, c = −1. So, the Ricci tensor (3.16) becomes

Ric = −2ng and the scalar curvature is given by r = −2n(2n + 1).

Thus, if a Kenmotsu manifold M is a space form, then it is Einstein and c = −1.

Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) with ξ ∈ TM.

Using (3.7) and the fact that B(., E) = 0, the local second fundamental form B of M can be written

as, for any X, Y ∈ Γ(TM),

B(X, Y) =

2n−4∑

i=1

B(X, Fi)

g(Fi, Fi)
g(Y, Fi) + v(Y)u(A∗

EX) + u(Y)v(A∗
EX), (3.17)

where {Fi}1≤i≤2n−4 is an orthogonal basis of D0 and g(Fi, Fi) 6= 0. This means that M is not

totally geodesic in general. So, only some privileged conditions on distributions could allow M to

be totally geodesic.

Next we study some classes of lightlike hypersurfaces M of M(c), tangent to the structure

vector field ξ, which are totally geodesic. Let us consider the pair {E,N} on U ⊂ M (see Theorem

2.1) and by using (2.10), we obtain

(∇XB)(Y, Z) − (∇YB)(X,Z) = τ(Y)B(X,Z) − τ(X)B(Y, Z). (3.18)

Theorem 3.1. Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c), with

ξ ∈ TM. Then, the Lie derivative of the second fundamental form B with respect to ξ is given by

(LξB)(X, Y) = (1 − τ(ξ))B(X, Y), ∀X, Y ∈ Γ(TM). (3.19)



CUBO
13, 3 (2011)

Lightlike Geometry of Leaves in Indefinite . . . 77

Moreover, if τ(ξ) 6= 1, then ξ is a Killing vector field with respect to the second fundamental form

B if and only if M is totally geodesic.

Proof: Using (2.11), we obtain

(∇ξB)(X, Y) = (LξB)(X, Y) − 2B(X, Y). (3.20)

Likewise, Using again (2.11), we have

(∇XB)(ξ, Y) = −B(X, Y). (3.21)

Subtracting (3.20) and (3.21), we obtain

(∇ξB)(X, Y) − (∇XB)(ξ, Y) = (LξB)(X, Y) − B(X, Y). (3.22)

From (3.18) and after calculations, the left hand side of (3.22) becomes

(∇ξB)(X, Y) − (∇XB)(ξ, Y) = −τ(ξ)B(X, Y). (3.23)

The expressions (3.22) and (3.23) implies (LξB)(X, Y) = (1 − τ(ξ))B(X, Y). The last assertion is

obvious by definitions of Killing distribution and totally geodesic submanifold.

As an example to the last part of the Theorem 3.1, we have a lightlike hypersurface of an

indefinite Kenmotsu space form, tangent to the structure vector field ξ, with parallel vector field

U or V. In fact, when the vector field U or V is parallel, the differential 1-form τ vanishes on M

and consequently, the equivalence of the Theorem 3.1 holds.

The second fundamental form h = B ⊗ N of M is said to be parallel if (∇Xh)(Y, Z) =

0, ∀X, Y, Z ∈ Γ(TM). That is,

(∇XB)(Y, Z) = −τ(X)B(Y, Z). (3.24)

Theorem 3.2. Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) with

ξ ∈ TM. If the second fundamental form h of M is parallel, then M is totally geodesic.

Proof: Suppose that the second fundamental form h of M is parallel. Using (3.24), we obtain

(∇ξB)(X, Y) = −τ(ξ)B(X, Y). (3.25)

From (2.11) and using (3.19), the left hand side of (3.25) becomes

(∇ξB)(X, Y) = (LξB)(X, Y) − 2B(X, Y) = −(1 + τ(ξ))B(X, Y). (3.26)

From the expressions (3.25) and (3.26) we complete the proof.

This means that any parallel lightlike hypersurface M of an indefinite Kenmotsu manifold M

admits a metric connection.
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The covariant derivative of the second fundamental form h depends on ∇, N and τ which

depend on the choice of the screen vector bundle. Using equations (3.14), the covariant derivatives

∇ of h = B⊗N and ∇ ′ of h ′ = B⊗N ′ in the screen distributions S(TM) and S(TM) ′, respectively,

are related as follows: for any X, Y, Z ∈ Γ(TM),

g((∇ ′
Xh ′)(Y, Z), E) = g((∇Xh)(Y, Z), E) + L(X,Y)Z,

with L(X,Y)Z = B(X, Y)B(Z,W) + B(X,Z)B(Y,W) + B(Y, Z)B(X,W). It is easy to check that the

parallelism of h is independent of the screen distribution S(TM) (∇ ′h ′ ≡ ∇h) if and only the

second fundamental form B of M vanishes identically on M.

