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ABSTRACT

We continue our studies in higher order uniform convergence with rates and in Lp

convergence with rates. Namely, in this article we establish some Lipschitz type results

for the smooth Picard type singular integral operators and for the smooth Gauss-

Weierstrass type singular integral operators.

RESUMEN

Continuamos nuestros estudios sobre convergencia uniforme de orden superior con ra-

dios y sobre convergencia Lp con radios. Concretamente, en este art́ıculo establecemos

algunos resultados de tipo Lipschitz para operadores integrales suves del tipo Picard

singulares y para operadores integrales singulares de tipo Gauss-Weierstrass.
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1. Introduction

We are motivated by [1], [2], [3] and [4].

We denote by Lp, 1 ≤ p < ∞, the classes of functions f (x) , integrable in −∞ < x < ∞ with

the norm

‖f‖p =

[∫∞

−∞

|f (u)|
p

du

]
1
p

. (1.1)

The Picard singular integral Pξ(f; x) corresponding to the function f (x) , is defined as follows

Pξ(f; x) =
1

2ξ

∫∞

−∞

f(x + y)e−|y|/ξdy, for all x ∈ R, ξ > 0. (1.2)

The Gauss Weierstrass singular integral Wξ(f; x) corresponding to the function f (x) , is de-

fined as follows

Wξ(f; x) =
1√
πξ

∫∞

−∞

f(x + y)e−y2/ξdy, for all x ∈ R, ξ > 0. (1.3)

2. Convergence with Rates of Smooth Picard Singular In-

tegral Operators

In the next we deal with the following smooth Picard singular integral operators Pr,ξ(f; x)

defined as follows.

For r ∈ N and n ∈ Z+ we set

αj =






(−1)r−j

(

r

j

)

j−n, j = 1, . . . , r,

1 −

r∑

j=1

(−1)r−j

(

r

j

)

j−n, j = 0,

(2.1)

that is
r∑

j=0

αj = 1. Let f : R → R be Lebesgue measurable, we define for x ∈ R, ξ > 0 the Lebesgue

integral

Pr,ξ(f; x) :=
1

2ξ

∫∞

−∞





r∑

j=0

αjf(x + jt)



 e−|t|/ξdt. (2.2)

We assume that Pr,ξ(f; x) ∈ R for all x ∈ R.

We mention the useful here formula
∫∞

0

tke−t/ξdt = Γ (k + 1)ξk+1, k > −1. (2.3)
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We need to introduce

δk :=

r∑

j=1

αjj
k, k = 1, . . . , n ∈ N. (2.4)

Denote by ⌊·⌋ the integral part.

We give a special related result.

Proposition 1. Let f be defined as above in this section. It holds that

|P2,ξ(f; x) − f(x)| ≤ 1

ξ

∫∞

0

(∫ |t|

0

ω2(f′, w)dw

)

e−t/ξdt. (2.5)

Proof. In Theorem 1 of [1] we use n = 1, r = 2. �

We also present the Lipschitz type result corresponding to the Theorem 1 of [1].

Theorem 2. Let f be defined as above in this section, with n ∈ N. Furthermore we assume

the following Lipschitz condition: ωr

(

f(n), δ
)

≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

it holds that
∣

∣

∣

∣

∣

∣

Pr,ξ(f; x) − f(x) −

⌊n
2
⌋∑

m=1

f(2m)(x)δ2mξ2m

∣

∣

∣

∣

∣

∣

≤ KΓ (γ + r) ξn+r+γ−1. (2.6)

In L.H.S.(2.6) the sum collapses when n = 1.

Proof. As in the proof of Theorem 1, of [1], we get again that

Pr,ξ(f; x) − f(x) =

n∑

k=1

f(k)(x)

k!
δk

1

2ξ

(∫∞

−∞

tke−|t|/ξdt

)

+ R∗
n, (2.7)

where

R∗
n :=

1

2ξ

∫∞

−∞

Rn(0, t)e−|t|/ξdt, (2.8)

with

Rn(0, t) :=

∫t

0

(t − w)n−1

(n − 1)!
τ(w)dw, (2.9)

and

τ(w) :=

r∑

j=0

αjj
nf(n)(x + jw) − δnf(n)(x).

Also we get

|Rn(0, t)| ≤
∫ |t|

0

(|t| − w)n−1

(n − 1)!
ωr(f

(n), w)dw. (2.10)
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Using the Lipschitz type condition we obtain

|Rn(0, t)| ≤
∫ |t|

0

(|t| − w)n−1

(n − 1)!
Kwr−1+γdw

=
K|t|n+r+γ−2

(n − 1)!

∫ |t|

0

(

1 −
w

|t|

)n−1(
w

|t|

)r−1+γ

dw

=
K|t|n+r+γ−1

(n − 1)!

∫1

0

(1 − y)
n−1

yr−1+γdy

=
K|t|n+r+γ−1Γ (γ + r)

Γ (n + γ + r)
. (2.11)

Then, by (2.3), we obtain

|R∗
n| ≤ 1

2ξ

∫∞

−∞

K|t|n+r+γ−1Γ (γ + r)

Γ (n + γ + r)
e−|t|/ξdt

=
K

2ξ

Γ (γ + r)

Γ (n + γ + r)

∫∞

−∞

|t|n+r+γ−1e−|t|/ξdt

=
K

ξ

Γ (γ + r)

Γ (n + γ + r)

∫∞

0

tn+r+γ−1e−t/ξdt

(2.3)
= KΓ (γ + r) ξn+r+γ−1. (2.12)

We also notice that

Pr,ξ(f; x) − f(x) −

n∑

k=1

f(k)(x)

k!
δk

1

2ξ

(∫∞

−∞

tke−|t|/ξdt

)

=

Pr,ξ(f; x) − f(x) −

⌊n
2
⌋∑

m=1

f(2m)(x)δ2mξ2m = R∗
n. (2.13)

By (2.12) and (2.13) we complete the proof of the theorem. �

Corollary 3. Let f be defined as above in this section. Furthermore we assume the following

Lipschitz condition ω2 (f′, δ) ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|P2,ξ(f; x) − f(x)| ≤ KΓ (γ + 2)ξ2+γ. (2.14)

Proof. In Theorem 2 we use n = 1, r = 2. �

For the case n = 0 we have

Theorem 4. Let f be defined as above in this section, with n = 0. Furthermore we assume

the following Lipschitz condition: ωr (f, δ) ≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. It holds

that

|Pr,ξ(f; x) − f(x)| ≤ KΓ (r + γ)ξr+γ−1. (2.15)
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Proof. As in the proof of Corollary 1, of [1], with n = 0, using the Lipschitz type condition,

we get that

|Pr,ξ(f; x) − f(x)| ≤ 1

ξ

∫∞

0

ωr(f, t)e
−t/ξdt

≤ 1

ξ

∫∞

0

Ktr−1+γe−t/ξdt

(2.3)
= KΓ (r + γ)ξr+γ−1 (2.16)

This completes the proof of Theorem 4. �

Corollary 5. Let f be defined as above in this section, with n = 0. Furthermore we assume

the following Lipschitz condition: ω2 (f, δ) ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|P2,ξ(f; x) − f(x)| ≤ KΓ (2 + γ)ξγ+1. (2.17)

Proof. In Theorem 4 we use r = 2. �

In the next we consider f ∈ Cn(R), n ≥ 2 even and the simple smooth singular operator of

symmetric convolution type

Pξ(f, x0) :=
1

2ξ

∫∞

−∞

f(x0 + y)e−|y|/ξdy, for all x0 ∈ R, ξ > 0. (2.18)

That is

Pξ(f; x0) =
1

2ξ

∫∞

0

(

f(x0 + y) + f(x0 − y)
)

e−y/ξdy, for all x0 ∈ R, ξ > 0. (2.19)

We assume that f is such that

Pξ(f; x0) ∈ R, ∀x0 ∈ R,∀ξ > 0 and ω2(f(n), h) < ∞, h > 0.

Note that P1,ξ = Pξ and if Pξ(f; x0) ∈ R then Pr,ξ(f; x0) ∈ R.

