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ABSTRACT

We continue our studies in higher order uniform convergence with rates and in L,
convergence with rates. Namely, in this article we establish some Lipschitz type results
for the smooth Picard type singular integral operators and for the smooth Gauss-

Weierstrass type singular integral operators.

RESUMEN

Continuamos nuestros estudios sobre convergencia uniforme de orden superior con ra-
dios y sobre convergencia Ly, con radios. Concretamente, en este articulo establecemos
algunos resultados de tipo Lipschitz para operadores integrales suves del tipo Picard
singulares y para operadores integrales singulares de tipo Gauss-Weierstrass.
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1. Introduction

We are motivated by [1], [2], [3] and [4].

We denote by L,, 1 <p < oo, the classes of functions f (x), integrable in —oo < x < oo with
the norm

Il = Um ok du] " 1)

—00

The Picard singular integral Pg(f;x) corresponding to the function f (x), is defined as follows

1 o0
P:(f;x) = EJ f(x +y)le V/&dy, forallx e R, &> 0. (1.2)

—00

The Gauss Weierstrass singular integral We (f;x) corresponding to the function f (x), is de-
fined as follows

o0

3

W (;x) = f(x +yle V' /8dy, forallx € R, &> 0. (1.3)

2. Convergence with Rates of Smooth Picard Singular In-
tegral Operators

In the next we deal with the following smooth Picard singular integral operators P g(f;x)
defined as follows.

For r e Nand n € Z we set

& = (2.1)

=y (i i=o,

j=1

.

that is ) a; = 1. Let f: R — R be Lebesgue measurable, we define for x € R, & > 0 the Lebesgue
j=0

integral

oo

Prelfix) = o |

_ . : —Itl/&
=5 j:ZOoc]f(x—l—]t) e dt. (2.2)

We assume that P, ¢(f;x) € R for all x € R.

We mention the useful here formula

J the Vet =T (k+1) g k> 1. (2.3)
0



CUBO Applications and Lipschitz results ...
13, 3 (2011)

We need to introduce

19
T
Sii=) i, k=1,..mneN (2.4)
j=1
Denote by || the integral part.
We give a special related result.
Proposition 1. Let f be defined as above in this section. It holds that
1 00 [t
[P2e(f;x) — f(x)| < fJ' J w2 (f',w)dw | e V&dt. (2.5)
0 0
|

Proof. In Theorem 1 of [1] we use n =1, r = 2.

We also present the Lipschitz type result corresponding to the Theorem 1 of [1].

Theorem 2. Let f be defined as above in this section, with n € N. Furthermore we assume

the following Lipschitz condition: wy (f(n),é) <KS™HY K >0,0<vy <1, for any & > 0. Then

it holds that

Pre(fix) —f(x) —

L

[N
i

m=1

In L.H.S.(2.6) the sum collapses when n = 1.

Proof. As in the proof of Theorem 1, of [1], we get again that

P (fix) — f(x) = ]i Elsg ([0 vervear) o,
where .
RE = %J . Rn(0,t)e”t/Edt,
with R
Ra(0,t) = Jo WT(w)dw,
and .
Tw) =) ogi™ M (x +jw) — 5 f (x).
j=0
Also we get

R (0,1)] < j

(] — w)n!
o (m—=1)

f(Zm) (X)észZm < KIr (,Y 4 T‘) E‘n+r+y71 .

w, (f™ w)dw.

(2.6)

(2.8)

(2.9)

(2.10)
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Using the Lipschitz type condition we obtain

[

o (m—=1)

K|t‘n+‘r+y72 Jt (1 W>n1 <W>r1+y i
= T 1\ - T o w
m—11 Jo It It

K[ty =1 (] IR
_ — L (1—y)™ Ty "+ dy
K|t‘n+r+y71 r (Y + T‘)

Fn+vy+r)

Rn(0,t)] < Kw™ 1 dw

Then, by (2.3), we obtain

1 00 K‘t|n+r+yf1r(y+r) _
Ri < - /8 qt
Rl < zaLo Tmty+n
K T(y+r) oo n+r+y—1,—
— —~_ \r t Y |t\/€dt
2&F(n+v+r)Lm|| ¢
— E My+r) J-OO T Y1 ot/ E gt
Ern+v+71)Jo
(2.3)

KIr (,Y 4 T') E’TL+T+'Y*1 )

We also notice that

n (k) o
Pralfix) =100 — Y 5o (J tkelt/adt> _

k=1

L3

[

Pre(fix) —f(x) = ) ™ (x)ome®™ = R

m=1

By (2.12) and (2.13) we complete the proof of the theorem.

(2.11)

(2.12)

(2.13)

O

Corollary 3. Let f be defined as above in this section. Furthermore we assume the following

Lipschitz condition w; (f/,8) < K&'*Y, K> 0,0 <y <1, for any & > 0. Then

P2.e(fix) — f(x)| < KT (y+2) &2,
Proof. In Theorem 2 we use n =1, r = 2.

For the case n = 0 we have

(2.14)

Theorem 4. Let f be defined as above in this section, with n = 0. Furthermore we assume
the following Lipschitz condition: w, (f,8) < K& 17Y K > 0,0 <y < 1, for any & > 0. It holds

that
IPre(f;x) — f(x)| < KF (r4y) §THY 1.

(2.15)
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Proof. As in the proof of Corollary 1, of [1], with n = 0, using the Lipschitz type condition,
we get that

‘I o0
Pre(fix) -0l < ¢ J w,(f, t)e"/Edt
0
< l JOO KtTTHYe—t/&4¢
= i),
C2 K (r 4y g7 (2.16)
This completes the proof of Theorem 4. 0

Corollary 5. Let f be defined as above in this section, with n = 0. Furthermore we assume
the following Lipschitz condition: wy (f,8) < K&'Y, K >0,0< vy <1, for any & > 0. Then

P2, (f;x) — f(x)| < K (24 y) €1 (2.17)

Proof. In Theorem 4 we use v = 2. O

In the next we consider f € C™*(R), n > 2 even and the simple smooth singular operator of
symmetric convolution type

] o0
Pe(f, x0) i= zaJ f(xo +y)e V/edy, forall xo € R, &> 0. (2.18)
That is -
P:(f;x0) = ZJ' (f(xo +y) + f(xo —y))e*y/‘idy, for all xg € R, &> 0. (2.19)
0

We assume that f is such that
P:(f;x0) €R, V¥xo € R,VE >0 and wy(f™ h) < oo, h>0.