We note that the Theorem 3.2 arises when the local second fundamental form B of M is also

parallel. Therefore, the Theorem 3.2 generates some lightlike geometric aspects on any parallel

lightlike hypersurface of an indefinite Kenmotsu manifold by using the Theorem 2.2 in [4].

From (2.3) and (2.10), a direct calculation shows that

(∇XC)(Y, PZ) − (∇YC)(X, PZ) + τ(Y)C(X, PZ) − τ(X)C(Y, PZ)

= g(X, PZ)θ(Y) − g(Y, PZ)θ(X). (3.27)

Lemma 3.1. Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM. Then, the covariant derivative of v and the Lie derivative of g with respect

to the vector field U are given, respectively, by, for any X, Y ∈ Γ(TM),

(∇Xv)Y = −C(X,φY) − v(X)η(Y) + τ(X)v(Y), (3.28)

(LUg)(X, Y) = X(v(Y)) + Y(v(X)) + v([X, Y]) − 2v(∇XY), (3.29)

where v(·) := g(U, ·).

Proof: The proof of (3.28) and (3.29) follows from direct calculations.

The Lie derivative (3.29) can be written in terms of the second fundamental form C of S(TM)

using the relation

v(∇XY) = C(X,φY) + η(Y)v(X), ∀ X, Y ∈ Γ(TM). (3.30)

Example 3.2. Let M be a hypersurface of M
7

defined in the example 3.1. The tangent space

TM is spanned by {Ui}1≤i≤6, where U1 = e1, U2 = e2 − e5, U3 = e3, U4 = e4, U5 = e6, U6 = ξ

and the 1-dimensional distribution TM⊥ of rank 1 is spanned by E, where E = e2 − e5. Also,

the transversal bundle N(TM) is spanned by N = 1
2

(e2 + e5) . It follows that TM⊥ ⊂ TM. Then

M is a 6-dimensional lightlike hypersurface of M
7

having a local quasi-orthogonal field of frames

{U1, U2 = E, U3, U4, U5, U6 = ξ, N} along M. Denote by ∇ the Levi-Civita connection on M
7
.

Then, by straightforward calculations, we obtain ∇XN = 0, ∀X ∈ Γ(TM). Using these equations

above, the differential 1-form τ vanishes i.e. τ(X) = 0, for any X ∈ Γ(TM). So, from the Gauss

and Weingarten formulae we have ANX = 0, A∗
EX = 0 and ∇XE = 0, ∀X ∈ Γ(TM). Therefore, by
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Theorem 2.2 and Proposition 2.7 in [4] pages 88-89, the lightlike hypersurface M of M
7

is totally

geodesic and its distribution is parallel. The non-vanishing components of the Lie derivatives (3.12)

and (3.29) are given by

LVg(U1, ξ) = LVg(ξ,U1) = 1, LVg(U5, ξ) = LVg(ξ,U5) = −1,

LVg(U, ξ) = LVg(ξ,U) = −1, LUg(V, ξ) = LUg(ξ, V) = −1,

LUg(U1, ξ) = LUg(ξ,U1) =
1

2
, LUg(U5, ξ) = LUg(ξ,U5) = −

1

2
.

4 Lightlike Geometry of Leaves in Indefinite Kenmotsu Man-

ifolds

Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) with ξ ∈ TM. From

the differential geometry of lightlike hypersurfaces, we recall the following desirable property for

lightlike geometry. It is known that lightlike submanifolds whose screen distribution is integrable

have interesting properties. Now, we study the geometry of leaves of integrable distributions with

specific attention to leaves of screen distribution S(TM), the distributions D, D0, D0 ⊥ 〈ξ〉 and
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0. By Theorem 2.3 in [4] page 89, the screen distribution S(TM) of

M is integrable if and only if the second fundamental form of S(TM) is symmetric on Γ(S(TM)).

However, for any X, Y ∈ Γ(D ⊥ 〈ξ〉), u([X, Y]) = B(X,φY) − B(φX, Y). So, it is very easy to see

that the distribution D ⊥ 〈ξ〉 is integrable if and only if B(X,φY) = B(φX, Y).

Theorem 4.1. Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space form

M(c) with ξ ∈ TM such that the distribution D ⊥ 〈ξ〉 is integrable. Then, M is D ⊥ 〈ξ〉-totally

geodesic if and only if φ(TM⊥) is a D ⊥ 〈ξ〉-Killing distribution.

Proof: Since D ⊥ 〈ξ〉 is integrable, using (3.10) and (3.12), one obtains,

(LVg)(X, Y) = −B(X,φY) − B(φX, Y) = −2B(X,φY), X, Y ∈ Γ(D ⊥ 〈ξ〉).