Proposition 6. Assume ω2(f, h) < ∞, h > 0. Furthermore we assume the following Lipschitz

condition: ω2 (f, δ) ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖Pξ(f) − f‖∞ ≤ KΓ (2 + γ)

2
ξγ+1. (2.20)

Proof. Using Proposition 1 of [1] we obtain

|Pξ(f; x0) − f(x0)| ≤ 1

2ξ

∫∞

0

ω2(f, y)e−y/ξdy

≤ 1

2ξ

∫∞

0

Ky1+γe−y/ξdy

(2.3)
=

KΓ (2 + γ)

2
ξγ+1, (2.21)



22 Razvan A. Mezei CUBO
13, 3 (2011)

proving the claim of the proposition. �

Let

K2(x0) := Pξ(f; x0) − f(x0) −

n/2∑

ρ=1

f(2ρ)(x0)ξ2ρ. (2.22)

We give

Theorem 7. Let f ∈ Cn(R), n even, Pξ(f) real valued. Furthermore we assume the following

Lipschitz condition: ω2

(

f(n), δ
)

≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|K2(x0)| ≤ KΓ (n + γ + 2)

2n!
ξn+γ+1. (2.23)

Proof. Using Theorem 6 of [1] we obtain

|K2(x0)| ≤ 1

2ξn!

∫∞

0

ω2(f(n), y)yne−y/ξdy

≤ 1

2ξn!

∫∞

0

Ky1+γyne−y/ξdy

(2.3)
=

KΓ (n + γ + 2)

2n!
ξn+γ+1, (2.24)

proving the claim of the theorem. �

In particular we have

Corollary 8. Let f ∈ C4(R) such that Pξ(f) is real valued. Furthermore we assume the

following Lipschitz condition: ω2

(

f(4), δ
)

≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|K2(x0)| ≤ KΓ (γ + 6)

48
ξγ+5. (2.25)

Proof. In Theorem 7 we use n = 4. �

We also give

Corollary 9. Let f ∈ C2(R), such that

ω2(f′′, |y|) ≤ 2A|y|γ, 0 < γ ≤ 2, A > 0.

Then for x0 ∈ R we have

∣

∣Pξ(f; x0) − f(x0) − f′′(x0)ξ2
∣

∣ ≤ Γ(α + 1)Aξγ+2. (2.26)
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Inequality (2.16 ) is sharp, namely it is attained at x0 = 0 by

f∗(y) =
A|y|γ+2

(γ + 1)(γ + 2)
.

Proof. In Theorem 7 of [1] we use n = 2. �

We also give

Corollary 10. Assume that ω2(f, ξ) < ∞ and n = 0. Then

‖P2,ξ(f) − f‖∞ ≤ 5ω2(f, ξ), (2.27)

and as ξ → 0,

P2,ξ
u
→ I with rates.

Proof. By formula (37) of [1] with r = 2. �

Next let

K1 :=

∥

∥

∥

∥

∥

∥

Pr,ξ(f; x) − f(x) −

⌊n/2⌋∑

m=1

[

f(2m)(x)δ2mξ2m
]

∥

∥

∥

∥

∥

∥

∞ ,x

. (2.28)

We present

Corollary 11. Assuming f ∈ C2(R) and ω2(f′′, ξ) < ∞, ξ > 0 we have

K1 =
∥

∥P2,ξ(f; x) − f(x) − f′′(x)δ2ξ2
∥

∥

∞ ,x

≤ 21

4
ξ2ω2(f′′, ξ). (2.29)

That is as ξ → 0 we get P2,ξ → I, pointwise with rates, given that ‖f′′‖∞ < ∞.

Proof. In Theorem 11 of [1] we use r = n = 2. �

We also present

Corollary 12. Assuming f ∈ C2(R) and ω2(f′′, ξ) < ∞, ξ > 0 we have

‖K2(x)‖∞ ,x =
∥

∥Pξ(f; x0) − f(x0) − f′′(x0)ξ2
∥

∥

∞ ,x

≤ 21

8
ξ2ω2(f′′, ξ). (2.30)

That is as ξ → 0 we get Pξ → I, pointwise with rates, given that ‖f′′‖∞ < ∞.

Proof. In Theorem 12 of [1] we use n = 2. �
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3. Lp Convergence with Rates of Smooth Picard Singular

Integral Operators

For r ∈ N and n ∈ Z+ we let αj as in (2.1).

Let f ∈ Cn(R) and f(n) ∈ Lp(R), 1 ≤ p < ∞, we define for x ∈ R, ξ > 0 the Lebesgue integral

Pr,ξ(f; x) as in (2.2).

We need the rth Lp-modulus of smoothness

ωr(f
(n), h)p := sup

|t|≤h

‖∆r
tf

(n)(x)‖p,x, h > 0, (3.1)

where

∆r
tf

(n)(x) :=

r∑

j=0

(−1)r−j

(

r

j

)

f(n)(x + jt), (3.2)

Here we have that ωr(f
(n), h)p < ∞, h > 0.

We need to introduce δk’s as in (2.4).

We define

∆(x) := Pr,ξ(f; x) − f(x) −

⌊n/2⌋∑

m=1

f(2m)(x)δ2mξ2m. (3.3)

We have the following results.

Corollary 13. Let n ∈ N and the rest as above in this section. Then

‖∆(x)‖2 ≤
√

2τξn

√

(2r + 1)(4n − 2)(n − 1)!
ωr(f

(n), ξ)2, (3.4)

where

0 < τ :=

[∫∞

0

(1 + u)2r+1u2n−1e−udu − (2n − 1)!

]

< ∞. (3.5)

Hence as ξ → 0 we obtain ‖∆(x)‖2 → 0.

If additionally f(2m) ∈ L2(R),m = 1, 2, . . . ,
⌊

n
2

⌋

then ‖Pr,ξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 1 of [2], we place p = q = 2. �

Corollary 14. Let f be as above in this section. In particular, for n = 1, we have

‖Pr,ξ(f; ·) − f‖2 ≤
√

τξ
√

(2r + 1)
ωr(f

′, ξ)2, (3.6)
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where

0 < τ :=

[∫∞

0

(1 + u)2r+1ue−udu − 1

]

< ∞. (3.7)

Hence as ξ → 0 we obtain ‖Pr,ξ(f; ·) − f‖2 → 0.

Proof. In Theorem 1 of [2], we place p = q = 2, n = 1. �

Corollary 15. Let f be as above in this section and n = 2. Then

‖Pr,ξ(f; x) − f(x) − f′′(x)δ2ξ2‖2 ≤
√

2τξ2

√

6(2r + 1)
ωr(f

′′, ξ)2, (3.8)

where

0 < τ :=

[∫∞

0

(1 + u)2r+1u3e−udu − 6

]

< ∞. (3.9)

Hence as ξ → 0 we obtain ‖∆(x)‖2 → 0.

If additionally f′′ ∈ L2(R), then ‖Pr,ξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 1 of [2], we place p = q = n = 2. �

Next we present the Lipschitz type result corresponding to Theorem 1 of [2].

Theorem 16. Let p, q > 1 such that 1
p

+ 1
q

= 1, n ∈ N, and the rest as above in this

section. Furthermore we assume the following Lipschitz condition: ωr

(

f(n), δ
)

p
≤ Kδr−1+γ, K > 0,

0 < γ ≤ 1, for any δ > 0.Then

‖∆(x)‖p ≤ (Γ (p (r − 1 + γ + n) + 1))
1
p 2(r+γ+n)K

[

(n − 1)!q
1
q pr− 1

q
+γ+n(q(n − 1) + 1)

1
q (p (r − 1 + γ) + 1)

1
p

]ξ(r−1+γ+n). (3.10)

Hence as ξ → 0 we obtain ‖∆(x)‖p → 0.

If additionally f(2m) ∈ Lp(R),m = 1, 2, . . . ,
⌊

n
2

⌋

then ‖Pr,ξ(f) − f‖p → 0, as ξ → 0.