Note that Py = Pg and if P¢(f;x0) € R then P, ¢(f;x0) € R.

Proposition 6. Assume w>(f,h) < oo, h > 0. Furthermore we assume the following Lipschitz
condition: w, (f,6) < K&'*Y K >0,0<vy <1, for any 6 > 0. Then

KT (2 + )

— <
IPe(f) = flloo < =5

gyl (2.20)

Proof. Using Proposition 1 of [1] we obtain

[Pe(fyxo) — f(xo)| < lj W, (f,y)e ¥/ &dy
28 |,
T(® 440
< — +Y,—Yu/&
= 2t Jl) Ky e dy
. 2
(2:3) MEV+1 (2.21)

2 )
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proving the claim of the proposition. O
Let
n/2
Ka(xo) = Pe(fixo) — f(xo) — > f12P)(xo)E2°. (2.22)
p=1
We give

Theorem 7. Let f € C™(R), n even, P (f) real valued. Furthermore we assume the following
Lipschitz condition: w3 (f(“),é) < K'Y K>0,0<vy <1, for any & > 0. Then

KI'n+vy+2
Kao)| < SOV F D gy (223)
Proof. Using Theorem 6 of [1] we obtain
‘I (oo}
Kabxo)l < gp | w2l yiyme v/ edy
“Jo
‘I o0
. Kr 2

(2:3) (le-iT-L?/ + ) an+y+] , (224)
proving the claim of the theorem. 0

In particular we have
Corollary 8. Let f € C*(R) such that Pg(f) is real valued. Furthermore we assume the

following Lipschitz condition: w; (f(4),6) <K8'Y K>0,0<vy <1, for any & > 0. Then

KT (y + 6)

Y+5
FrE (2.25)

[K2(xo)l <

Proof. In Theorem 7 we use n = 4. O

We also give

Corollary 9. Let f € C*(R), such that

wa(f", yl) <2AMY, 0<y<2, A>0.

Then for xo € R we have

Pe(f;x0) — f(xo) — f(x0)E| < T+ ALY 2. (2.26)
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Inequality (2.16) is sharp, namely it is attained at xo = 0 by
Ayl
L) =—3">-
(y+1ly+2)
Proof. In Theorem 7 of [1] we use n = 2. O
We also give
Corollary 10. Assume that w;(f, &) < oo and n = 0. Then
||P2)g(f) — f”oo < 5(U2(f, E,)» (227)
and as & — 0,
P2.¢ = I with rates.
Proof. By formula (37) of [1] with r = 2. O
Next let
[n/2]
Ki = [Pre(fx) =00 = Y [f2™ (8282 (2.28)
m=1 00 x
We present
Corollary 11. Assuming f € C?(R) and w,(f”,&) < oo, & > 0 we have
Ky = Hpm(f;x)ff(x)ff”(x)zszaz||oo‘x
21
< Zﬁzwz(f", £). (2.29)
That is as & — 0 we get P2 ¢ — 1, pointwise with rates, given that ||[f"| < oo.
Proof. In Theorem 11 of [1] we use r =n = 2. O
We also present
Corollary 12. Assuming f € C?(R) and w,(f”, &) < o0, & > 0 we have
K2(¥)loo = [[Pe(fixo) = flxo) — " (x0)E?]|
21
< gézwz(f”, &). (2.30)

That is as & — 0 we get Pz — I, pointwise with rates, given that ||[f"| ., < oo.

Proof. In Theorem 12 of [1] we use n = 2.
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3. L, Convergence with Rates of Smooth Picard Singular
Integral Operators

For re Nand n € Z; we let ; as in (2.1).

Let f € C(R) and f(™) ¢ L, (R), 1 <p < oo, we define for x € R, & > 0 the Lebesgue integral
P, z(f;x) as in (2.2).

We need the rth L,-modulus of smoothness

w,(f™ h), == sup |ATF™ (x)|p.x, h>0, (3.1)
[t|<h
where
.
A () s= 3 (17 ()£ e e, (3.2
j=0

Here we have that w,(f(™ h), < co, h > 0.
We need to introduce 8y ’s as in (2.4).

We define
[(n/2]

A(X) = Pr e (fix) = f(x) = > ™ (x)8,mE™™. (3.3)
m=1

We have the following results.

Corollary 13. Let n € N and the rest as above in this section. Then

V2TE™
A T f(n)a ) 34
Y T T T TR 84
where .
0<T:= U (14+w M u ™ Te Y du— (2n—1)!] < 0. (3.5)
0

Hence as & — 0 we obtain |A(x)||2 — 0.

If additionally f?™ € [L(R),m=1,2,..., L%J then ||Py ¢ (f) — |, = 0,as § — 0.

Proof. In Theorem 1 of [2], we place p = q = 2. O

Corollary 14. Let f be as above in this section. In particular, for n =1, we have

[Pre(f;) —fll2 < #wr(fﬂé)z. (3.6)

V2
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where
O<:Tr:{J (1T4+w? ™ Tue Mdu—1 (3.7)
0
Hence as & — 0 we obtain ||Pr (f;-) —f|l2 — 0.
Proof. In Theorem 1 of [2], we place p=q =2, n=1. a
Corollary 15. Let f be as above in this section and n = 2. Then
V2182
P, e (fix) — f(x) — 7 (x)828%]|2 < ——w,(f", &)3, 3.8
[[Pr e (f;x) — f(x) (x)02&7 |12 ST (7, 8)2 (3.8)
where
O<t:= U (1 +uw? Mude Hdu—6| < co. (3.9)
0
Hence as & — 0 we obtain ||A(x)||2 = 0.
If additionally f” € L,(R), then ||Py ¢(f) —f||, = 0, as & — 0.
Proof. In Theorem 1 of [2], we place p =q =n = 2. a

Next we present the Lipschitz type result corresponding to Theorem 1 of [2].

Theorem 16. Let p,q > 1 such that % + % =1, n € N, and the rest as above in this
section. Furthermore we assume the following Lipschitz condition: w, (1‘(“),6)p <K1Y K >0,

0<vy <1, for any & > 0.Then

(p(r—=147vy+n)+1))r 200tyinig

r
prI Y g —1) 4 1)

1A, < Iy

al=| ==

o=

(n—1)lq p(r=1+v)+1)

}

Hence as & — 0 we obtain ||A(x)]|, — 0.

If additionally f?™ € L,(R),m=1,2,..., L%J then [|Py g(f) — f||]D —0,as § — 0.