Using (3.7) and the fact that φ(D ⊥ 〈ξ〉) = D, we complete the proof.

Note that the Theorem 4.1 also holds when the distribution D ⊥ 〈ξ〉 is replaced by D.

Example 4.1. Consider the lightlike hypersurface M of M
7

defined in the example 3.2. Since

M is totally geodesic, so it is obviously D ⊥ 〈ξ〉-totally geodesic. Since the only nonvanishing

brackets on the distribution D ⊥ 〈ξ〉 are [V, ξ] = V, [E, ξ] = E, [F, ξ] = F and [φF, ξ] = φF, it

is easy to check that the distribution D ⊥ 〈ξ〉 is integrable and (LVg)(X, Y) = −2B(X,φY) = 0,

X, Y ∈ Γ(D ⊥ 〈ξ〉), that is, φ(TM⊥) is a D ⊥ 〈ξ〉-Killing distribution.

Proposition 4.1. Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space

form M(c) with ξ ∈ TM. If the screen distribution S(TM) is integrable, then,

(LξC)(X, PY) = τ(ξ)C(X, PY), X, Y ∈ Γ(TM). (4.1)
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Proof: If the screen distribution S(TM) of a lightlike hypersurface M is integrable, then, from

(3.27) and using (3.8), we have, for any X, Y ∈ Γ(TM),

(∇ξC)(X, PY) − (∇XC)(ξ, PY) = η(PY)θ(X) + τ(ξ)C(X, PY). (4.2)

On the other hand, using (3.8), we have

(∇ξC)(X, PY) = ξ(C(X, PY)) − C(∇ξX, PY) − C(X,∇ξ(PY))

= (LξC)(X, PY) − 2C(X, PY) + η(PY)θ(X), (4.3)

and (∇XC)(ξ, PY) = X(C(ξ, PY)) − C(∇Xξ, PY) − C(ξ,∇XPY)

= −2C(X, PY). (4.4)

Putting (4.3) and (4.4) together in (4.2), we obtain (4.1).

Let us assume that the screen distribution S(TM) of M is integrable and let M ′ be a leaf of

S(TM). Then, using (2.7) and (2.8), we obtain, for any X, Y ∈ Γ(TM ′),

∇XY = ∇∗
XY + C(X, Y)E + B(X, Y)N = ∇ ′

XY + h ′(X, Y), (4.5)

where ∇ ′ and h ′ are, respectively, the Levi-Civita connection and second fundamental form of M ′

in M. Thus, for any X, Y ∈ Γ(TM ′),

h ′(X, Y) = C(X, Y)E + B(X, Y)N. (4.6)

In the sequel, we need the following lemma.

Lemma 4.1. Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite Ken-

motsu manifold (M,g) with ξ ∈ TM and M ′ be a leaf of S(TM). Then,

∇ ′
Xξ = X − η(X)ξ, (4.7)

∇ ′
XU = −v(X)ξ − v(ANX)E − v(A∗

EX)N + φ(ANX) + τ(X)U, (4.8)

∇ ′
XV = −u(X)ξ − u(ANX)E − u(A∗

EX)N + φ(A∗
EX) − τ(X)V, (4.9)

for any X ∈ Γ(TM ′).

Proof: From a straightforward calculation we complete the proof.

It is well known that the second fundamental form and the shape operators of a non-degenerate

hypersurface (in general, submanifold) are related by means of the metric tensor field. Contrary

to this, we see from (2.8), in the case of lightlike hypersurfaces, the second fundamental forms

on M and their screen distribution S(TM) are related to their respective shape operators AN and

A∗
E. As the shape operator is an information tool in studying the geometry of submanifolds, their

studying turns out very important. For instance, in [5] a class of lightlike hypersurfaces whose

shape operators are the same as the one of their screen distribution up to a conformal non zero
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smooth factor in F(M) was considered. That work gave a way to generate, under some geometric

conditions, an integrable canonical screen (see [5] for more details).

Next, we study these operators and give their implications in lightlike hypersurface of indefinite

Kenmotsu manifolds with ξ ∈ TM.

Proposition 4.2. Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite

Kenmotsu manifold (M,g) with ξ ∈ TM and M ′ be a leaf of S(TM). Then we have

(i) The vector field U is parallel with respect to the Levi-Civita connection ∇ ′ on M ′ if and only

if

ANX = u(ANX)U, ∀X ∈ Γ(TM ′),

v and τ vanish on M ′.

(ii) The vector field V is parallel with respect to the Levi-Civita connection ∇ ′ on M ′ if and only

if

A∗
EX = v(A∗

EX)V, ∀X ∈ Γ(TM ′),

u and τ vanishes on M ′.

