On Strongly F β p-irresolute Mappings

Ratnesh Kumar Saraf
Department of Mathematics,
Government Kamla Nehru, Girls College
DAMOH (M.P.)-470661, India.
and

MIGUEL CALDAS

Departamento de Matemática Aplicada,

Universidade Federal Fluminense

Rua Mário Santos Braga s/n⁰, CEP: 24020-140, Niteroi-RJ, Brasil.

email: gmamccs@um.uff.br

ABSTRACT

In this paper, we introduce a new class of mappings called strongly F β p-irresolute mappings between fuzzy topological spaces. We obtain several characterizations of this class and study its properties and investigate the relationship with the known mappings.

RESUMEN

En este trabajo presentamos una nueva clase de funciones llamadas funciones fuertemente $F\beta p$ -irresolute entre espacios topológicos difusos. Obtenemos varias caracterizaciones de esta clase, estudiamos sus propiedades e investigamos la relación con funciones conocidas.

Keywords: Fuzzy topological spaces, fuzzy β-open sets, fuzzy β-preirresolute maps, strongly fuzzy β-preirresolute maps.

Mathematics Subject Classification: 54C10, 54D10.

1 Introduction and preliminaries.

The concept fuzzy has invaded almost all branches of mathematics with the introduction of fuzzy sets by Zadeh [23] of 1965. The theory of fuzzy topological spaces was introduced and developed by Chang [6] and since then various notions in classical topology have been extended to fuzzy topological spaces. Recently Professor El-Naschie has been shown in [7] and [8] that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ε^{∞} theory. Thus our motivation in this paper is to define strongly fuzzy β -preirresolute (in short St-F β p-irresolute) mappings and investigate its properties. The new defined class of mapping is stronger that M-fuzzy β -continuous mappings and is a generalization of St-F α p-irresolute mappings.

Throughout this paper $(X,\tau), (Y,\sigma)$ and (Z,γ) (or simply X, Y and Z) represent non-empty fuzzy topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The fuzzy set A of X is called fuzzy α -open $(F\alpha$ -open) [5] (resp. fuzzy preopen (Fp-open) [5], fuzzy β -open $(F\beta\text{-open})$ [2]) if $A \leq \text{Int}(Cl(\text{Int}(A))$ (resp. $A \leq \text{Int}(Cl(A))$, $A \leq Cl(\text{Int}(Cl(A)))$, where Cl(A) and Int(A) denote the closure of A and the interior of A respectively. The fuzzy subset B of X is said to be fuzzy α -closed $(F\alpha\text{-closed})$ (resp. fuzzy preclosed (Fp-closed), fuzzy β -closed $(F\beta\text{-closed})$ if, its complement B^c is fuzzy $F\alpha$ -open (resp. Fp-open, $F\beta$ -open) in X. By $F\alpha O(X)$, FPO(X) and $F\beta O(X)$ (resp. $F\alpha C(X)$, FPC(X), and $F\beta C(X)$) we denote the family of all $F\alpha$ -open, Fp-open and $F\beta\text{-open}$ (resp. $F\alpha\text{-closed}$, Fp-closed and $F\beta\text{-closed}$) sets of X. The intersection of all fuzzy β -closed sets containing A is called the β -closure of A and is denoted by $\beta Cl(A)$. The fuzzy β -interior [2] of A denoted by β -Int(A), is defined by the union of all fuzzy β -open sets of X contained in A.

A mapping $f: X \to Y$ is said to be:

- (i) fuzzy completely weakly preirresolute [11] (resp. $F\alpha p$ -irresolute [5], M-fuzzy precontinuous [3], $F\beta p$ -irresolute [17]) if, $f^{-1}(V)$ is fuzzy open (resp. $F\alpha$ -open), $F\beta$ -open, $F\beta$ -open) in X for every $F\beta$ -open set V of Y.
- (ii) strongly M-fuzzy β -continuous [16] (resp. M-fuzzy β -continuous [15], St-F α p-irresolute [16]) if, $f^{-1}(V)$ is fuzzy open (resp. F β -open, F α -open) in X for every F β -open set V of Y.
- (iii) fuzzy strongly continuous [12] if, $f^{-1}(V)$ is fuzzy clopen in X for every fuzzy subset V of Y.

A fuzzy point in X with support $x \in X$ and value p $(0 is denoted by <math>x_p$. The fuzzy point x_p is said to be quasi-coincident (shorty: q-coincident) with a fuzzy set A of X denoted by $x_p q A$ if p + A(x) > 1. Two fuzzy sets A and B are said to be quasi-coincident denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) > 1 [14] and by q we denote "is not q-coincident". It is known [14] that $A \le B$ if and only if Aq(1 - B).