Proof. As in the proof of Theorem 1, [2], we get again

I :J |A(x)|P dx
0o [t
< J J wr(f(“),w)gdw [t TePU/28 ) gt | |
—00 0
where
2v=2
C1 =

gqr M (n—1)P(a(n—1) +1)p/a”

gr=Ttyin),

(3.10)

(3.11)

(3.12)
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Using the Lipschitz condition, we obtain

e

It]
J (Kw= 17" dw> |t“P‘eP't/2£dt>

0
C o 011]:-:/)-&-1) <JOO tp(r_”"’*")e—vtl/z&dt)
B —00
BRI Z?T;) ) (J ) tp““*”“)e—vt/zadg
- 0
pr—T+v+n)+1 /oo
= 2c1KP <2> (J Zp(r1+y+n)ez/£dz>
(p(r=T+v)+1) \p .

(r=T+vy+n)+1
23) 20KPT (p(r—14+v+n)+1) <2>p e gpr—TH+y+n)+1, (3.13)

Pr—T+v)+1) P

Thus we obtain

- (P(r—T+vy+n)+1) 2p(riyan)Kp
P

p(r—T+y+n)
S M DDPqm =) 7 1) apr T T (=T 5y £ 1) - (314)

That is finishing the proof of the theorem. O

In particular we have

Corollary 17. Let f such that the following Lipschitz condition holds: w7 (f(‘” , 5)2 < K&oHY,
K>0,0<vy <1, for any 6 > 0, and the rest as above in this section. Then

K (T (2y +21)) _(y 41
A < =y o g (v 10, 3.15
14612 < g\ F i (3.15)
Hence as & — 0 we obtain |A(x)||2 — 0.
If additionally (2™ € 1,(R), m = 1,2, then ||P7 ¢ (f) — fll, = 0,as & — 0.
Proof. In Theorem 16 we placep=q=2,n=4,and r =7. g

The counterpart of Theorem 16 follows, case of p = 1.

Theorem 18. Let f € C™*(R) and f™ € L1 (R),n € N. Furthermore we assume the following
Lipschitz condition: wy (f(“),5)1 <K MY K>0,0<vy <1, for any & > 0.Then

AKX < M(r+y+n) gyt (3.16)

m-="1lr+vy)

Hence as & — 0 we obtain ||A(x)||1 — 0.
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If additionally f(?™) € Ly(R),m =1,2,..., %] then [P ¢(f) — f|l; = 0, as § — 0.

Proof. As in the proof of Theorem 2 of [2] we get

_I o0
1A = Sy (Joo (

Consequently we have
1 o [t

A < T J J Kw™ 1Y dw | [t Tet/Edt (3.18)
- ) —00 0

_ K TN et e

= 2Em—1) (Jm (r—l—y) [t et

_ K * eyt ltl/E )
- zan—1nu+v)([m“ ¢

K = THy+n—1,-t/& )
an—1nn+vJQ;t ¢

K T+y+n—1
—(n_])!(r+y)r(r+y+n)£ Y , (3.19)

0

1t
J wr(f(“’,W)1dW> t“‘e““dt) . (3.17)

A
N
w

N2

proving (3.16). O

Corollary 19. Let f € C*(R) and f” € L1(R). Furthermore we assume the following Lipschitz
condition: wy (f,8); <K&, K >0,0<vy <1, for any § > 0.Then

A1 < F4+y)er™. (3.20)

K
(2+v)
Hence as & — 0 we obtain ||A(x)||1 — 0.

If additionally f’ € L; (R),then ||P2 ¢ (f) —f|l; — 0, as £ — 0.

Proof. In Theorem 18 we place n =1 = 2. 0

Next, when n = 0 we get

Proposition 20. Let v € N and the rest as above. Then
IPr,e () = fll2 < 82w (f, £)2, (3.21)

where

0<9 ::J (14 x)?Te *dx < co. (3.22)
0

Hence as & — 0 we obtain P, ; — unit operator I in the L, norm.
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Proof. In the proof of Proposition 1 of [2] we use p = q = 2. O

We continue with

Proposition 21. Let p,q > 1 such that % + % =1 and the rest as above. Furthermore we
assume the following Lipschitz condition: wy (f, 5)p <K1Y K>0,0<vy <1, for any & > 0.
Then

K 20+y)glrty—1)

IPre(6) = fllp < YT =T+ +1) 775 WS EeTey (3.23)
Hence as & — 0 we obtain P, ; — unit operator I in the L, norm, p > 1.
Proof. As in the proof of Proposition 1 of [2] we find
J [Py e (f;x) — f(x)|Pdx
1 p/4q 00 /(28)
t
< o l(a) ([, emoperw)
1 P/dq 00 ; - /(28)
25 r14y)P gt
() ([ e
23 KPP T(p(r—T14vy)+1)2°p0rtv)glr—T+v)p
- g pPrHy=T)+1) : (3.24)
We have established the claim of the proposition. O

Corollary 22. Let f such that the following Lipschitz condition holds: ws (f,8), < K83+,
K>0,0<vy <1, for any 6 > 0, and the rest as above in this section. Then

IPae(f) — fll2 < /T (2y +7)KEEHY). (3.25)
Hence as & — 0 we obtain P4 ¢ — unit operator I in the L, norm.

Proof. In Proposition 21 we place p = q =2 and r = 4. U

In general, for the L; case, n =0 we have

Proposition 23. It holds
[P2,ef —fllv <5waff,&). (3.26)

Hence as & — 0 we get Py ¢ — I in the Ly norm.
Proof. In the proof of Proposition 2 of [2] we use r = 2. O
Proposition 24. We assume the following Lipschitz condition: w. (f,8); < K™ 1Y K >0,
0<vy <1, for any & > 0. Then

[Pref —fll1 <KT(r+y) &1, (3.27)
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29
Hence as & — 0 we get Pr ¢ — 1 in the Ly norm.
Proof. As in the proof of Proposition 2 of [2] we get
o0 ] o0
J [Py e (fyx) —f(x)|dx < EJ' w(f,t);e "t/ 5dt
—o0 0
< K J T ive Vigy
- &l
= KM(r+vy) g1, (3.28)
proving the claim. O

Corollary 25. Assume the following Lipschitz condition: w; (f,8); < K™Y, K>0,0<y <

1, for any & > 0. Then

|P2ef —fll1 <K (2+7y) &Y,

Hence as & — 0 we get Py ¢ — 1 in the Ly norm.

Proof. In Proposition 24 we place r = 2.