Proof: (i) Suppose U is parallel with respect to the Levi-Civita connection ∇ ′ on M ′. Then,

by using (4.8), we have, for any X ∈ Γ(TM ′),

φ(ANX) = v(X)ξ + v(ANX)E + v(A∗
EX)N − τ(X)U. (4.10)

Since φ(ANX) = φ(ANX) + u(ANX)N, by using (3.9), we obtain

φ(ANX) = v(X)ξ + v(ANX)E − τ(X)U. (4.11)

Apply φ to (4.11) and using (3.5) and the fact that φU = 0, we obtain

ANX = η(ANX)ξ + u(ANX)U + v(ANX)V

= u(ANX)U + v(ANX)V, (4.12)

since θ(X) = 0, for any X ∈ Γ(TM ′). Putting (4.12) in (4.8) and using (3.9), one obtains v(X)ξ −

τ(X)U = 0 which is equivalent to v(X) = 0 and τ(X) = 0. Since ANX ∈ Γ(TM ′), then (4.12) is

reduced to ANX = u(ANX)U. The converse is obvious. In the similar way, by using (4.9) the

assertion (ii) follows.

Corollary 4.1. (to Proposition 4.2) Let (M,g, S(TM)) be a screen integrable lightlike hyper-

surface of an indefinite Kenmotsu manifold (M,g) with ξ ∈ TM and M ′ be a leaf of S(TM) such

U and V are parallel with respect to the Levi-Civita connection ∇ ′ on M ′. Then, the type number

t ′(x) of M ′ (with x ∈ M ′) satisfies t ′(x) ≤ 1.
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Proof: The proof follows from Proposition 4.2.

Let W be an element of φ(TM⊥)⊕φ(N(TM)) which is a non-degenerate vector subbundle of

S(TM) of rank 2. Then there exist non-zero functions a and b such that

K = aV + bU. (4.13)

It is easy to check that a = v(K) and b = u(K). Let κ be a 1-form locally defined by κ(·) = g(K, ·).

Lemma 4.2. Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM. Then, the covariant derivative of κ and the Lie derivative of g with respect

to the vector field K are given, respectively, by

(∇Xκ)Y = −v(K)B(X,φY) − u(K)C(X,φY) − κ(X)η(Y), (4.14)

(LKg)(X, Y) = X(κ(Y)) + Y(κ(X)) + κ([X, Y]) − 2κ(∇XY), (4.15)

for any X, Y ∈ Γ(TM).

Proof: Using (3.10) and (3.28), we obtain, for any X, Y ∈ Γ(TM),

(∇Xκ)Y = −v(K)B(X,φY) − u(K)C(X,φY) − κ(X)η(Y) (4.16)

which proves (4.14) and (4.15) follows from a direct calculation.

From (3.30), one obtains, for any X, Y ∈ Γ(TM),

κ(∇XY) = v(K)B(X,φY) + u(K)C(X,φY) + κ(X)η(Y). (4.17)

Lemma 4.3. Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite Ken-

motsu manifold (M,g) with ξ ∈ TM and M ′ be a leaf of S(TM). Then, for any, X, Y ∈ Γ(TM ′),

κ(∇ ′
XY) = −κ(φh ′(X,φY)) + κ(X)η(Y), (4.18)

κ([X, Y]) = κ(φh ′(φX, Y) − φh ′(X,φY)) + κ(X)η(Y) − κ(Y)η(X). (4.19)

Proof: Using (4.5) and (4.6), we obtain, for any X, Y ∈ Γ(TM ′),

κ(∇ ′
XY) = g(K,∇ ′

XY) = v(K)u(∇XY) + u(K)v(∇XY)

= v(K)B(X,φY) + u(K)C(X,φY) + κ(X)η(Y)

= −κ(φh ′(X,φY)) + κ(X)η(Y)

and κ([X, Y]) = κ(∇ ′
XY) − κ(∇ ′

YX) = −κ(φh ′(X,φY) − φh ′(Y,φX)) + κ(X)η(Y)

−κ(Y)η(X),

which completes the proof.
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Theorem 4.2. Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM. Then, the distribution D0 ⊥ 〈ξ〉 is integrable if and only if

C(φX, Y) = C(X,φY), B(φX, Y) = B(X,φY), (4.20)

and C(X, Y) = C(Y, X), ∀ X, Y ∈ Γ(D0 ⊥ 〈ξ〉). (4.21)

Proof: The proof follows from a direct calculation.

Note that when the distribution D0 is integrable, the relations (4.20) and (4.21) are satisfied

and vice versa.

Theorem 4.3. Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM. Suppose the distribution D0 ⊥ 〈ξ〉 is integrable. Let M ′ be a leaf of D0 ⊥ 〈ξ〉.