Proof. As in the proof of Theorem 1, [2], we get again

I : =

∫∞

−∞

|∆(x)|pdx

≤ c1

(∫∞

−∞

((∫ |t|

0

ωr(f
(n), w)p

pdw

)

|t|np−1e−|pt|/2ξ

)

dt

)

, (3.11)

where

c1 :=
2p−2

ξqp−1((n − 1)!)p(q(n − 1) + 1)p/q
. (3.12)
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Using the Lipschitz condition, we obtain

I ≤ c1

(∫∞

−∞

(∫ |t|

0

(

Kwr−1+γ
)p

dw

)

|t|np−1e−p|t|/2ξdt

)

=
c1Kp

(p (r − 1 + γ) + 1)

(∫∞

−∞

|t|p(r−1+γ+n)e−p|t|/2ξdt

)

=
2c1Kp

(p (r − 1 + γ) + 1)

(∫∞

0

tp(r−1+γ+n)e−pt/2ξdt

)

=
2c1Kp

(p (r − 1 + γ) + 1)

(

2

p

)p(r−1+γ+n)+1(∫∞

0

zp(r−1+γ+n)e−z/ξdz

)

(2.3)
=

2c1KpΓ (p (r − 1 + γ + n) + 1)

(p (r − 1 + γ) + 1)

(

2

p

)p(r−1+γ+n)+1

ξp(r−1+γ+n)+1. (3.13)

Thus we obtain

I ≤ Γ (p (r − 1 + γ + n) + 1)

qp−1((n − 1)!)p(q(n − 1) + 1)p/qpp(r−1+γ+n)+1

2p(r+γ+n)Kp

(p (r − 1 + γ) + 1)
ξp(r−1+γ+n). (3.14)

That is finishing the proof of the theorem. �

In particular we have

Corollary 17. Let f such that the following Lipschitz condition holds: ω7

(

f(4), δ
)

2
≤ Kδ6+γ,

K > 0, 0 < γ ≤ 1, for any δ > 0, and the rest as above in this section. Then

‖∆(x)‖2 ≤ K

6

√

(Γ (2γ + 21))

7 (2γ + 13)
ξ(γ+10). (3.15)

Hence as ξ → 0 we obtain ‖∆(x)‖2 → 0.

If additionally f(2m) ∈ L2(R),m = 1, 2, then ‖P7,ξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 16 we place p = q = 2, n = 4, and r = 7. �

The counterpart of Theorem 16 follows, case of p = 1.

Theorem 18. Let f ∈ Cn(R) and f(n) ∈ L1(R), n ∈ N. Furthermore we assume the following

Lipschitz condition: ωr

(

f(n), δ
)

1
≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.Then

‖∆(x)‖1 ≤ K

(n − 1)! (r + γ)
Γ (r + γ + n) ξr+γ+n−1. (3.16)

Hence as ξ → 0 we obtain ‖∆(x)‖1 → 0.
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If additionally f(2m) ∈ L1(R),m = 1, 2, . . . ,
⌊

n
2

⌋

then ‖Pr,ξ(f) − f‖1 → 0, as ξ → 0.

Proof. As in the proof of Theorem 2 of [2] we get

‖∆(x)‖1 ≤ 1

2ξ(n − 1)!

(∫∞

−∞

(∫ |t|

0

ωr(f
(n), w)1dw

)

|t|n−1e−|t|/ξdt

)

. (3.17)

Consequently we have

‖∆(x)‖1 ≤ 1

2ξ(n − 1)!

(∫∞

−∞

(∫ |t|

0

Kwr−1+γdw

)

|t|n−1e−|t|/ξdt

)

(3.18)

=
K

2ξ(n − 1)!

(∫∞

−∞

(

|t|r+γ

r + γ

)

|t|n−1e−|t|/ξdt

)

=
K

2ξ(n − 1)! (r + γ)

(∫∞

−∞

|t|r+γ+n−1e−|t|/ξdt

)

=
K

ξ(n − 1)! (r + γ)

(∫∞

0

tr+γ+n−1e−t/ξdt

)

(2.3)
=

K

(n − 1)! (r + γ)
Γ (r + γ + n) ξr+γ+n−1, (3.19)

proving (3.16). �

Corollary 19. Let f ∈ C2(R) and f′′ ∈ L1(R). Furthermore we assume the following Lipschitz

condition: ω2 (f′′, δ)1 ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.Then

‖∆(x)‖1 ≤ K

(2 + γ)
Γ (4 + γ)ξγ+3. (3.20)

Hence as ξ → 0 we obtain ‖∆(x)‖1 → 0.

If additionally f′′ ∈ L1(R),then ‖P2,ξ(f) − f‖1 → 0, as ξ → 0.

Proof. In Theorem 18 we place n = r = 2. �

Next, when n = 0 we get

Proposition 20. Let r ∈ N and the rest as above. Then

‖Pr,ξ(f) − f‖2 ≤ θ1/2ωr(f, ξ)2, (3.21)

where

0 < θ :=

∫∞

0

(1 + x)2re−xdx < ∞. (3.22)

Hence as ξ → 0 we obtain Pr,ξ → unit operator I in the L2 norm.
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Proof. In the proof of Proposition 1 of [2] we use p = q = 2. �

We continue with

Proposition 21. Let p, q > 1 such that 1
p

+ 1
q

= 1 and the rest as above. Furthermore we

assume the following Lipschitz condition: ωr (f, δ)p ≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.

Then

‖Pr,ξ(f) − f‖p ≤ p
√

Γ (p (r − 1 + γ) + 1)
K

q1/q

2(r+γ)ξ(r+γ−1)

p(r−1+γ+ 1
p )

. (3.23)

Hence as ξ → 0 we obtain Pr,ξ → unit operator I in the Lp norm, p > 1.

Proof. As in the proof of Proposition 1 of [2] we find
∫∞

−∞

|Pr,ξ(f; x) − f(x)|pdx

≤ 1

2p−1ξp

(

4ξ

q

)p/q(∫∞

0

ωr(f, t)
p
pe−pt/(2ξ)dt

)

≤ 1

2p−1ξp

(

4ξ

q

)p/q(∫∞

0

(

Ktr−1+γ
)p

e−pt/(2ξ)dt

)

(2.3)
=

Kp

qp−1

Γ (p (r − 1 + γ) + 1) 2p(r+γ)ξ(r−1+γ)p

p(p(r+γ−1)+1)
. (3.24)

We have established the claim of the proposition. �

Corollary 22. Let f such that the following Lipschitz condition holds: ω4 (f, δ)2 ≤ Kδ3+γ,

K > 0, 0 < γ ≤ 1, for any δ > 0, and the rest as above in this section. Then

‖P4,ξ(f) − f‖2 ≤
√

Γ (2γ + 7)Kξ(3+γ). (3.25)

Hence as ξ → 0 we obtain P4,ξ → unit operator I in the L2 norm.

Proof. In Proposition 21 we place p = q = 2 and r = 4. �

In general, for the L1 case, n = 0 we have

Proposition 23. It holds

‖P2,ξf − f‖1 ≤ 5ω2(f, ξ)1. (3.26)

Hence as ξ → 0 we get P2,ξ → I in the L1 norm.

Proof. In the proof of Proposition 2 of [2] we use r = 2. �

Proposition 24. We assume the following Lipschitz condition: ωr (f, δ)1 ≤ Kδr−1+γ, K > 0,

0 < γ ≤ 1, for any δ > 0. Then

‖Pr,ξf − f‖1 ≤ KΓ (r + γ)ξr−1+γ. (3.27)
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Hence as ξ → 0 we get Pr,ξ → I in the L1 norm.

Proof. As in the proof of Proposition 2 of [2] we get

∫∞

−∞

|Pr,ξ(f; x) − f(x)| dx ≤ 1

ξ

∫∞

0

ωr(f, t)1e−t/ξdt

≤ K

ξ

∫∞

0

tr−1+γe−t/ξdt

= KΓ (r + γ) ξr−1+γ, (3.28)

proving the claim. �

Corollary 25. Assume the following Lipschitz condition: ω2 (f, δ)1 ≤ Kδ1+γ, K > 0, 0 < γ ≤
1, for any δ > 0. Then

‖P2,ξf − f‖1 ≤ KΓ (2 + γ)ξ1+γ. (3.29)

Hence as ξ → 0 we get P2,ξ → I in the L1 norm.

Proof. In Proposition 24 we place r = 2. �

In the next we consider f ∈ Cn(R) and f(n) ∈ Lp(R), n = 0 or n ≥ 2 even, 1 ≤ p < ∞ and

the similar smooth singular operator of symmetric convolution type

Pξ(f; x) =
1

2ξ

∫∞

−∞

f(x + y)e−|y|/ξdy, for all x ∈ R, ξ > 0. (3.30)

Denote

K(x) := Pξ(f; x) − f(x) −

n/2∑

ρ=1

f(2ρ)(x)ξ2ρ. (3.31)

We give

Theorem 26. Let n ≥ 2 even and the rest as above. Then

‖K(x)‖2 ≤
(
√

τ̃

20(2n − 1)

)

ξn

(n − 1)!
ω2(f(n), ξ)2, (3.32)

where

0 < τ̃ =

(∫∞

0

(1 + x)5x2n−1e−xdx − (2n − 1)!

)

< ∞. (3.33)

Hence as ξ → 0 we get ‖K(x)‖2 → 0.