(3.29)

O

In the next we consider f € C™(R) and f(™ ¢ L,(R),n=0o0rn >2even, 1 <p < oo and

the similar smooth singular operator of symmetric convolution type

P:(fix) = zlaJ f(x +y)e V/&dy, forallx € R, &> 0.

—00

Denote
n/2
K(x) = Pe(fix) = f(x) — }_ 12 (x)&2°
p=1
We give

Theorem 26. Let n > 2 even and the rest as above. Then

||K(X)||z§< zo(zg_”) (i, £,

where

0< t= (J (1+x)°x*" Te ™ dx — (2n — 1)!) < 00.
0

Hence as & — 0 we get ||[K(x)]|2 — 0.

If additionally f?™) € L,(R),m=1,2,..., % then |[P¢(f) — f||, = 0, as & = 0.

Proof. In the proof of Theorem 3 of [2] we use p = q = 2.

(3.30)

(3.31)

(3.32)

(3.33)
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It follows a Lipschitz type approximation result.

Theorem 27. Let p,q > 1 such that %Jr% =1,mn > 2 even and the rest as above. Furthermore
we assume the following Lipschitz condition: w> (f(“),é)p < K&t K > 0,0 <y <1, for any
5> 0.Then

2 (y+m+1) KT 1 1 1/p
kel < (2) oty ntl) 1) e (g
P (n—1)lqapi /P (ain— 1)+ 1)1/afp (y+1)+ 117
Hence as & — 0 we get ||[K(x)|l, — 0.
If additionally f*™ € L,(R),m =1,2,..., % then [[P¢(f) —f|, — 0, as & — 0.
Proof. As in the proof of Theorem 3, of [2] we find
0o o Y
j KoPdx < c (J (J wz(f(n)»t)gdt> Y/ (Zﬁdy)
—00 0 0
00 ply+1)+1
= Ke <J (py(v+ 0+ ) ym]epy/(za]dy>
0
ply+n+1)+1 00
- = K:% - (é) <J Zp(Y+n+1]ez/£dZ>
12804 0
. ply+n+1)+1
where here we denoted
1
= . 3.36
= SEr/aln— N (an— 1) + 1)/ (3:30)
We have established the claim of the theorem. O

Corollary 28. Assume the following Lipschitz condition: w3 (f,8), < K&+t K > 0,0 <
vy < 1, for any & > 0, and the rest as above in this section. Then

r (ZY + 7) an+3'

K2 < 619 2 (3.37)
Hence as & — 0 we get ||[K(x)||2 — 0.
If additionally f” € L,(RR), then ||Pg(f) —f||, = 0, as & —= 0.
Proof. In Theorem 27 we place p =q=n = 2. g

Theorem 29. Let f € C?(R) and f” € L1(R). Here K(x) = Pg(f;x) — f(x) — " (x)&?. Then
IK(x)[|1 < 8w (", &)1 2. (3.38)

Hence as & — 0 we obtain |[K(x)||; — 0.
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Also [|Pg(f) —f|]l; = 0,as & — 0.

Proof. In the proof of Theorem 4 of [2] we use n = 2. O

The Lipschitz case of p = 1 follows.

Theorem 30. Let f € C*(R) and f(™) € L1(R), n > 2 even. Furthermore we assume the
following Lipschitz condition: w; (f(”),é)1 < KT K>0,0<vy <1, forany 6 > 0. Then

My+n+2)K
K(x yntl, 3.39
Kilh < 5oy (3.39)
Hence as & — 0 we obtain ||[K(x)||; — 0.
If additionally f*™ € L{(R),m=1,2,..., % then ||Pg(f) —f||; — 0, as £ — 0.
Proof. As in the proof of Theorem 4 of [2] we have
ynf1 B
K[ < < < 1dt) T y/ady>
00 n—1
< ( ( tV“dt) (i’ e U/‘idy)
0 _
K - 1o-u/E
— yintle—y/éq
2k -1y +2) (J Y y)
23 Ty+n+2)K 1
- gyttt 3.40
-1y +2) (340
We have proved the claim of the theorem. O

Corollary 31. Let f € C°(R) and f(®) € L1(R). Furthermore we assume the following
Lipschitz condition: w; (f(s),5)1 <K& K >0,0<vy <1, for any 6 > 0. Then

MNy+3)K 7
K(x — Yt 3.41
K < e (3.41)
Hence as & — 0 we obtain |[K(x)||; — 0.
If additionally f?™ € [;(R), m =1,2,3 then ||P¢(f) — fll; = 0,as & — 0.
Proof. In Theorem 30 we place n = 6. g
The case of n = 0 follows.
Proposition 32. Let f as above in this section. Then
V65
[[Pe(f) —f|l2 < TwZ(f’ &)a. (3.42)

Hence as & — 0 we obtain Pg — 1 in the Ly norm.
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Proof. In the proof of Proposition 3 of [2] we use p = q = 2. O

The related Lipschitz case for n = 0 comes next.

Proposition 33. Let p,q > 1 such that % —l—% =1 and the rest as above. Furthermore we
assume the following Lipschitz condition: w; (1‘,6)p < K&MMY, K>0,0<vy <1, for any & > 0.
Then

2"+ e+ DIVPK
[P () — fll, < (p) qapi/p gy, (3.43)
Hence as & — 0 we obtain Py — 1 in the L, norm, p > 1.
Proof. As in the proof of Proposition 3 of [2] we get
- ! = /(28)
) P Po—PY
| e —toorex < ot (L w,(f,y)5e dy)
KP 0
- (1+v)p ,—Ppy/(28)
= 2Eqgp/a (Jo Y ¢ dy)
(1+v)p
2.3 KP 2
(22 7 (p) (T +y)p+1) e (3.44)
The proof of the claim is now completed. O

A particular example follows

Corollary 34. Let f as above in this section. Furthermore we assume the following Lipschitz
condition: wy (f,8), <K&, K>0,0<vy <1, for any 6 > 0. Then

K
IPe(f) = fll2 < VT3 +2y)EY. (3.45)
Hence as & — 0 we obtain Pg — 1 in the Ly norm.

Proof. In Proposition 33 we place p = q = 2. ]

It follows the Lipschitz type result
Proposition 35. Assume the following Lipschitz condition: wy (f,8); < KsY*1, K > 0,
0<vy <1, for any & > 0. It holds,

K
[Pef =l < ST (v+2) gyl (3.46)

Hence as & — 0 we get Pg — 1 in the Ly norm.