Then

(i) If M ′ is totally geodesic in M, then M ′ is auto-parallel with respect to the Levi-Civita con-

nection ∇ ′ in M and φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution on M ′.

(ii) If M ′ is parallel with respect to the Levi-Civita connection ∇ ′ in M, then M ′ is totally

geodesic.

Proof: (i) Writing Y ∈ Γ(D0 ⊥ 〈ξ〉) as Y =
∑2n−4

i=1
g(Y,Fi)

g(Fi,Fi)
Fi + η(Y)ξ, where g(Fi, Fi) 6= 0

and {Fi}1≤i≤2n−4 an orthogonal basis of D0. So, it is easy to check that, for any X, Y ∈ Γ(TM ′),

h ′(X,φY) =
∑2n−4

i=1
g(Y,Fi)

g(Fi,Fi)
h ′(X,φFi). If M ′ is totally geodesic, then, for any X, Y ∈ Γ(D0 ⊥ 〈ξ〉),

h ′(X, Y) = 0. In particular h ′(X,φY) =
∑

i
g(Y,Fi)

g(Fi,Fi)
h ′(X,φFi) = 0. The auto-parallelism of M ′

follows from (4.18). Using (4.15), (4.18), (4.19) and the fact that κ(X) = 0, ∀X ∈ Γ(D0 ⊥ 〈ξ〉),

we obtain (LKg)(X, Y) = 0. So φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution on M ′. (ii) If M ′ is

parallel with respect to the connection in M, then, for any X, Y, Z ∈ Γ(TM ′), (∇ ′
Xh ′)(Y, Z) = 0.

So, (∇ ′
XC)(Y, Z)−C(Y, Z)τ(X) = 0 and (∇ ′

XB)(Y, Z)+B(Y, Z)τ(X) = 0. Using (3.7) and (3.19), since

D0 ⊥ 〈ξ〉 integrable, for Z = ξ, we have,

0 = (∇ ′
ξB)(X, Y) + τ(ξ)B(X, Y) = −B(X, Y). (4.22)

Also, using (4.1), we obtain, for any X, Y ∈ Γ(TM ′),

0 = (∇ ′
ξC)(X, Y) − τ(ξ)C(X, Y) = −2C(X, Y). (4.23)

From (4.22) and (4.23), we get h ′(X, Y) = 0 which completes the proof.

Note that, the Lie derivative (4.15) can be expressed in functions of Lie derivatives (3.12) and

(3.29) as, for any X, Y ∈ Γ(TM),

(LKg)(X, Y) = X(v(K))u(Y) + Y(v(K))u(X) + X(u(K))v(Y) + Y(u(K))v(X)

+v(K)(LVg)(X, Y) + u(K)(LUg)(X, Y). (4.24)
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Theorem 4.4. Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM. Suppose the distribution D0 ⊥ 〈ξ〉 is integrable. Let M ′ be a leaf of D0 ⊥ 〈ξ〉.

Then, the following assertions are equivalent:

(i) M ′ is totally geodesic in M,

(ii) A∗
EX and ANX ∈ Γ(φ(TM⊥) ⊕ φ(N(TM))), ∀ X ∈ Γ(TM ′),

(iii) φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution on M ′,

(iv) φ(TM⊥) and φ(N(TM)) are Killing distribution on M ′.

Proof: The equivalence of (i) and (ii) follows from direct calculations. Using the relation

(4.24), we obtain the equivalence of (iii) and (iv). Next we prove the equivalence of (i) and (iii).

Using the fact that κ vanishes on M ′ and the relation (4.17), and since D0 ⊥ 〈ξ〉 is integrable,

(4.15) becomes, for any X, Y ∈ Γ(TM ′),

(LKg)(X, Y) = −v(K) {B(X,φY) + B(φX, Y)} − u(K) {C(X,φY)

+ C(φX, Y)} = −2κ(φh ′(X,φY)) (4.25)

Suppose M ′ is totally geodesic in M. Then, h ′(X, Y) = 0. In particular h ′(X,φY) = 0, since

φ(D0 ⊥ 〈ξ〉) ⊂ D0. Therefore (LKg)(X, Y) = 0, i.e. φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution

on M ′. The converse is obvious by (4.25).

Now, we deal with the geometry of the mean curvature vector of a leaf of a integrable distri-

bution of a lightlike hypersurface M of an indefinite Kenmotsu space form M(c). First of all, a

submanifold M is said to be totally umbilical lightlike hypersurface of a semi-Riemannian manifold

M if the local second fundemental form B of M satisfies

B(X, Y) = ρg(X, Y), ∀X, Y ∈ Γ(TM) (4.26)

where ρ is a smooth function on U ⊂ M. If M is totally umbilical lightlike hypersurface of a

semi-Riemannian manifold M, then, we have B(X, Y) = ρg(X, Y), for any X, Y ∈ Γ(TM), which

implies, by using (3.7), that 0 = B(ξ, ξ) = ρ. Hence M is totally geodesic.