Two non empty fuzzy subsets A and E are said to be fuzzy β -separated if there exist two fuzzy β -open subsets G and H such that $A \leq G$, $E \leq H$, A = H and E = G. A fuzzy subset which cannot be expressed as the union of two fuzzy β -separated subsets is said to be fuzzy β -connected sets.

Lemma 1.1. [22] Let $f: X \to Y$ be a mapping and x_p be a fuzzy point of X. Then:

- (1) $f(x_p)qB \Rightarrow x_pqf^{-1}(B)$, for every fuzzy set B of Y.
- (2) $x_p qA \Rightarrow f(x_p)qf(A)$, for every fuzzy set A of X.

2 St-F β p-irresolute mappings.

Definition 2.1. A mapping $f: X \to Y$ is said to be strongly fuzzy β - preirresolute (briefly St-F β p-irresolute) if, $f^{-1}(V)$ is fuzzy preopen in X for every F β -open set V of Y.

From the definitions stated, we have the following diagram:

Where: $A = St-MF\beta$ -continuous; $B = St-F\alpha p$ -irresolute; $C = St-F\beta p$ -irresolute; $D = MF\beta$ -continuous; E = Fuzzy completely weakly preirresolute; $F = F\alpha p$ -irresolute; G = MFp-continuous; $H = F\beta p$ -irresolute.

Remark 2.1. However, converses of the above implications are not true in general, by [12, 16, 17] and the followings examples:

- (i) $F\alpha p$ -irrsesolute mapping does not imply fuzzy completely weakly preirresolute:
- Let $X = \{a,b\}$ and $Y = \{x,y\}$. Define fuzzy sets A(a) = 0.6, A(b) = 0.5; B(a) = 0, B(b) = 0.8; H(x) = 0.5, H(y) = 0.5; E(x) = 0.7, E(y) = 0.8. Let $\tau = \{0,A,1\}$, $\Gamma = \{0,B,1\}$; $\sigma = \{0,H,1\}$ and $\upsilon = \{0,E,1\}$. The mapping $f:(X,\tau) \to (Y,\sigma)$ defined by f(a) = x, f(b) = y is fuzzy α -preirresolute but not fuzzy completely weakly preirresolute, because Z(x) = 0.7, Z(y) = 0.7 are fuzzy preopen in (Y,σ) but $f^{-1}(Z)$ is not fuzzy open in X.
- (ii) Fuzzy completely weakly preirresolute mapping does not imply MFβ-continuous, see [[18], Example 3.2].
- (iii) MFβ-continuous mapping does not imply MFp-continuous, see [[19], Example 3.1].
- (iv) St- Fβp-irresolute mapping does not imply Fαp-irrsesolute, see [[19], Example 3.2].

(v) St- $F\alpha p$ -irresolute mapping does not imply fuzzy completely weakly preirresolute, see [[16], Example 3.1].

Theorem 2.1. For a mapping $f: X \to Y$, the following are equivalent:

- (1) f is St-Fβp-irresolute;
- (2) For every fuzzy point x_t in X and every $F\beta$ -open set V of Y containing $f(x_t)$, there exist a Fp-open set U of X containing x_t such that $f(U) \leq V$;
- (3) For every fuzzy point x_t in X and every $F\beta$ -open set V of Y containing $f(x_t)$, there exist a Fp-open set U of X containing x_t such that $x_t \in U \le f^{-1}(V)$;
- (4) For every fuzzy point x_t in X, the inverse image of each β -neighbourhood of $f(x_t)$ is a preneighbourhood of x_t ;
- (5) For every fuzzy point x_t in X and each β -neighbourhood E of $f(x_t)$, there exists an preneighbourhood A of x_t such that $f(A) \leq E$;
- (6) $f^{-1}(V) \leq Int(Cl(f^{-1}(V)))$ for every $V \in F\beta O(Y)$;
- (7) $f^{-1}(H) \in FPC(X)$ for every $H \in F\beta C(Y)$;
- (8) $Cl(Int(f^{-1}(E))) \le f^{-1}(\beta Cl(E))$ for every fuzzy subset E of Y;
- (9) $f(Cl(Int(A))) \leq \beta Cl(f(A))$ for every fuzzy subset A of X.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3)$; $(4) \Rightarrow (5)$: Obvious