Proof. As in the proof of Proposition 4 of [2] we derive

J [Pe(f;x) —f(x)]ldx < lJ W (f,y)1e Y Edy
oo 28 J,
1 [* .
- ZEJO Y Y

@ Sryege, (3.47)
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proving the claim. O

4. Convergence with Rates of Smooth Gauss Weierstrass
Singular Integral Operators

In the next we deal with the following smooth Gauss Weierstrass singular integral operators
W, ¢ (f;x) defined as follows.

For r ¢ Nand n € Z; we set o’s as in (2.1).

Let f: R — R be Lebesgue measurable, we define for x € R, & > 0 the Lebesgue integral

[ el
W e (fix) = ﬁj af(x +it) | e t/8at. (4.1)
oo \ 5

We assume that W, ¢ (f;x) € R for all x € R.

We mention the useful here formula

o 1 1
J the t"/8qt = EF (k—zi_) E,k%], for any k > —1. (4.2)
0

We also need to introduce dy’s as in (2.4).

Proposition 36. Let f € C'(R) be defined as above in this section, and assume that
W, ¢ (f;x) € R for all x € R. Then

2 (> :
W5 ¢ (f;x) — f(x)] < —J J w; (', w)dw et dt. (4.3)
n€ Jo \Jo
Proof. In Theorem 1 of [3] weusen=1, 1= 2. O

We present the Lipschitz type result corresponding to the Theorem 1 of [3].

Theorem 37. Let f € C™(R), n € Z* and assume that W, ¢(f;x) € R for all x € R. Furthermore
we assume the following Lipschitz condition: wy (f(“),é) < K™Y K> 0,0 <y <1, for any
&> 0. Then it holds that

[n/2] 1 E m
Woe () — f(x) = 3 2™ ()5 ()
m=1

m! \ 4

< K Ty+r) r(n+r+v>£n+r;yl
- yalrn+vy+7) 2 )
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In L.H.S.(4.4) the sum collapses when n = 1.

Proof. As in the proof of Theorem 1, of [3], we get again that

n (k) ) .
Woelfix) 0 = Y g, ] (J tke—édt)m;,

k=1 kt Ve \J—co
where
1 o0 2
Ry = —J Rn(0,t)e” = dt,
T ) oo
with . :
t—w)"
Ra(0,0) = | L e,
o (Mm—T1)!
and
T(w) =Y agi™ ™ (x 4 jw) — 5 fM (x)
j=0
Also we get

[t] _ n—1
Ru(0,)] < j (=W () ) dw.

Using the Lipschitz type condition we obtain again

KI™ 1T (y + 1)

Rn(0,1)] <
R (0,1)] Frm+vy+r)

)

and, using (4.2), we obtain

1 0 K‘t‘n+r+y71r(y+r) 2
Rul < ©dt
Rl < \/mELx, Tmty+r
_ K I(y+r) Joo |t|n+r+yf1e—%dt
VIET (M+vy+71) |
_ 2k Tly+r) J T N
VaET(M+v+1) Jo
42 K T(y+r) p(rtrty gt
Val(n+y+r) 2 :

We notice also that

. n f(k)(x) 1 00 5 7% B
Wealfi) — i = 3 e (Jm ke dt) _
L5]
' 2 f(Zm)(x) 2m_|_1 . B }
W; g (fix) — f(x) — {Wézmr ( ) ) g } = RL.

m=1

(4.8)

(4.10)

(4.11)
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Furthermore we have that

1 o (2m4T) _
(2m)ly/m 2 -
— 1 L 2m—1 2m—3 § 1r 1
T 2m2m-0-.321 Vi 2 55T (5
1 /71\™
- (4) ' (4.12)
By (4.10), (4.11) and (4.12) we complete the proof of the theorem. 0

Corollary 38. Let f € C'(R), and assume that W5 ¢ (f;x) € R for all x € R. Furthermore we
assume the following Lipschitz condition: w; (f/,8) < K&'*Y, K > 0,0 <y < 1, for any & > 0.

Then « -
) Y
Wa.e (%) — F(x)] < (YH)ﬁr( ! )

Proof. In Theorem 37 we use n =1, r = 2. O

(4.13)

For the case n = 0 we have

Theorem 39. Let f be defined as above in this section, with n = 0. Furthermore we assume
the following Lipschitz condition: w, (f,8) < K& 17Y K > 0,0 <y < 1, for any & > 0. It holds
that

Wa e (f5x) — f(x)] < \LFF (T;y) I (4.14)

Proof. As in the proof of Corollary 1, of [3], with n = 0, using the Lipschitz type condition,
we get that

2 o0
W, ¢ (f;x) —f < — f,t)e” = dt
Weelfi) = f00l < —= | el
2 JC’O
< — | KtT'YeEdt
VTE Jo
42 K THYY\ rey=
= —I . 4.15
A () 1
This completes the proof of Theorem 39. ]

Corollary 40. Let f be defined as above in this section, with n = 0. Furthermore we assume
the following Lipschitz condition: wy (f,8) < K&, K >0,0< vy <1, for any & > 0. Then
W2 e (f;x) = f(x)| < —= ( £7. (4.16)

Proof. In Theorem 39 we use r = 2. U
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In the next we consider f € C™(R), n > 2 even and the simple smooth singular operator of

symmetric convolution type

WEe (f,x0) := \/:'TE, J;OO f(xo —i—y)e*yz/‘gdy, for all xg € R, &> 0. (4.17)
That is
‘l o0
We (fyxo) = —J (f(xo +y) + f(xo —y)) e*yz/ady, for all xo € R, & > 0. (4.18)
VTE Jo

We assume that f is such that
We(fixo) €R, Vxo € R,VE >0 and wy(f™ h) < oo, h>0.

Note that Wy ¢ = W and if We(f;x0) € R then W, ¢ (f;x0) € R.