It follows from this that a Kenmotsu M(c) does not admit any non-totally geodesic, totally

umbilical lightlike hypersurface. From this point of view, Bejancu [1] considered the concept of

totally contact umbilical semi-invariant submanifolds. The notion of totally contact umbilical

submanifolds was first defined by Kon [10].

It is now important to investigate the parallelism of the nonzero mean curvature vector by

regarding the effect of the totally contact umbilical condition on the geometry of lightlike subman-

ifolds in Kenmotsu manifolds case. As it was done in case of lightlike hypersurfaces of indefinite

Sasakian manifolds [15], the terminology of extrinsic sphere [3] will be used in case of totally

contact geodesic submanifolds. We say that a totally contact umbilical submanifold is an extrinsic
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sphere when it has parallel non zero mean curvature vector [3]. In [15], the author showed that if

M is a totally contact umbilical lightlike hypersurface of M(c) with ξ ∈ TM, that is, the second

fundamental form h of M satisfies

h(X, Y) = {g(X, Y) − η(X)η(Y)} H + η(X)h(Y, ξ) + η(Y)h(X, ξ), (4.27)

where H = λN normal vector field and λ is a smooth function on U ⊂ M, then λ satisfies the

partial differential equations [16]

E(λ) + λτ(E) − λ2 = 0, ξ(λ) + λ(τ(ξ) + 1) = 0, (4.28)

and PX(λ) + λτ(PX) = 0, PX 6= ξ, ∀ X ∈ Γ(TM). (4.29)

Some of these equations are similar to those of the generic submanifold of indefinite Sasakian

manifolds case given in [13]. From the equations (4.28) and (4.29), the geometry of the mean

curvature vector H of M is discussed. From (4.28) and (4.29), we have ∇⊥
E H = g(H,E)2N,

∇⊥
ξ H = −g(H,E)N and ∇⊥

PXH = 0, PX 6= ξ, ∀X ∈ Γ(TM). This means that H is not parallel on

M.

Now, we prove that there exists a distribution which is a subset of the screen distribution

S(TM) in which, under the integrability condition, any totally contact umbilical leaf has a parallel

nonzero mean curvature. Note that any totally contact umbilical leaf of an integrable screen

distribution of a lightlike hypersurface of an indefinite Kenmotsu space form cannot be an extrinsic

sphere [15]. Let us consider the following distribution

D̂ =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 (4.30)

so that the tangent space of M is written

TM = D̂ ⊥ 〈ξ〉 ⊥ TM⊥. (4.31)

Now, referring to the decomposition (4.31), for any X ∈ Γ(TM), Y ∈ Γ(D̂), we have

∇XY = ∇̂XY + ĥ(X, Y), (4.32)

where ∇̂ is a linear connection on the bundle D̂ and ĥ : Γ(TM) × Γ(D̂) −→ Γ(〈ξ〉 ⊥ TM⊥) is

F(M)-bilinear. Let U ⊂ M be a coordinate neighbourhood as fixed in Theorem 2.1. Then, using

(4.31), (4.32) can be locally rewritten in the following way:

∇XY = ∇̂XY + g(∇XY, ξ)ξ + g(∇XY,N)E

= ∇̂XY − g(X, Y)ξ + C(X, Y)E, (4.33)

for any X ∈ Γ(TM), Y ∈ Γ(D̂|U ) and the local expression of ĥ is

ĥ(X, Y) = −g(X, Y)ξ + C(X, Y)E. (4.34)
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Lemma 4.4. Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu manifold

(M,g) with ξ ∈ TM. Then D̂ is integrable if and only if

C(X, Y) = C(Y, X), ∀X, Y ∈ Γ(D̂).

Proof: The proof follows by direct calculation, using (4.33).

Theorem 4.5. Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space form

(M(c), g) with ξ ∈ TM such that the distribution D̂ is integrable. Suppose any leaf M ′ of D̂ is

totally contact umbilical immersed in M as non-degenerate submanifold. Then, M ′ is an extrinsic

sphere.

Proof: By combining the first equations of (2.7) and (2.8), we obtain

∇XY = ∇̂XY − g(X, Y)ξ + C(X, Y)E + B(X, Y)N

= ∇̂ ′
XY + ĥ ′(X, Y), ∀X, Y ∈ Γ(TM ′), (4.35)

where ∇̂ ′ and ĥ ′ are the Levi-Civita connection and second fundamental form of M ′ in M.