- (2) \Rightarrow (6): Let $V \in F\beta O(Y)$ and $x_t \in f^{-1}(V)$. By (2), there exists $U \in FPO(X)$ containing x_t such that $f(U) \leq V$. Thus we have $x_t \in U \leq Int(Cl(U)) \leq Int(Cl(f^{-1}(V)))$ and hence $f^{-1}(V) \leq Int(Cl(f^{-1}(V)))$.
- (6) \Rightarrow (7): Let $H \in F\beta C(Y)$. Set V = Y H, then $V \in F\beta O(Y)$. By (6) we obtain $f^{-1}(V) \leq Int(Cl(f^{-1}(V)))$ and hence $f^{-1}(H) = X f^{-1}(Y H) = X f^{-1}(V) \in FPC(X)$.
- $(7)\Rightarrow (8)$: Let E be any fuzzy set of Y. Since $\beta Cl(E)\in F\beta C(Y)$, then $f^{-1}(\beta Cl(E))\in FPC(X)$ and hence $Cl(Int(f^{-1}(\beta Cl(E))))\leq f^{-1}(\beta Cl(E))$. Therefore we obtain $Cl(Int(f^{-1}(E)))\leq f^{-1}(\beta Cl(E))$.
- $(8) \Rightarrow (9)$: Let A be any fuzzy set of X. by (8), we have $Cl(Int(A)) \leq Cl(Int(f^{-1}(f(A)))) \leq f^{-1}(\beta Cl(f(A)))$ and hence $f(Cl(Int(A))) \leq \beta Cl(f(A))$.
- $(9)\Rightarrow (1)$: Let $V\in F\beta O(Y)$. Since $f^{-1}(Y-V)=X-f^{-1}(V)$ is a fuzzy set of X and by (9), we obtain $f(Cl(Int(f^{-1}(Y-V))))\leq \beta Cl(f(f^{-1}(Y-V)))\leq \beta Cl(Y-V)=Y-\beta Int(V)=Y-V$ and hence
- $X Int(Cl(f^{-1}(V))) = Cl(Int(X f^{-1}(V)))) = Cl(Int(f^{-1}(Y V)))$
- $\leq f^{-1}(f(Cl(Int(f^{-1}(Y-V))))) \leq f^{-1}(Y-V) = X-f^{-1}(V)$. Therefore, we have $f^{-1}(V) \leq Int(Cl(f^{-1}(V)))$ and hence $f^{-1}(V) \in FPO(X)$. Thus, f is St-F β p-irresolute.
- $(1)\Rightarrow (4)$: Let x_t be a fuzzy point in X and V be any β -neighbourhood of $f(x_t)$, then there exists $G\in F\beta O(Y)$ such that, $f(x_t)\in G\leq V$. Now $f^{-1}(G)\in FPO(X)$ and $x_t\in f^{-1}(G)\leq f^{-1}(V)$. Thus $f^{-1}(V)$ is an preneighbourhood of x_t in X.
- (5) \Rightarrow (2): Let x_t be a fuzzy point in X and $V \in F\beta O(Y)$ such that $f(x_t) \in V$. Then V is β -neighbourhood of $f(x_t)$, so there is a preneighbourhood A of x_t such that $x_t \in A$, and $f(A) \leq V$. Hence there exists $U \in FPO(X)$ such that $x_t \in U \leq A$, and so $f(U) \leq f(A) \leq V$.

Theorem 2.2. For a function $f: X \to Y$, the following are equivalent:

- (1) f is St-Fβp-irresolute;
- (2) For each fuzzy point x_t of X and every $E \in F\beta O(Y)$ such that $f(x_t)qE$, there exists $A \in FPO(X)$ such that x_tqA and $f(A) \leq E$;
- (3) For every fuzzy point x_t of X and every $E \in F\beta O(Y)$ such that $f(x_t)qE$, there exists $A \in FPO(X)$ such that x_tqA and $A \le f^{-1}(E)$.

Proof. (1) \Rightarrow (2) Let x_t be a fuzzy point in X and $E \in F\beta O(Y)$ such that $f(x_t)qE$. Then $f^{-1}(E) \in FPO(X)$, and $x_tqf^{-1}(E)$ by Lemma 1.1. If we take $A = f^{-1}(E)$ then x_tqA and $f(A) = f(f^{-1}(E)) \leq E$.