If additionally f(2m) ∈ L2(R),m = 1, 2, . . . , n
2

then ‖Pξ(f) − f‖2 → 0, as ξ → 0.

Proof. In the proof of Theorem 3 of [2] we use p = q = 2. �
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It follows a Lipschitz type approximation result.

Theorem 27. Let p, q > 1 such that 1
p

+ 1
q

= 1, n ≥ 2 even and the rest as above. Furthermore

we assume the following Lipschitz condition: ω2

(

f(n), δ
)

p
≤ Kδγ+1, K > 0, 0 < γ ≤ 1, for any

δ > 0.Then

‖K(x)‖p ≤
(

2

p

)(γ+n+1)
K [Γ (p (γ + n + 1) + 1)]

1/p

(n − 1)!q1/qp1/p(q(n − 1) + 1)1/q [p (γ + 1) + 1]
1/p

ξγ+n+1. (3.34)

Hence as ξ → 0 we get ‖K(x)‖p → 0.

If additionally f(2m) ∈ Lp(R),m = 1, 2, . . . , n
2

then ‖Pξ(f) − f‖p → 0, as ξ → 0.

Proof. As in the proof of Theorem 3, of [2] we find

∫∞

−∞

|K(x)|pdx ≤ c2

(∫∞

0

(∫y

0

ω2(f(n), t)p
pdt

)

ypn−1e−py/(2ξ)dy

)

≤ Kpc2

(∫∞

0

(

yp(γ+1)+1

p (γ + 1) + 1

)

ypn−1e−py/(2ξ)dy

)

=
Kpc2

p (γ + 1) + 1

(

2

p

)p(γ+n+1)+1(∫∞

0

zp(γ+n+1)e−z/ξdz

)

(2.3)
=

Kpc2Γ (p (γ + n + 1) + 1)

p (γ + 1) + 1

(

2

p

)p(γ+n+1)+1

ξp(γ+n+1)+1. (3.35)

where here we denoted

c2 :=
1

2ξqp/q((n − 1)!)p(q(n − 1) + 1)p/q
. (3.36)

We have established the claim of the theorem. �

Corollary 28. Assume the following Lipschitz condition: ω2 (f′′, δ)2 ≤ Kδγ+1, K > 0, 0 <

γ ≤ 1, for any δ > 0, and the rest as above in this section.Then

‖K(x)‖2 ≤
√

Γ (2γ + 7)

6γ + 9

K

2
ξγ+3. (3.37)

Hence as ξ → 0 we get ‖K(x)‖2 → 0.

If additionally f′′ ∈ L2(R), then ‖Pξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 27 we place p = q = n = 2. �

Theorem 29. Let f ∈ C2(R) and f′′ ∈ L1(R). Here K(x) = Pξ(f; x) − f(x) − f′′(x)ξ2. Then

‖K(x)‖1 ≤ 8ω2(f′′, ξ)1ξ2. (3.38)

Hence as ξ → 0 we obtain ‖K(x)‖1 → 0.
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Also ‖Pξ(f) − f‖1 → 0, as ξ → 0.

Proof. In the proof of Theorem 4 of [2] we use n = 2. �

The Lipschitz case of p = 1 follows.

Theorem 30. Let f ∈ Cn(R) and f(n) ∈ L1(R), n ≥ 2 even. Furthermore we assume the

following Lipschitz condition: ω2

(

f(n), δ
)

1
≤ Kδγ+1, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖K(x)‖1 ≤ Γ (γ + n + 2) K

2(n − 1)! (γ + 2)
ξγ+n+1. (3.39)

Hence as ξ → 0 we obtain ‖K(x)‖1 → 0.

If additionally f(2m) ∈ L1(R),m = 1, 2, . . . , n
2

then ‖Pξ(f) − f‖1 → 0, as ξ → 0.

Proof. As in the proof of Theorem 4 of [2] we have

‖K(x)‖1 ≤ 1

2ξ

(∫∞

0

(∫y

0

ω2(f(n), t)1dt

)

yn−1

(n − 1)!
e−y/ξdy

)

≤ 1

2ξ

(∫∞

0

(∫y

0

Ktγ+1dt

)

yn−1

(n − 1)!
e−y/ξdy

)

=
K

2ξ(n − 1)! (γ + 2)

(∫∞

0

yγ+n+1e−y/ξdy

)

(2.3)
=

Γ (γ + n + 2) K

2(n − 1)! (γ + 2)
ξγ+n+1. (3.40)

We have proved the claim of the theorem. �

Corollary 31. Let f ∈ C6(R) and f(6) ∈ L1(R). Furthermore we assume the following

Lipschitz condition: ω2

(

f(6), δ
)

1
≤ Kδγ+1, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖K(x)‖1 ≤ Γ (γ + 8)K

240 (γ + 2)
ξγ+7. (3.41)

Hence as ξ → 0 we obtain ‖K(x)‖1 → 0.

If additionally f(2m) ∈ L1(R),m = 1, 2, 3 then ‖Pξ(f) − f‖1 → 0, as ξ → 0.

Proof. In Theorem 30 we place n = 6. �

The case of n = 0 follows.

Proposition 32. Let f as above in this section. Then

‖Pξ(f) − f‖2 ≤
√

65

2
ω2(f, ξ)2. (3.42)

Hence as ξ → 0 we obtain Pξ → I in the L2 norm.
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Proof. In the proof of Proposition 3 of [2] we use p = q = 2. �

The related Lipschitz case for n = 0 comes next.

Proposition 33. Let p, q > 1 such that 1
p

+ 1
q

= 1 and the rest as above. Furthermore we

assume the following Lipschitz condition: ω2 (f, δ)p ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.

Then

‖Pξ(f) − f‖p ≤
(

2

p

)1+γ
[Γ ((1 + γ)p + 1)]

1/p
K

q1/qp1/p
ξ1+γ. (3.43)

Hence as ξ → 0 we obtain Pξ → I in the Lp norm, p > 1.

Proof. As in the proof of Proposition 3 of [2] we get
∫∞

−∞

|Pξ(f; x) − f(x)|pdx ≤ 1

2ξqp/q

(∫∞

0

ω2(f, y)p
pe−py/(2ξ)dy

)

≤ Kp

2ξqp/q

(∫∞

0

y(1+γ)pe−py/(2ξ)dy

)

(2.3)
=

Kp

qp/qp

(

2

p

)(1+γ)p

Γ ((1 + γ)p + 1) ξ(1+γ)p. (3.44)

The proof of the claim is now completed. �

A particular example follows

Corollary 34. Let f as above in this section. Furthermore we assume the following Lipschitz

condition: ω2 (f, δ)2 ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖Pξ(f) − f‖2 ≤ K

2

√

Γ (3 + 2γ)ξ1+γ. (3.45)

Hence as ξ → 0 we obtain Pξ → I in the L2 norm.

Proof. In Proposition 33 we place p = q = 2. �

It follows the Lipschitz type result

Proposition 35. Assume the following Lipschitz condition: ω2 (f, δ)1 ≤ Kδγ+1, K > 0,

0 < γ ≤ 1, for any δ > 0. It holds,

‖Pξf − f‖1 ≤ K

2
Γ (γ + 2)ξγ+1. (3.46)

Hence as ξ → 0 we get Pξ → I in the L1 norm.

Proof. As in the proof of Proposition 4 of [2] we derive
∫∞

−∞

|Pξ(f; x) − f(x)|dx ≤ 1

2ξ

∫∞

0

ω2(f, y)1e−y/ξdy

≤ 1

2ξ

∫∞

0

Kyγ+1e−y/ξdy

(2.3)
=

K

2
Γ (γ + 2) ξγ+1, (3.47)
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proving the claim. �

4. Convergence with Rates of Smooth Gauss Weierstrass

Singular Integral Operators

In the next we deal with the following smooth Gauss Weierstrass singular integral operators

Wr,ξ(f; x) defined as follows.

For r ∈ N and n ∈ Z+ we set αj’s as in (2.1).

Let f : R → R be Lebesgue measurable, we define for x ∈ R, ξ > 0 the Lebesgue integral

Wr,ξ(f; x) :=
1√
πξ

∫∞

−∞





r∑

j=0

αjf(x + jt)



 e−t2/ξdt. (4.1)

We assume that Wr,ξ(f; x) ∈ R for all x ∈ R.

We mention the useful here formula
∫∞

0

tke−t2/ξdt =
1

2
Γ

(

k + 1

2

)

ξ
k+1

2 , for any k > −1. (4.2)

We also need to introduce δk’s as in (2.4).