Denote by H ′ the mean curvature vector of M ′. As N(TM) ⊕ TM⊥ is the normal bundle of

M ′, there exist smooth functions λ and ρ such that H ′ = λE + ρN. Since M ′ is totally contact

umbilical immersed in M we have

ĥ ′(X, Y) = (g(X, Y) − η(X)η(Y)) H ′ + η(X)ĥ ′(Y, ξ) + η(Y)ĥ ′(X, ξ). (4.36)

Since ĥ ′(X, ξ) = 0, for any X ∈ Γ(TM ′), from (4.35) we obtain

∇XY = ∇̂ ′
XY + (g(X, Y) − η(X)η(Y)) H ′ (4.37)

which implies

∇X∇YZ = ∇̂ ′
X∇̂

′
YZ +

{
g(X, ∇̂ ′

YZ) − η(X)η(∇̂ ′
YZ)

}
H ′

+
{

g(∇̂ ′
XY, Z) + g(Y, ∇̂ ′

XZ) − η(Z)g(X, Y) + 2η(X)η(Y)η(Z)

− η(Z)η(∇̂ ′
XY) − η(Y)g(X,Z) − η(Y)η(∇̂ ′

XZ)
}

H ′

+ {g(Y, Z) − η(Y)η(Z)}∇XH ′. (4.38)

Since D̂ is integrable, θ([X, Y]) = 0, for any X, Y ∈ Γ(TM ′) and we have

∇[X,Y]Z = ∇̂ ′
[X,Y]Z + {g([X, Y], Z) − η([X, Y])η(Z)} H ′. (4.39)

From (4.38), (4.39) and (4.7)-(4.9), after calculations, we obtain

R(X, Y)Z = R̂ ′(X, Y)Z + {g(Y, Z)η(X) − g(X,Z)η(Y)} H ′

+ {g(Y, Z) − η(Y)η(Z)}∇XH ′ − {g(X,Z) − η(X)η(Z)}∇YH ′, (4.40)
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where R̂ ′ is the curvature tensor field of M ′.

Consequently,

g(R(X, Y)Z, E) = {g(Y, Z)η(X) − g(X,Z)η(Y)} g(H ′, E) + {g(Y, Z)

− η(Y)η(Z)} g(∇XH ′, E) − {g(X,Z) − η(X)η(Z)} g(∇YH ′, E), (4.41)

g(R(X, Y)Z,N) = {g(Y, Z)η(X) − g(X,Z)η(Y)} g(H ′,N) + {g(Y, Z)

− η(Y)η(Z)} g(∇XH ′,N) − {g(X,Z) − η(X)η(Z)} g(∇YH ′,N). (4.42)

From (4.41) and using (2.3), we obtain

0 = {g(Y, Z)η(X) − g(X,Z)η(Y)} g(H ′, E) + {g(Y, Z)

− η(Y)η(Z)} g(∇XH ′, E) − {g(X,Z) − η(X)η(Z)} g(∇YH ′, E). (4.43)

Now, since X, Y, Z ∈ Γ(TM ′), the relation (4.43) is reduced as have

g(∇XH ′, E)Y = g(∇YH ′, E)X. (4.44)

Likewise, from (4.42) and (2.3), we have

g(∇XH ′,N)Y = g(∇YH ′,N)X. (4.45)

Now suppose that there exists a vector field X0 on some neighborhood of M ′ such that

g(∇X0
H ′, E) 6= 0 and g(∇X0

H ′,N) 6= 0 at some point p in the neighborhood. From (4.44) and

(4.45) it follows that all vectors of the fibre TM ′ are collinear with X0|p. This contradicts dim TM ′ >

1. This implies g(∇XH ′, E) = 0 and g(∇XH ′,N) = 0, ∀X ∈ Γ(TM ′). These lead, respectively,

to g(∇̂ ′⊥
X H ′, E) = 0 and g(∇̂ ′⊥

X H ′,N) = 0, where ∇̂ ′⊥ is a linear connection on N(TM) ⊕ TM⊥

defined by ∇̂ ′⊥
X E = ∇∗⊥

X E = −τ(X)E and ∇̂ ′⊥
X N = ∇⊥

XN = τ(X)N, which completes the proof.