 $(2) \Rightarrow (3) \text{ Let } x_t \text{ be a fuzzy point in } X \text{ and } E \in F\beta O(Y) \text{ such that } f(x_t)qE. \text{ Then by (2), there exists } A \in FPO(X) \text{ such that } x_tqA \text{ and } f(A) \leq E. \text{ Hence we have } x_tqA \text{ and } A \leq f^{-1}(f(A)) \leq f^{-1}(E).$

 $(3) \Rightarrow (1) \text{ Let } E \in F\beta O(Y) \text{ and } x_t \text{ be a fuzzy point of } X \text{ such that } x_t \in f^{-1}(E). \text{ Then } f(x_t) \in E.$ Choose the fuzzy point $x_t^c(x) = 1 - x_t(x)$. Then $f(x_t^c)qE$. And so by (3), there exists $A \in FPO(X)$ such that x_t^cqA and $f(A) \leq E$. Now x_t^cqA implies $x_t^c(x) + A(X) = 1 - x_t(x) + A(x) > 1$. It follows that $x_t \in A$. Thus $x_t \in A \leq f^{-1}(E)$. Hence $f^{-1}(E) \in FPO(X)$.

Lemma 2.1. [1] Let $g: X \to X \times Y$ be the graph of a mapping $f: X \to Y$. If A is a fuzzy set of X and B is a fuzzy of Y, then $g^{-1}(A \times B) = A \cap f^{-1}(B)$

Theorem 2.3. A mapping $f: X \to Y$ is St-F β p-irresolute if the graph mapping $g: X \to X \times Y$, is St-F β p-irresolute.

Proof. Let V be any Fβ-open set of Y, then by Lemma 2.1, $f^{-1}(V) = 1_X \cap f^{-1}(V) = g^{-1}(1_x \times V)$. Since V is Fβ-open in Y, $1_X \times V$ is Fβ-open in $X \times Y$. Since g is St-Fβp-irresolute $g^{-1}(1_x \times V) \in FpO(X)$ and hence $f^{-1}(V)$ is Fp-open in X and consequently f is St-Fβp-irresolute.

Theorem 2.4. If $f: X \to Y$ is St- $F\beta p$ -irresolute and $g: Y \to Z$ is M-fuzzy β -continuous, then $g \circ f: X \to Z$ is St- $F\beta p$ -irresolute.

Proof. Straightforward.

Corollary 2.1. The composition of two St-F β p-irresolute mapping is St-F β p-irresolute.

Corollary 2.2. If $f: X \to Y$ is fuzzy strongly continuous and $g: Y \to Z$ is St- $F\beta p$ -irresolute, then $g \circ f: X \to Z$ is St- $F\beta p$ -irresolute.

Proof. Obvious.

Theorem 2.5. If $f: X \to Y$ is M-fuzzy β -continuous and $g: Y \to Z$ is St-F β p-irresolute, then $g \circ f: X \to Z$ is St-F β p-irresolute.

Theorem 2.6. Let $\{X_i : i \in \Omega\}$ be any family of fuzzy topological spaces. If $f : X \to \prod X_i$ is St-F\beta p-irresolute, then for each $i \in \Omega$, $f_i : X \to X_i$ is St-F\beta p-irresolute.

Proof. Let Pr_i be the projection of $\prod X_i$ onto X_i , we know that if a mapping is fuzzy continuous and fuzzy open, then it is M-fuzzy β -continuous [21]. So the mapping Pr_i is M-fuzzy β -continuous. Now for each $i \in \Omega$, $f_i = Pr_i \circ f : X \to X_i$. It follows from Theorem 2.1 that f_i is St-F β p-irresolute since f is St-F β p-irresolute.

3 Preservation of some fuzzy topological structure.

In this section preservation of some fuzzy topological structure under the St-F β p-irresolute mapping are studied. Let us recall the definition: A space X is said to be fuzzy β -compact [4] if for every F β -open cover of X has a finite subcover, and X is fuzzy strongly compact [13] if for every F β -open cover of X has a finite subcover.

Theorem 3.1. Every surjective St-F β p-irresolute image of a fuzzy strongly compact space is fuzzy β -compact.

Proof. Let $f: X \to Y$ be St-F\beta p-irresolute mapping of a fuzzy strongly compact space X onto a space Y. Let $\{G_i: i \in \Omega\}$ be any F\beta-open cover of Y. Then $\{f^{-1}(G_i): i \in \Omega\}$ is a Fp-open cover of X. Since X is fuzzy strongly compact, there exist a finite subfamily $\{f^{-1}(G_{i_j}): j=1,2,...,n\}$ of $\{f^{-1}(G_i): i \in \Omega\}$ which covers X. It follows that $\{G_{i_j}: j=1,2,...,n\}$ is a finite subfamily of $\{G_i: i \in \Omega\}$ which covers Y. Hence Y is F\beta-compact.

Theorem 3.2. Let $f: X \to Y$ be a St-F β p-irresolute mapping. If A is a F β -connected subset of X, then f(A) is also F β -connected in Y.