Proposition 36. Let f ∈ C1(R) be defined as above in this section, and assume that

W2,ξ(f; x) ∈ R for all x ∈ R. Then

|W2,ξ(f; x) − f(x)| ≤ 2√
πξ

∫∞

0

(∫ |t|

0

ω2(f′, w)dw

)

e− t2

ξ dt. (4.3)

Proof. In Theorem 1 of [3] we use n = 1, r = 2. �

We present the Lipschitz type result corresponding to the Theorem 1 of [3].

Theorem 37. Let f ∈ Cn(R), n ∈ Z
+ and assume that Wr,ξ(f; x) ∈ R for all x ∈ R. Furthermore

we assume the following Lipschitz condition: ωr

(

f(n), δ
)

≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any

δ > 0. Then it holds that
∣

∣

∣

∣

∣

∣

Wr,ξ(f; x) − f(x) −

⌊n/2⌋∑

m=1

f(2m)(x)δ2m

1

m!

(

ξ

4

)m

∣

∣

∣

∣

∣

∣

≤ K√
π

Γ (γ + r)

Γ (n + γ + r)
Γ

(

n + r + γ

2

)

ξ
n+r+γ−1

2 . (4.4)
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In L.H.S.(4.4) the sum collapses when n = 1.

Proof. As in the proof of Theorem 1, of [3], we get again that

Wr,ξ(f; x) − f(x) =

n∑

k=1

f(k)(x)

k!
δk

1√
πξ

(∫∞

−∞

tke− t2

ξ dt

)

+ R∗
n, (4.5)

where

R∗
n :=

1√
πξ

∫∞

−∞

Rn(0, t)e− t2

ξ dt, (4.6)

with

Rn(0, t) :=

∫t

0

(t − w)n−1

(n − 1)!
τ(w)dw, (4.7)

and

τ(w) :=

r∑

j=0

αjj
nf(n)(x + jw) − δnf(n)(x).

Also we get

|Rn(0, t)| ≤
∫ |t|

0

(|t| − w)n−1

(n − 1)!
ωr(f

(n), w)dw. (4.8)

Using the Lipschitz type condition we obtain again

|Rn(0, t)| ≤ K|t|n+r+γ−1Γ (γ + r)

Γ (n + γ + r)
, (4.9)

and, using (4.2), we obtain

|R∗
n| ≤ 1√

πξ

∫∞

−∞

K|t|n+r+γ−1Γ (γ + r)

Γ (n + γ + r)
e− t2

ξ dt

=
K√
πξ

Γ (γ + r)

Γ (n + γ + r)

∫∞

−∞

|t|n+r+γ−1e− t2

ξ dt

=
2K√
πξ

Γ (γ + r)

Γ (n + γ + r)

∫∞

0

tn+r+γ−1e− t2

ξ dt

(4.2)
=

K√
π

Γ (γ + r)

Γ (n + γ + r)
Γ

(

n + r + γ

2

)

ξ
n+r+γ−1

2 . (4.10)

We notice also that

Wr,ξ(f; x) − f(x) −

n∑

k=1

f(k)(x)

k!
δk

1√
πξ

(∫∞

−∞

tke− t2

ξ dt

)

=

Wr,ξ(f; x) − f(x) −

⌊n
2
⌋∑

m=1

[

f(2m)(x)

(2m)!
√

π
δ2mΓ

(

2m + 1

2

)

ξm

]

= R∗
n. (4.11)
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Furthermore we have that
1

(2m)!
√

π
Γ

(

2m + 1

2

)

=

=
1

(2m) · (2m − 1) · ... · 3 · 2 · 1 · 1√
π
· 2m − 1

2
· 2m − 3

2
· ... · 3

2
· 1

2
Γ

(

1

2

)

=
1

m!

(

1

4

)m

. (4.12)

By (4.10), (4.11) and (4.12) we complete the proof of the theorem. �

Corollary 38. Let f ∈ C1(R), and assume that W2,ξ(f; x) ∈ R for all x ∈ R. Furthermore we

assume the following Lipschitz condition: ω2 (f′, δ) ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.

Then

|W2,ξ(f; x) − f(x)| ≤ K

(γ + 2)
√

π
Γ

(

3 + γ

2

)

ξ
2+γ

2 . (4.13)

Proof. In Theorem 37 we use n = 1, r = 2. �

For the case n = 0 we have

Theorem 39. Let f be defined as above in this section, with n = 0. Furthermore we assume

the following Lipschitz condition: ωr (f, δ) ≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. It holds

that

|Wr,ξ(f; x) − f(x)| ≤ K√
π

Γ

(

r + γ

2

)

ξ
r+γ−1

2 . (4.14)

Proof. As in the proof of Corollary 1, of [3], with n = 0, using the Lipschitz type condition,

we get that

|Wr,ξ(f; x) − f(x)| ≤ 2√
πξ

∫∞

0

ωr(f, t)e
− t2

ξ dt

≤ 2√
πξ

∫∞

0

Ktr−1+γe− t2

ξ dt

(4.2)
=

K√
π

Γ

(

r + γ

2

)

ξ
r+γ−1

2 . (4.15)

This completes the proof of Theorem 39. �

Corollary 40. Let f be defined as above in this section, with n = 0. Furthermore we assume

the following Lipschitz condition: ω2 (f, δ) ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|W2,ξ(f; x) − f(x)| ≤ K√
π

Γ

(

2 + γ

2

)

ξ
γ+1

2 . (4.16)

Proof. In Theorem 39 we use r = 2. �
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In the next we consider f ∈ Cn(R), n ≥ 2 even and the simple smooth singular operator of

symmetric convolution type

Wξ(f, x0) :=
1√
πξ

∫∞

−∞

f(x0 + y)e−y2/ξdy, for all x0 ∈ R, ξ > 0. (4.17)

That is

Wξ(f; x0) =
1√
πξ

∫∞

0

(f(x0 + y) + f(x0 − y)) e−y2/ξdy, for all x0 ∈ R, ξ > 0. (4.18)

We assume that f is such that

Wξ(f; x0) ∈ R, ∀x0 ∈ R,∀ξ > 0 and ω2(f(n), h) < ∞, h > 0.

Note that W1,ξ = Wξ and if Wξ(f; x0) ∈ R then Wr,ξ(f; x0) ∈ R.

Proposition 41. Assume f ∈ Cn(R),ω2(f, h) < ∞, h > 0. Furthermore we assume the

following Lipschitz condition: ω2 (f, δ) ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖Wξ(f) − f‖∞ ≤ K

2
√

π
Γ

(

2 + γ

2

)

ξ
γ+1

2 . (4.19)

Proof. Using Proposition 1 of [3] we obtain

|Wξ(f; x0) − f(x0)| ≤ 1√
πξ

∫∞

0

ω2(f, y)e−y2/ξdy

≤ 1√
πξ

∫∞

0

Ky1+γe−y2/ξdy

(4.2)
=

K

2
√

π
Γ

(

2 + γ

2

)

ξ
γ+1

2 , (4.20)

proving the claim of the proposition. �

Define the quantity

K2(x0) := Wξ(f; x0) − f(x0) −

n/2∑

ρ=1

f(2ρ)(x0)
1

ρ!

(

ξ

4

)ρ

. (4.21)

We give

Theorem 42. Let f ∈ Cn(R), n even, Wξ(f) real valued. Furthermore we assume the following

Lipschitz condition: ω2

(

f(n), δ
)

≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|K2(x0)| ≤ K

n!2
√

π
Γ

(

n + γ + 2

2

)

ξ
n+γ+1

2 . (4.22)
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Proof. Using Theorem 6 of [3] we obtain

|K2(x0)| ≤ 1

n!
√

πξ

∫∞

0

ω2(f(n), y)yne−y2/ξdy

≤ 1

n!
√

πξ

∫∞

0

Ky1+γyne−y2/ξdy

(4.2)
=

K

n!2
√

π
Γ

(

n + γ + 2

2

)

ξ
n+γ+1

2 , (4.23)

proving the claim of the theorem. �

In particular we have

Corollary 43. Let f ∈ C4(R) such that Wξ(f) is real valued. Furthermore we assume the

following Lipschitz condition: ω2

(

f(4), δ
)

≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

|K2(x0)| ≤ K

48
√

π
Γ

(

γ + 6

2

)

ξ
γ+5

2 . (4.24)

Proof. In Theorem 42 we use n = 4. �

We also give

Corollary 44. Let f ∈ C2(R), such that

ω2(f′′, |y|) ≤ 2A|y|γ, 0 < γ ≤ 2, A > 0.