Proposition 41. Assume f € C™(R),w2(f,h) < oo, h > 0. Furthermore we assume the

following Lipschitz condition: w3 (f,8) < K&'TY, K> 0,0 <y <1, for any & > 0. Then

[We(f) = flloo < Z\Kfr (2?) £ (4.19)

Proof. Using Proposition 1 of [3] we obtain

Wel(fixo) — flxo)l < —fj 2(Fy)e v Edy
VTE Jo
< __ J 1+Ye*y /Edy
4.2 K 2+ Y1
42 =" < zy) £, (4.20)
proving the claim of the proposition. O
Define the quantity
n/2 1 a o
Ka(xo) = We (fixo) — f(xo) = > fup)(xo)ﬁ <4> . (4.21)
p=1 ’

We give

Theorem 42. Let f € Cn(R) n even, We (f) real valued. Furthermore we assume the following
Lipschitz condition: w3 ( ) <K&'Y K>0,0<vy <1, for any 6 > 0. Then

K n+y+2)\ niyor
v (U) e

Ka(xo)| < (4.22)
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Proof. Using Theorem 6 of [3] we obtain

_ 1 had 2
Ka(xo)l < w (f™ y)yte v /Ed
[Ka(xo)l < VAE o 2™ y)y y
1 e 2
< Ky'tYyme v/&4
S VmE s vy 'y Y
(4.2) K n+y+2\ niyer
= r 2 4.23
nl2/m ( 2 ) 5 ’ (423)
proving the claim of the theorem. O

In particular we have
Corollary 43. Let f € C*(R) such that We(f) is real valued. Furthermore we assume the

following Lipschitz condition: w; (f(4),5) <K&'Y K>0,0<vy <1, for any 6 > 0. Then

— K 6 Y+5
Ralxo)| < T (Vj) £ (4.24)

Proof. In Theorem 42 we use n = 4. O

We also give

Corollary 44. Let f € C*(R), such that

wZ(fH)‘y“ SZA‘ylya O<Y§2> A>0.

Then for xo € R we have

(x0)& A <3+Y) 24y
W (f; —f — < r 7. 4.25
g (fix0) — f(xo) 7 S A TV > )¢ (4.25)
Inequality (4.25) is sharp, namely it is attained at xo =0 by
Aly[r+2
fly)= —
(vy+ 1y +2)
Proof. In Theorem 7 of [3] we use n = 2. O

We also give

Corollary 45. Assume that w(f, &) < oo and n = 0. Then

IWa.e(f) — fllao < | = + > | walf, VE). (4.26)
Ji 2
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and as & — 0,

W, ¢ 5 T with rates.

Proof. By formula (37) of [3] with r = 2.

Define the quantity

[n/2] 1 3 m
= -
Ky o= |[We e (f;x) — f(x Zf m) m— (4>

We present

Corollary 46. Assuming f € C?(R) and w,(f”, &) < oo, & > 0 we have

K] = HWz‘g(f;X) —f(X) —f”(X)éziH
1 5 . Y
< {3\/%4'16}(1)2” ,\/E)Z

That is as & — 0 we get Wy ¢ — 1, pointwise with rates, given that "] < oco.

Proof. In Theorem 11 of [3] we use r =n = 2.

We also present

Corollary 47. Assuming f € C?(R) and w,(f", &) < o0, & > 0 we have

[Kax HN

loo

= HW& f Xo) — f(Xo) — f” Xo

1 5 .
< {6\/;[ + 32}w2(f »\/E)E

That is as & — 0 we get W — 1, pointwise with rates, given that |[f"| . < oo.

Proof. In Theorem 12 of [3] we use n = 2.

(4.27)

(4.28)

(4.29)

5. L, Convergence with Rates of Smooth Gauss Weierstrass

Singular Integral Operators

For r € Nand n € Z; we let o as in (2.1).
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Let f € C™(R) and f(™) ¢ L, (R), 1 <p < oo, we define for x € R, & > 0 the Lebesgue integral

W, e(f;x) as in (4.1).

The rth L,-modulus of smoothness wr(f(“),hhD was defined in (3.1). Here we have that

w,(f™ h), < oo, h > 0.
The 6x’s were introduced in (2.4).
We define

[n/2] 1 £ m
A(X) = Wy g (f;x) — f(x Z F2™ ()8 — () :

We have the following results.

Corollary 48. Let n € N and the rest as above in this section. Then

V2tE: o
IAX)]2 < wr(f™, /€)1,
m—11Ym/(2r+1)(2n—1)
where - .
O<t:= U (14w ! un-le—u’ du—J wn e du| < .
0 0

Hence as & — 0 we obtain ||A(x)||2 = 0.

If additionally 2™ € Ly(R),m =1,2,..., %] then [[W; ¢(f) —f[, = 0, as & — 0.

Proof. In Theorem 1 of [4], we place p = q = 2.

Corollary 49. Let f be as above in this section. In particular, for n = 1, we have

[Wr e (f;-) = fll2 < %\[ ', V/E)2,
T \/7
where - 1
0<T:= U (14w ! ue*“Zdu—E < oo.
0
Hence as & — 0 we obtain ||W; g(f;-) —f|l2 — 0.

Proof. In Theorem 1 of [4], we placep=q =2, n=1.

Corollary 50. Let f be as above in this section and n = 2. Then

f” \/7 1!
Wi 6 (f;%) — f(x) éHz_\f\/ﬁ (f7,1/8)2,

(5.1)

(5.6)
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where

O<t:= U (1+w> " wde du—% < o0. (5.7)
0

Hence as & — 0 we obtain ||A(x)||2 = 0.
If additionally f” € L,(R), then |[W; ¢(f) —f||, = 0, as & — 0.

Proof. In Theorem 1 of [4], we place p =q =n = 2. O

Next we present the Lipschitz type result corresponding to Theorem 1 of [4].

Theorem 51. Let p,q > 1 such that % —l—% =1, n € N, and the rest as above in this
section. Furthermore we assume the following Lipschitz condition: w. (f(”),é)p <K& Y K >0,
0<vy <1, for any & > 0.Then

1
_ P L lrty+n) (r=T+y+n)
(r (7"“ Ltyin)l )) T KE

1AGI |y < P : - (58
[(n— Dip = g (g — 1)+ 1)F (p(r—14v) + 1)
Hence as & — 0 we obtain ||A(x)]|, — 0.
If additionally f*™ € L,(R),m=1,2,..., L%J then [|[W; ¢(f) — f||]D —0,as § — 0.
Proof. As in the proof of Theorem 1, [4], we get again
00 0 |t] 12
I :=J [A(x)[Pdx < ¢y J J w, (™ w)Bdw | [t"P e 2 dt |, (5.9)
—00 —00 0
where
25

1= —— : (5.10)
q 7 Vag((n—1Yr(q(n—1)+1)p/d

Using the Lipschitz condition, we obtain

0 [t] 2
I < o (J (J (KM”V)”M) |t|“p1epzadt>

0

KP *© pt?
= et (e )

= Gty e e
pr— Y 0
C1Kpr(‘p(rfl+;/+n)+1) ) p(r 1+Zv+n)+1

<p> ap(r—l+2y+n]+l . (511)

pr—T1+vy)+1)
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Thus we obtain

p(r+y+mn) -1 1 plr-T+y+n)
KP2™—2 F(ip(r +;/+“’+ )5 7

(5.12)

I< .
T—14+y+mn)+1
2

T " VA= 1)P(an— D)+ 1P/ (p(r =T 4y) +1)p"
That is finishing the proof of the theorem. O

In particular we have

Corollary 52. Let f such that the following Lipschitz condition holds: w7 (f(‘” , 6)2 < K&oHY|
K>0,0<vy <1, for any 6 > 0, and the rest as above in this section. Then

2y+21
K r( 2 ) (y+10)
A <Al & 2 5.13
180012 < §\ 7R 15 (513)
Hence as & — 0 we obtain ||A(x)||2 — 0.
If additionally f?™ € 1,(R), m = 1,2, then |W7 ¢(f) — fll, = 0,as & = 0.
Proof. In Theorem 51 we placep=q=2,n=4,and r=7. g

The counterpart of Theorem 51 follows, case of p = 1.