Proof. Suppose f(A) is not $F\beta$ -connected in Y. Then there exist $F\beta$ -separated subset G and H in Y, such that $f(A) = G \cup H$. Since G and H are $F\beta$ -separated, there exist two $F\beta$ -open, subset G and G such that $G \subseteq G$ and G and G and G such that $G \subseteq G$ and G and G and G such that $G \subseteq G$ and G and G and G are G such that $G \subseteq G$ and G and G and G are G such that $G \subseteq G$ and G are G such that $G \subseteq G$ and G are G such that $G \subseteq G$ and G are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ are G such that $G \subseteq G$ and G such that $G \subseteq G$ such that $G \subseteq G$ such that $G \subseteq G$ are G such that $G \subseteq G$ such

4 Conclusion.

Maps have always been of tremendous importance in all branches of mathematics and the whole science. On the other hand, topology plays a significant role in quantium physics, high energy physics and superstring theory [9, 10]. Thus we have obtained a new class of mappings called strongly $F\beta$ p-irresolute mappings between fuzzy topological spaces which are some generalized fuzzy continuity may have possible application in quantion physics, high energy physics and superstring theory.

Received: June 2009. Revised: August 2010.

References

- [1] Azad K.K., On fuzzy semicontinuity, fuzzy almost continuity and weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- [2] Balasubramanian G, Fuzzy β -open sets and fuzzy β -separation axioms, Kybernetica, 35 (1999), 215-223.
- [3] Balasubramanian G, On fuzzy preseparation axioms, Bull. Cal. Math. Soc., 90 (1998), 427-434.
- [4] Balasubramanian G, On fuzzy β-compact spaces and fuzzy β-extremely disconnected spaces, Kybernetica, 33 (1997), 271-278.
- [5] Bin Shahna A.S., On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44(1991), 303-308.
- [6] Chang C.I., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [7] El-Naschie M.S., On the uncertanity of cantorian geometry and the two-slit experiment, Chaos, Solitons and Fractals, 9(3)(1998), 517-529.
- [8] El-Naschie M.S., On the certification of heterotic strings, M theory and ε^{∞} theory, Chaos, Solitons and Fractals, (2000), 2397-2408
- [9] El-Naschie M.S., Wild topology, hyperbolic geometriy and fusion algebra of high energy particle physics, Chaos, Solitons and Fractals 13(2002), 1935-1945.
- [10] El-Naschie M.S., Topics in the Mathematical physics of ε^{∞} theory, Chaos, Solitons and Fractals 30(3) (2006), 656-663.
- [11] Hakeim K.M.A.E., Zeyada F.M and Allah M.A., Fuzzy completely weakly pre-irresolute functions, Bull. Cal. Math. Soc., 93(2) (2001), 121-128.
- [12] Mukherjee M.N. and Ghosh B., Some stronger forms of fuzzy continuous mappings in fuzzy topological spaces, Fuzzy Sets and Systems, 36(1990), 375-387.
- [13] Nanda S., Strongly compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 42(1991), 259-268.
- [14] Pu P.M. and Liu Y.M., Fuzzy topology I, neighbourhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl., 76(1989), 571-594.
- [15] Roja E. and Balasubramanian G., On fuzzy β - $T_{1/2}$ spaces and its generalizations, Bull. Cal. Math. Soc., 94(6) (2002), 413-420.
- [16] Saraf R.K., Caldas M. and Navalagi G., On strongly fuzzy α -preirresolute functions, Adv. in fuzzy Math. 3(2008), 19-25.

- [17] Saraf R.K and Caldas M., On fuzzy β -preirresolute mappings, Kerala Math. Assoc. 4(2)(2007), 19-26.
- [18] Saraf R.K, Caldas M. and Mishra S., Fa α -irresolute mappings, Bull. Mal. Math. Sc. Soc., 24(2001), 193-199.
- [19] Saraf R.K, Daleta A. and Mishra S., On F α p-continuous mappings, Delta J. Sci. 25(2001), 31-35.
- [20] Singal M.K. and Prakash N., Fuzzy preopen sets and fuzzy pre-separation axioms, Fuzzy sets And Systems, 44(1991), 273-281.
- [21] Singh S., Generalization of certain fuzzy topological concepts, Ph.D. Dissertation (1999), R.D. University Jabalpur (M.P.).
- [22] Yalvac T.H., Fuzzy sets and functions on fuzzy spaces, J. Math Anal. Appl., 126(1987), 409-423.
- [23] Zadeh L.A., Fuzzy sets, Inform and control, 8(1965), 338-353.