Then for x0 ∈ R we have
∣

∣

∣

∣

Wξ(f; x0) − f(x0) −
f′′(x0)ξ

4

∣

∣

∣

∣

≤ A

(γ + 1)(γ + 2)
√

π
Γ

(

3 + γ

2

)

ξ
2+γ

2 . (4.25)

Inequality (4.25) is sharp, namely it is attained at x0 = 0 by

f∗(y) =
A|y|γ+2

(γ + 1)(γ + 2)
.

Proof. In Theorem 7 of [3] we use n = 2. �

We also give

Corollary 45. Assume that ω2(f, ξ) < ∞ and n = 0. Then

‖W2,ξ(f) − f‖∞ ≤
[

2√
π

+
3

2

]

ω2(f,
√

ξ). (4.26)
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and as ξ → 0,

W2,ξ
u
→ I with rates.

Proof. By formula (37) of [3] with r = 2. �

Define the quantity

K1 :=

∥

∥

∥

∥

∥

∥

Wr,ξ(f; x) − f(x) −

⌊n/2⌋∑

m=1

f(2m)(x)δ2m

1

m!

(

ξ

4

)m

∥

∥

∥

∥

∥

∥

∞ ,x

. (4.27)

We present

Corollary 46. Assuming f ∈ C2(R) and ω2(f′′, ξ) < ∞, ξ > 0 we have

K1 =

∥

∥

∥

∥

W2,ξ(f; x) − f(x) − f′′(x)δ2

ξ

4

∥

∥

∥

∥

∞ ,x

≤
{

1

3
√

π
+

5

16

}

ω2(f′′,
√

ξ)ξ. (4.28)

That is as ξ → 0 we get W2,ξ → I, pointwise with rates, given that ‖f′′‖∞ < ∞.

Proof. In Theorem 11 of [3] we use r = n = 2. �

We also present

Corollary 47. Assuming f ∈ C2(R) and ω2(f′′, ξ) < ∞, ξ > 0 we have

∥

∥K2(x)
∥

∥

∞ ,x
=

∥

∥

∥

∥

Wξ(f; x0) − f(x0) − f′′(x0)
ξ

4

∥

∥

∥

∥

∞ ,x

≤
{

1

6
√

π
+

5

32

}

ω2(f′′,
√

ξ)ξ. (4.29)

That is as ξ → 0 we get Wξ → I, pointwise with rates, given that ‖f′′‖∞ < ∞.

Proof. In Theorem 12 of [3] we use n = 2. �

5. Lp Convergence with Rates of Smooth Gauss Weierstrass

Singular Integral Operators

For r ∈ N and n ∈ Z+ we let αj as in (2.1).
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Let f ∈ Cn(R) and f(n) ∈ Lp(R), 1 ≤ p < ∞, we define for x ∈ R, ξ > 0 the Lebesgue integral

Wr,ξ(f; x) as in (4.1).

The rth Lp-modulus of smoothness ωr(f
(n), h)p was defined in (3.1). Here we have that

ωr(f
(n), h)p < ∞, h > 0.

The δk’s were introduced in (2.4).

We define

∆(x) := Wr,ξ(f; x) − f(x) −

⌊n/2⌋∑

m=1

f(2m)(x)δ2m

1

m!

(

ξ

4

)m

. (5.1)

We have the following results.

Corollary 48. Let n ∈ N and the rest as above in this section. Then

‖∆(x)‖2 ≤
√

2τξ
n
2

(n − 1)! 4
√

π
√

(2r + 1) (2n − 1)
ωr(f

(n),
√

ξ)2, (5.2)

where

0 < τ :=

[∫∞

0

(1 + u)
2r+1

u2n−1e−u2

du −

∫∞

0

u2n−1e−u2

du

]

< ∞. (5.3)

Hence as ξ → 0 we obtain ‖∆(x)‖2 → 0.

If additionally f(2m) ∈ L2(R),m = 1, 2, . . . ,
⌊

n
2

⌋

then ‖Wr,ξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 1 of [4], we place p = q = 2. �

Corollary 49. Let f be as above in this section. In particular, for n = 1, we have

‖Wr,ξ(f; ·) − f‖2 ≤
√

2τ

4
√

π
√

(2r + 1)

√

ξωr(f
′,
√

ξ)2, (5.4)

where

0 < τ :=

[∫∞

0

(1 + u)
2r+1

ue−u2

du −
1

2

]

< ∞. (5.5)

Hence as ξ → 0 we obtain ‖Wr,ξ(f; ·) − f‖2 → 0.

Proof. In Theorem 1 of [4], we place p = q = 2, n = 1. �

Corollary 50. Let f be as above in this section and n = 2. Then

‖Wr,ξ(f; x) − f(x) −
f′′(x)δ2

4
ξ‖2 ≤

√
2τ

4
√

π
√

3 (2r + 1)
ξωr(f

′′,
√

ξ)2, (5.6)
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where

0 < τ :=

[∫∞

0

(1 + u)
2r+1

u3e−u2

du −
1

2

]

< ∞. (5.7)

Hence as ξ → 0 we obtain ‖∆(x)‖2 → 0.

If additionally f′′ ∈ L2(R), then ‖Wr,ξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 1 of [4], we place p = q = n = 2. �

Next we present the Lipschitz type result corresponding to Theorem 1 of [4].

Theorem 51. Let p, q > 1 such that 1
p

+ 1
q

= 1, n ∈ N, and the rest as above in this

section. Furthermore we assume the following Lipschitz condition: ωr

(

f(n), δ
)

p
≤ Kδr−1+γ, K > 0,

0 < γ ≤ 1, for any δ > 0.Then

‖∆(x)‖p ≤

(

Γ
(

p(r−1+γ+n)+1

2

))
1
p

2
(r+γ+n)

2 Kξ
(r−1+γ+n)

2

[

(n − 1)!p
r− 1

q
+γ+n

2 q
1

2q π
1

2p (q(n − 1) + 1)
1
q (p (r − 1 + γ) + 1)

1
p

] . (5.8)

Hence as ξ → 0 we obtain ‖∆(x)‖p → 0.

If additionally f(2m) ∈ Lp(R),m = 1, 2, . . . ,
⌊

n
2

⌋

then ‖Wr,ξ(f) − f‖p → 0, as ξ → 0.

Proof. As in the proof of Theorem 1, [4], we get again

I :=

∫∞

−∞

|∆(x)|pdx ≤ c1

(∫∞

−∞

(∫ |t|

0

ωr(f
(n), w)p

pdw

)

|t|np−1e− pt2

2ξ dt

)

, (5.9)

where

c1 :=
2

p−1
2

q
p−1

2

√
πξ((n − 1)!)p(q(n − 1) + 1)p/q

. (5.10)

Using the Lipschitz condition, we obtain

I ≤ c1

(∫∞

−∞

(∫ |t|

0

(

Kwr−1+γ
)p

dw

)

|t|np−1e− pt2

2ξ dt

)

=
c1Kp

(p (r − 1 + γ) + 1)

(∫∞

−∞

|t|p(r−1+γ+n)e− pt2

2ξ dt

)

=
2c1Kp

(p (r − 1 + γ) + 1)

(∫∞

0

tp(r−1+γ+n)e− pt2

2ξ dt

)

(4.2)
=

c1KpΓ
(

p(r−1+γ+n)+1

2

)

(p (r − 1 + γ) + 1)

(

2

p

)

p(r−1+γ+n)+1

2

ξ
p(r−1+γ+n)+1

2 . (5.11)
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Thus we obtain

I ≤
Kp2

p(r+γ+n)

2 Γ
(

p(r−1+γ+n)+1

2

)

ξ
p(r−1+γ+n)

2

q
p−1

2

√
π((n − 1)!)p(q(n − 1) + 1)p/q (p (r − 1 + γ) + 1) p

p(r−1+γ+n)+1

2

. (5.12)

That is finishing the proof of the theorem. �

In particular we have

Corollary 52. Let f such that the following Lipschitz condition holds: ω7

(

f(4), δ
)

2
≤ Kδ6+γ,

K > 0, 0 < γ ≤ 1, for any δ > 0, and the rest as above in this section. Then

‖∆(x)‖2 ≤ K

6

√

√

√

√

Γ
(

2γ+21
2

)

7
√

π (2γ + 13)
ξ

(γ+10)

2 . (5.13)

Hence as ξ → 0 we obtain ‖∆(x)‖2 → 0.