Theorem 53. Let f € C*(R) and f™ € 11 (R),n € N. Furthermore we assume the following
Lipschitz condition: wy (f(“],6)1 <K MY K>0,0<vy <1, for any & > 0.Then

K THY+MY revenos
86 < iy () £ (5.14)

Hence as & — 0 we obtain |A(x)||1 — 0.
If additionally f?™) € Ly(R),m =1,2,..., %] then [[W; ¢(f) —f[l; = 0, as £ — 0.

Proof. As in the proof of Theorem 2, [4] we get

0

o |t] R
A < UL]])H/TTE <J <J wr(f(“),whdw) [trTet ﬂidt) . (5.15)

Consequently we have
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[A(x)]] ; JOO JtKWT1+YdW |t|n71eft2/£dt
Yo menmE e \Uo

o0 T+v
_ ( ]K' <J (:+Y) |tn—1e—t2/5dt>
n-— VTt 0

— < |t|r+v+n 1 7t /adt)
(n—1) r+v

I
= o IV (J HWH/E‘“)

(4.2) +'Y+Tl> 1+y2+n

A

(5.16)

(=Nl +vy)Vrg
We have gotten that

K THY AN ey
A6 < iy () £ 6.17)

Hence the validity of (5.14). O

Corollary 54. Let f € C*(R) and f” € L{(R). Furthermore we assume the following Lipschitz
condition: wy (f,8); <K&, K >0,0<vy <1, for any § > 0.Then

1A 1 < (2+5) v (4;”) (5.18)
Hence as & — 0 we obtain |A(x)||1 — 0.
Also we get [[W; ¢ (f) —f[|; = 0,as £ = 0.
Proof. In Theorem 53 we place n =1 = 2. O

Next, when n = 0 we get

Proposition 55. Let v € N and the rest as above. Then

2397
[We e (f) = fll2 < S w.(f,/E)2, (5.19)
qame
where -
0<0 ::J 1+t eV dt < 0. (5.20)
0

Hence as & — 0 we obtain W, ; — unit operator I in the L, norm, p > 1.

Proof. In the proof of Proposition 1 of [4] we use p = q = 2. O

We continue with
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Proposition 56. Let p,q > 1 such that % + % =1 and the rest as above. Furthermore we

assume the following Lipschitz condition: wy (f, 6)p < K™Y K>0,0<vy <1, for any & > 0.
Then

ty

Ty A1) 2\ T /p\ T K iy
o< T () () K

Hence as & — 0 we obtain W, ; — unit operator I in the L, norm, p > 1.

Proof. As in the proof of Proposition 1 of [4] we find

Joo [Wr e (f;x) — f(x)[Pdx

—00

2 2 Zq [0
< ; <”‘£> ’ J w, (f, t)Be < dt
(m&)z \ 4 0
< ZKpp <2mt’> o J P =T+Y) o= 5 gt
(m&)z \ 4 0
P p(r—1+4+vy)+1
(4:2) g zj 24 E 2 T 'P(T—1+Y)+1 Ep(r 21+Y). (522)
7z \ q P 2
We have established the claim of the proposition. O

Corollary 57. Let f such that the following Lipschitz condition holds: w4 (f,8), < K&3*Y,
K>0,0<vy <1, for any 6 > 0, and the rest as above in this section. Then

[Wae(f) —fll2 <4 /T (ZY;7)\]/<%5(33”. (5.23)
Hence as & — 0 we obtain W4 ; — unit operator I in the L, norm.
Proof. In Proposition 56 we place p = q =2 and r = 4. O
In the Ly case, n = 0 we have
Proposition 58. It holds
[Waef —flli < (2 + 3) wa(f, VE)r. (5.24)
N
Hence as & — 0 we get W7 ¢ — 1 in the Ly norm.
Proof. In the proof of Proposition 2 of [4] we use r = 2. O

Proposition 59. We assume the following Lipschitz condition: w. (f,8); < K™ 1Y K >0,
0<vy <1, for any & > 0. Then

K T+Y T4y
—flly < — T, :
[[Wr ef f1_ﬁr( 3 )& (5.25)
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Hence as & = 0 we get Wy ¢ — 1 in the L1 norm.

Proof. As in the proof of Proposition 2 of [4] we get

o0 ] o .
W, e (fix) —f(x)]dx < —— W, (f, It et/ Edt
J'ﬂx, ne \/7'TE, | T 1
1T (™ )
< —— | KErYetEay
VTE ) o
= ZiK [~ Ty et/ gt
VTE Jo
42 K THY\ =1ty
= 7 . 5.26
NG ( 2 > £ (5.26)
We have proved the claim of the proposition. C

Corollary 60. Assume the following Lipschitz condition: w; (f,8); < K™Y K>0,0<y <
1, for any & > 0. Then

K 2 +
Wa,ef —fly < —=T (”) £ (5.27)
e 2
Hence as & — 0 we get W, ¢ — 1 in the Ly norm.
Proof. In Proposition 59 we place r = 2. d

In the next we consider f € C™(R) and f(™) ¢ L,(R),n=0o0rn >2even, 1 <p < oo and
the similar smooth singular operator of symmetric convolution type

‘I o0
We (f;x) = \/TTJ' f(x +y)e*92/£dy, forall x e R, &> 0. (5.28)
Denote P
W p(2e)(x £\°
K(x) := We(f;x) — f(x) — '( ) . <4) . (5.29)
p=1 o
We give

Theorem 61. Let n > 2 even and the rest as above. Then

0<%:J ((1 +u)5—1)u2“’1e’“2du< 0. (5.31)
0

where

Hence as & — 0 we get ||[K(x)]|2 — 0.
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If additionally f(>™) € L,(R),m =1,2,..., % then [[Wg(f) — f|], = 0, as § — 0.