We discuss here the effect of the change of the screen distribution (3.14) on all the results

above. The Lie derivative (3.29) depends on C and v which are not unique and their change can

be seen as follows. Denote by ω the dual 1-form of W =
∑2n−1

i=1 ciWi with respect to the induced

metric g of M, that is ω(·) = g(·,W). Let P and P ′ be projections of TM on S(TM) and S(TM) ′,

respectively with respect to the orthogonal decomposition of TM. So, any vector field X on M can

be written as X = PX + θ(X)E = P ′X + θ ′(X)E, where θ ′(X) = g(X,N ′). Then, using (3.14) we

have P ′X = PX − ω(X)E and C ′(X, P ′Y) = C ′(X, PY), ∀X, Y ∈ Γ(TM). The relationship between

the second fundamental forms C and C ′ of the screen distribution S(TM) and S(TM) ′, respectively,

is given by

C ′(X, PY) = C(X, PY) −
1

2
ω(∇XPY + B(X, Y)W). (4.46)

All equations above depending only on the local second fundamental form C (making equations non

unique) are independent of the screen distribution S(TM) if and only if ω(∇XPY + B(X, Y)W) =

0, ∀X, Y ∈ Γ(TM).
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The equations (3.29) and (4.15) also are not unique as they depend on C, θ and τ which

depend on the choice of a screen vector bundle. The Lie derivatives L(·) and L ′
(·) of the screen

distributions S(TM) and S(TM) ′, respectively, are related through the relations:

(L ′
U ′g)(X, Y) = (LUg)(X, Y) +

1

2
ω(∇{XPφY} + (B(X,φY) + B(φX, Y))W)

+
1

2
{η(X)ω(−2φY + u(Y)W) + η(Y)ω(−2φX + u(X)W)}

−
1

2
{τ(X)ω(−2φY + u(Y)W) + τ(Y)ω(−2φX + u(X)W)} + vX(Y)

−
1

2
{B(X,W)ω(−2φY + u(Y)W) + B(Y,W)ω(−2φX + u(X)W)} ,

(L ′
K ′g)(X, Y) = (LKg)(X, Y) + (v ′(K ′) − v(K))

(
(LVg)(X, Y) + u(X(τ+η)(Y))

)

+ (u(K ′) − u(K))
(
(LUg)(X, Y) + v(X(η−τ)(Y))

)
+ η(X(κ−κ ′)(Y))

+
1

2
u(K ′)ω(∇{XPφY} + (B(X,φY) + B(φX, Y))W),

where fX(Y) = f(X)B(Y,W) + f(Y)B(X,W), ∇{XPY} = ∇XPY + ∇YPX, v ′(X) = v(X) − 1
2
κ(−2φX +

u(X)W) and Xf(Y) = Xf(Y) + Yf(X), f denoting a 1-form.

Received: August 2009. Revised: August 2010.

References

[1] A. Bejancu, Umbilical Semi-invariant submanifolds of a Sasakian manifold, Tensor N. S., 37

(1982), 203-213.

[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathe-

matics 203. Birkhauser Boston, Inc., Boston, MA, 2002.

[3] M. Dajczer et al., Submanifolds and isometric immersions, Mathematics lecture series 13.

Publish or Perish, Inc., Houston, Texas, 1990.

[4] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and

applications, Mathematics and Its Applications. Kluwer Publishers, 1996.

[5] K. L. Duggal and D. H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds,

World Scientific Publishing Co. Pte. Ltd. 2007.

[6] K. L. Duggal and B. Sahin, Lightlike Submanifolds of Indefinite Sasakian Manifolds, Internat.

J. Math. Math. Sci., vol. 2007, Article ID 57585, 21 pages.

[7] J-B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc., 42 (3)

(2005), 435-445.

[8] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math.

J., 4 (1981), 1-27.



CUBO
13, 3 (2011)

Lightlike Geometry of Leaves in Indefinite . . . 89

[9] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972),

93-103.

[10] M. Kon, Remarks on anti-invariant submanifold of a Sasakian manifold, Tensor, N. S., 30

(1976), 239-246.

[11] F. Massamba, A note on Umbilical lightlike hypersurfaces of indefinite Sasakian manifolds,

Int. J. Contemp. Math. Sciences, 2, 32 (2007), 1557-1568.

[12] F. Massamba, Lightlike hypersurfaces of indefinite Sasakian manifolds with parallel symmetric

bilinear forms, Differ. Geom. Dyn. Syst., 10 (2008), 226-234.

[13] F. Massamba, Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian mani-

folds, Kodai Math. J., 31 (2008), 338-358.

[14] F. Massamba, Screen integrable lightlike hypersurfaces of indefinite Sasakian manifolds,

Mediterr. J. Math., 6 (2009), 27-46.

[15] F. Massamba, On Lightlike geometry in indefinite Kenmotsu manifolds, to appear in Mathe-

matica Slovaca.

[16] F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J.

Geom, 95 (2009), 73-89.


	Introduction
	Preliminaries
	 Lightlike hypersurfaces of indefinite Kenmotsu manifolds
	Lightlike Geometry of Leaves in Indefinite Kenmotsu Manifolds
	References