If additionally f(2m) ∈ L2(R),m = 1, 2, then ‖W7,ξ(f) − f‖2 → 0, as ξ → 0.

Proof. In Theorem 51 we place p = q = 2, n = 4, and r = 7. �

The counterpart of Theorem 51 follows, case of p = 1.

Theorem 53. Let f ∈ Cn(R) and f(n) ∈ L1(R), n ∈ N. Furthermore we assume the following

Lipschitz condition: ωr

(

f(n), δ
)

1
≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.Then

‖∆(x)‖1 ≤ K

(n − 1)! (r + γ)
√

π
Γ

(

r + γ + n

2

)

ξ
r+γ+n−1

2 . (5.14)

Hence as ξ → 0 we obtain ‖∆(x)‖1 → 0.

If additionally f(2m) ∈ L1(R),m = 1, 2, . . . ,
⌊

n
2

⌋

then ‖Wr,ξ(f) − f‖1 → 0, as ξ → 0.

Proof. As in the proof of Theorem 2, [4] we get

‖∆(x)‖1 ≤ 1

(n − 1)!
√

πξ

(∫∞

−∞

(∫ |t|

0

ωr(f
(n), w)1dw

)

|t|n−1e−t2/ξdt

)

. (5.15)

Consequently we have
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‖∆(x)‖1 ≤ 1

(n − 1)!
√

πξ

(∫∞

−∞

(∫ |t|

0

Kwr−1+γdw

)

|t|n−1e−t2/ξdt

)

=
K

(n − 1)!
√

πξ

(∫∞

−∞

(

|t|r+γ

r + γ

)

|t|n−1e−t2/ξdt

)

=
K

(n − 1)! (r + γ)
√

πξ

(∫∞

−∞

|t|r+γ+n−1e−t2/ξdt

)

=
2K

(n − 1)! (r + γ)
√

πξ

(∫∞

0

tr+γ+n−1e−t2/ξdt

)

(4.2)
=

K

(n − 1)! (r + γ)
√

πξ
Γ

(

r + γ + n

2

)

ξ
r+γ+n

2 . (5.16)

We have gotten that

‖∆(x)‖1 ≤ K

(n − 1)! (r + γ)
√

π
Γ

(

r + γ + n

2

)

ξ
r+γ+n−1

2 . (5.17)

Hence the validity of (5.14). �

Corollary 54. Let f ∈ C2(R) and f′′ ∈ L1(R). Furthermore we assume the following Lipschitz

condition: ω2 (f′′, δ)1 ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.Then

‖∆(x)‖1 ≤ K

(2 + γ)
√

π
Γ

(

4 + γ

2

)

ξ
γ+3

2 . (5.18)

Hence as ξ → 0 we obtain ‖∆(x)‖1 → 0.

Also we get ‖W2,ξ(f) − f‖1 → 0, as ξ → 0.

Proof. In Theorem 53 we place n = r = 2. �

Next, when n = 0 we get

Proposition 55. Let r ∈ N and the rest as above. Then

‖Wr,ξ(f) − f‖2 ≤ 2
3
4 θ

1
2

q
1
4 π

1
4

ωr(f,
√

ξ)2, (5.19)

where

0 < θ :=

∫∞

0

(1 + t)
2r

e−t2

dt < ∞. (5.20)

Hence as ξ → 0 we obtain Wr,ξ → unit operator I in the L2 norm, p > 1.

Proof. In the proof of Proposition 1 of [4] we use p = q = 2. �

We continue with
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Proposition 56. Let p, q > 1 such that 1
p

+ 1
q

= 1 and the rest as above. Furthermore we

assume the following Lipschitz condition: ωr (f, δ)p ≤ Kδr−1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.

Then

‖Wr,ξ(f) − f‖p ≤ p

√

Γ

(

p(r − 1 + γ) + 1

2

)(

2

p

)
r+γ

2
(

p

q

)
1

2q K
p
√

π
ξ

(r−1+γ)

2 . (5.21)

Hence as ξ → 0 we obtain Wr,ξ → unit operator I in the Lp norm, p > 1.

Proof. As in the proof of Proposition 1 of [4] we find
∫∞

−∞

|Wr,ξ(f; x) − f(x)|pdx

≤ 2

(πξ)
p
2

(

2πξ

q

)
p

2q
∫∞

0

ωr(f, t)
p
pe− pt2

2ξ dt

≤ 2Kp

(πξ)
p
2

(

2πξ

q

)
p

2q
∫∞

0

tp(r−1+γ)e− pt2

2ξ dt

(4.2)
=

Kp

π
p
2

(

2π

q

)
p

2q
(

2

p

)

p(r−1+γ)+1

2

Γ

(

p(r − 1 + γ) + 1

2

)

ξ
p(r−1+γ)

2 . (5.22)

We have established the claim of the proposition. �

Corollary 57. Let f such that the following Lipschitz condition holds: ω4 (f, δ)2 ≤ Kδ3+γ,

K > 0, 0 < γ ≤ 1, for any δ > 0, and the rest as above in this section. Then

‖W4,ξ(f) − f‖2 ≤
√

Γ

(

2γ + 7

2

)

K√
π

ξ
(3+γ)

2 . (5.23)

Hence as ξ → 0 we obtain W4,ξ → unit operator I in the L2 norm.

Proof. In Proposition 56 we place p = q = 2 and r = 4. �

In the L1 case, n = 0 we have

Proposition 58. It holds

‖W2,ξf − f‖1 ≤
(

2√
π

+
3

2

)

ω2(f,
√

ξ)1. (5.24)

Hence as ξ → 0 we get W2,ξ → I in the L1 norm.

Proof. In the proof of Proposition 2 of [4] we use r = 2. �

Proposition 59. We assume the following Lipschitz condition: ωr (f, δ)1 ≤ Kδr−1+γ, K > 0,

0 < γ ≤ 1, for any δ > 0. Then

‖Wr,ξf − f‖1 ≤ K√
π

Γ

(

r + γ

2

)

ξ
r−1+γ

2 . (5.25)



44 Razvan A. Mezei CUBO
13, 3 (2011)

Hence as ξ → 0 we get Wr,ξ → I in the L1 norm.

Proof. As in the proof of Proposition 2 of [4] we get

∫∞

−∞

|Wr,ξ(f; x) − f(x)| dx ≤ 1√
πξ

∫∞

−∞

ωr(f, |t|)1e−t2/ξdt

≤ 1√
πξ

∫∞

−∞

K|t|r−1+γe−t2/ξdt

=
2K√
πξ

∫∞

0

tr−1+γe−t2/ξdt

(4.2)
=

K√
π

Γ

(

r + γ

2

)

ξ
r−1+γ

2 . (5.26)

We have proved the claim of the proposition. �

Corollary 60. Assume the following Lipschitz condition: ω2 (f, δ)1 ≤ Kδ1+γ, K > 0, 0 < γ ≤
1, for any δ > 0. Then

‖W2,ξf − f‖1 ≤ K√
π

Γ

(

2 + γ

2

)

ξ
1+γ

2 . (5.27)

Hence as ξ → 0 we get W2,ξ → I in the L1 norm.

Proof. In Proposition 59 we place r = 2. �

In the next we consider f ∈ Cn(R) and f(n) ∈ Lp(R), n = 0 or n ≥ 2 even, 1 ≤ p < ∞ and

the similar smooth singular operator of symmetric convolution type

Wξ(f; x) =
1√
πξ

∫∞

−∞

f(x + y)e−y2/ξdy, for all x ∈ R, ξ > 0. (5.28)

Denote

K(x) := Wξ(f; x) − f(x) −

n/2∑

ρ=1

f(2ρ)(x)

ρ!
·
(

ξ

4

)ρ

. (5.29)

We give

Theorem 61. Let n ≥ 2 even and the rest as above. Then

‖K(x)‖2 ≤
√

τ̃

10
√

π (2n − 1)

ξ
n
2

(n − 1)!
ω2(f(n),

√

ξ)2, (5.30)

where

0 < τ̃ =

∫∞

0

(

(1 + u)
5

− 1
)

u2n−1e−u2

du < ∞. (5.31)

Hence as ξ → 0 we get ‖K(x)‖2 → 0.



CUBO
13, 3 (2011)

Applications and Lipschitz results . . . 45

If additionally f(2m) ∈ L2(R),m = 1, 2, . . . , n
2

then ‖Wξ(f) − f‖2 → 0, as ξ → 0.