Proof. In the proof of Theorem 3 of [4] we use p = q = 2. O

It follows a Lipschitz type approximation result.

Theorem 62. Let p,q > 1 such that %Jr% =1,n > 2 even and the rest as above. Furthermore
we assume the following Lipschitz condition: w; (f(“),é)p < K& K > 0,0 <y <1, for any
& > 0.Then

1
(y+n+1)+1\]|» (y+n+1)
IKG)p < (i) <2> e
x)|p < — .
T VI (= NipPr T [gn— 1)+ 119 [p(y + 1) + 17 \P
(5.32)
Hence as & — 0 we get ||[K(x)|l, — 0.
If additionally f™ € L,(R),m =1,2,..., % then [Wg(f) —f|, — 0, as £ — 0.
Proof. As in the proof of Theorem 3, of [4] we find
00 R Y py?
J K)Pdx < ¢z (J <J wz(f(n),t)gdt> yPle 0 dy)
—00 0 0
00 yp(y+1)+1 . py2
< KPey (J ( yPr e 2E dy
o \py+1)+1
KPec, <J°° Plynet) g— 2 )
= - = y e 2t dy
ply+1)+1\Jo
ply+n+1)+1
(4.2) KPcy (2) z
ply+1)+1\p
-1F ply+n+1)+1 ap(w“;”H- (5.33)
2 2
where here we denoted
1
€= —F5 . (5.34)
22aq2a(gn—1) +1)P/a ((n—1)1)" /nE
We have established the claim of the theorem. O

Corollary 63. Assume the following Lipschitz condition: w; (f”,8), < KSY*1 K > 0,0 <
v <1, for any & > 0, and the rest as above in this section.Then

{r (#ﬂ Keogr (5.35)

KGOl <\ 2ot

Hence as & — 0 we get ||[K(x)]|2 — 0.

If additionally f € L,(R), then |[Wg(f) —f||, = 0, as & — 0.
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Proof. In Theorem 62 we place p=q=n=2. O

Theorem 64. Let f € C?(R) and f” € L1(R). Here K(x) = W (f;x) — f(x) — f” T e Then

1 3
KGOl < (2 o 8) s (7", /B, (5.36)
Hence as & — 0 we obtain |K(x)||; — 0.
Also ||Wg(f) —f|l; = 0,as & — 0.
Proof. In the proof of Theorem 4 of [4] we use n = 2. O

The Lipschitz case of p = 1 follows.

Theorem 65. Let f € C*(R) and f™) € L1(R), n > 2 even. Furthermore we assume the
following Lipschitz condition: w; (f(“),é)1 <K& K>0,0<vy <1, for any 6 > 0. Then

r <y+g+2> K

K(x)|lh < e 5.37
Kl < =i (5:37)
Hence as & — 0 we obtain ||[K(x)||; — 0.
If additionally f?™ € L;(R),m=1,2,..., % then |[W¢(f) — f[|; = 0, as & — 0.
Proof. As in the proof of Theorem 4 of [4] we have
1 0 Y yn 1 N
K < — e V/E) g
e (L ) N )
I y"
< - Kt’YJr] t -y /5,
IRV <3 Jo ((Jo d) (n— 1)'6 v
K © 2
_ Y+n+1_—y“ /& d
(n n(v+2)FaL (e ) ay
+n42
(4.2) r (y ? ) K T (5.38)
 (n=Dly+2)2yn '
We have proved the claim of the theorem. O

Corollary 66. Let f € C°(R) and f®) € L;(R). Furthermore we assume the following
Lipschitz condition: w3 (f(6),6)] <KSY*tT K>0,0<vy <1, for any & > 0. Then

re)k L
< —< &7, 5.39
|1—240(y+2)\/Ea (5:39)
Hence as & — 0 we obtain ||[K(x)||1 — 0.

If additionally f*™ € Ly(R), m = 1,2,3 then ||[Wg(f) —f||; = 0, as & — 0.
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Proof. In Theorem 65 we place n = 6. ]

The case of n = 0 follows.

Proposition 67. Let f as above in this section. Then

IWe(f) — 12 < ,/jﬁ + %wz(f, V. (5.40)

Hence as & — 0 we obtain Wy — 1 in the Ly norm.

Proof. In the proof of Proposition 3 of [4] we use p = q = 2. O

The related Lipschitz case for n = 0 comes next.

Proposition 68. Let p,q > 1 such that % + L =1 and the rest as above. Furthermore we
assume the following Lipschitz condition: w; (1‘,5)p < K'Y, K>0,0<vy <1, for any & > 0.

Then
(1+v) |:r((1+v)p+1>} K
2 2 (1+v)
[We(f) — f]l, < () L T (5.41)
P pIrqza \ﬁ
Hence as & — 0 we obtain Wg — 1 in the L, norm, p > 1.
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Proof. As in the proof of Proposition 3 of [4] we get

OO 1 o0 —py?
Welfix) = f(Pdx < ——— | walfylpe # ay
va VTE (2q) 77 Jo "
S — J (Ky' )P e 5 ay
Vg (2q) 29 Jo
KP 2 (1+YZ]P+1 1 1 1
(4:2) — () r(( +Y)‘P+ )£(1+2v)17‘ (542)
VT (2q)25 \P 2 2
The proof of the claim is now completed. O

A particular example follows

Corollary 69. Let f as above in this section. Furthermore we assume the following Lipschitz
condition: w (f,8), <K&, K>0,0<vy <1, for any & > 0. Then

r(3+2y)
K 2 (1+v)
— < —A| — 7 z .
[We(f) —fll2 < 3 T &

(5.43)

Hence as & — 0 we obtain W — 1 in the Ly norm.

Proof. In Proposition 68 we place p = q = 2. 0
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We finish with the Lipschitz type result

Proposition 70. Assume the following Lipschitz condition: wy (f,8); < KsY*1, K > 0,
0<vy <1, for any & > 0. It holds,

K v+2 y+1
— < —I | —— 2, 5.44
we 1l < 7=r (457 ¢ (5.44)

Hence as & — 0 we get Wg — 1 in the Ly norm.

Proof. As in the proof of Proposition 4 of [4] we derive

J We(f;x) —f(x)|dx < \/%J' wa(f.u)re ¥ Edy

0
< 1 JOO KyYJr]e—yz/&dy
BV ¢ 3
(4.2) K Y+2\ v
= —I — . 5.45
Nz < 2 ) & (5.45)
We have established the claim. O
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