Proof. In the proof of Theorem 3 of [4] we use p = q = 2. �

It follows a Lipschitz type approximation result.

Theorem 62. Let p, q > 1 such that 1
p

+ 1
q

= 1, n ≥ 2 even and the rest as above. Furthermore

we assume the following Lipschitz condition: ω2

(

f(n), δ
)

p
≤ Kδγ+1, K > 0, 0 < γ ≤ 1, for any

δ > 0.Then

‖K(x)‖p ≤
K
[

Γ
(

p(γ+n+1)+1

2

)]
1
p

√
2π

1
2p (n − 1)!p

1
2p q

1
2q [q(n − 1) + 1]

1
q [p (γ + 1) + 1]

1
p

(

2

p

)

(γ+n+1)

2

ξ
(γ+n+1)

2 .

(5.32)

Hence as ξ → 0 we get ‖K(x)‖p → 0.

If additionally f(2m) ∈ Lp(R),m = 1, 2, . . . , n
2

then ‖Wξ(f) − f‖p → 0, as ξ → 0.

Proof. As in the proof of Theorem 3, of [4] we find

∫∞

−∞

|K(x)|pdx ≤ c2

(∫∞

0

(∫y

0

ω2(f(n), t)p
pdt

)

ypn−1e− py2

2ξ dy

)

≤ Kpc2

(∫∞

0

(

yp(γ+1)+1

p (γ + 1) + 1

)

ypn−1e− py2

2ξ dy

)

=
Kpc2

p (γ + 1) + 1

(∫∞

0

yp(γ+n+1)e− py2

2ξ dy

)

(4.2)
=

Kpc2

p (γ + 1) + 1

(

2

p

)

p(γ+n+1)+1

2

·1
2
Γ

(

p (γ + n + 1) + 1

2

)

ξ
p(γ+n+1)+1

2 . (5.33)

where here we denoted

c2 :=
1

2
p

2q q
p

2q (q(n − 1) + 1)p/q ((n − 1)!)
p √

πξ
. (5.34)

We have established the claim of the theorem. �

Corollary 63. Assume the following Lipschitz condition: ω2 (f′′, δ)2 ≤ Kδγ+1, K > 0, 0 <

γ ≤ 1, for any δ > 0, and the rest as above in this section.Then

‖K(x)‖2 ≤

√

√

√

√

[

Γ
(

2γ+7
2

)]

√
π [6γ + 9]

K

2
ξ

(γ+3)

2 . (5.35)

Hence as ξ → 0 we get ‖K(x)‖2 → 0.

If additionally f′′ ∈ L2(R), then ‖Wξ(f) − f‖2 → 0, as ξ → 0.
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Proof. In Theorem 62 we place p = q = n = 2. �

Theorem 64. Let f ∈ C2(R) and f′′ ∈ L1(R). Here K(x) = Wξ(f; x) − f(x) −
f′′(x)

4
ξ. Then

‖K(x)‖1 ≤
(

1

2
√

π
+

3

8

)

ω2(f′′,
√

ξ)1ξ. (5.36)

Hence as ξ → 0 we obtain ‖K(x)‖1 → 0.

Also ‖Wξ(f) − f‖1 → 0, as ξ → 0.

Proof. In the proof of Theorem 4 of [4] we use n = 2. �

The Lipschitz case of p = 1 follows.

Theorem 65. Let f ∈ Cn(R) and f(n) ∈ L1(R), n ≥ 2 even. Furthermore we assume the

following Lipschitz condition: ω2

(

f(n), δ
)

1
≤ Kδγ+1, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖K(x)‖1 ≤
Γ
(

γ+n+2
2

)

K

(n − 1)! (γ + 2) 2
√

π
ξ

γ+n+1
2 . (5.37)

Hence as ξ → 0 we obtain ‖K(x)‖1 → 0.

If additionally f(2m) ∈ L1(R),m = 1, 2, . . . , n
2

then ‖Wξ(f) − f‖1 → 0, as ξ → 0.

Proof. As in the proof of Theorem 4 of [4] we have

‖K(x)‖1 ≤ 1√
πξ

∫∞

0

((∫y

0

ω2(f(n), t)1dt

)

yn−1

(n − 1)!
e−y2/ξ

)

dy

≤ 1√
πξ

∫∞

0

((∫y

0

Ktγ+1dt

)

yn−1

(n − 1)!
e−y2/ξ

)

dy

=
K

(n − 1)! (γ + 2)
√

πξ

∫∞

0

(

yγ+n+1e−y2/ξ
)

dy

(4.2)
=

Γ
(

γ+n+2
2

)

K

(n − 1)! (γ + 2) 2
√

π
ξ

γ+n+1
2 . (5.38)

We have proved the claim of the theorem. �

Corollary 66. Let f ∈ C6(R) and f(6) ∈ L1(R). Furthermore we assume the following

Lipschitz condition: ω2

(

f(6), δ
)

1
≤ Kδγ+1, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖K(x)‖1 ≤
Γ
(

γ+8
2

)

K

240 (γ + 2)
√

π
ξ

γ+7
2 . (5.39)

Hence as ξ → 0 we obtain ‖K(x)‖1 → 0.

If additionally f(2m) ∈ L1(R),m = 1, 2, 3 then ‖Wξ(f) − f‖1 → 0, as ξ → 0.
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Proof. In Theorem 65 we place n = 6. �

The case of n = 0 follows.

Proposition 67. Let f as above in this section. Then

‖Wξ(f) − f‖2 ≤
√

2√
π

+
19

16
ω2(f,

√

ξ)2. (5.40)

Hence as ξ → 0 we obtain Wξ → I in the L2 norm.

Proof. In the proof of Proposition 3 of [4] we use p = q = 2. �

The related Lipschitz case for n = 0 comes next.

Proposition 68. Let p, q > 1 such that 1
p

+ 1
q

= 1 and the rest as above. Furthermore we

assume the following Lipschitz condition: ω2 (f, δ)p ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0.

Then

‖Wξ(f) − f‖p ≤
(

2

p

)

(1+γ)

2

[

Γ
(

(1+γ)p+1

2

)]
1
p

K

π
1

2p p
1

2p q
1

2q

√
2

ξ
(1+γ)

2 . (5.41)

Hence as ξ → 0 we obtain Wξ → I in the Lp norm, p > 1.

Proof. As in the proof of Proposition 3 of [4] we get

∫∞

−∞

|Wξ(f; x) − f(x)|pdx ≤ 1
√

πξ (2q)
p

2q

∫∞

0

ω2(f, y)p
pe

−py2

2ξ dy

≤ 1
√

πξ (2q)
p

2q

∫∞

0

(

Ky1+γ
)p

e
−py2

2ξ dy

(4.2)
=

Kp

√
π (2q)

p
2q

(

2

p

)

(1+γ)p+1

2 1

2
Γ

(

(1 + γ) p + 1

2

)

ξ
(1+γ)p

2 . (5.42)

The proof of the claim is now completed. �

A particular example follows

Corollary 69. Let f as above in this section. Furthermore we assume the following Lipschitz

condition: ω2 (f, δ)2 ≤ Kδ1+γ, K > 0, 0 < γ ≤ 1, for any δ > 0. Then

‖Wξ(f) − f‖2 ≤ K

2

√

√

√

√

Γ
(

3+2γ
2

)

√
π

ξ
(1+γ)

2 . (5.43)

Hence as ξ → 0 we obtain Wξ → I in the L2 norm.

Proof. In Proposition 68 we place p = q = 2. �
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We finish with the Lipschitz type result

Proposition 70. Assume the following Lipschitz condition: ω2 (f, δ)1 ≤ Kδγ+1, K > 0,

0 < γ ≤ 1, for any δ > 0. It holds,

‖Wξf − f‖1 ≤ K

2
√

π
Γ

(

γ + 2

2

)

ξ
γ+1

2 . (5.44)

Hence as ξ → 0 we get Wξ → I in the L1 norm.

Proof. As in the proof of Proposition 4 of [4] we derive

∫∞

−∞

|Wξ(f; x) − f(x)|dx ≤ 1√
πξ

∫∞

0

ω2(f, y)1e−y2/ξdy

≤ 1√
πξ

∫∞

0

Kyγ+1e−y2/ξdy

(4.2)
=

K

2
√

π
Γ

(

γ + 2

2

)

ξ
γ+1

2 . (5.45)

We have established the claim. �
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