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ABSTRACT

In this paper, an infinitesimal transformation X' = x' + ev! (x}), where the vector
v! is recurrent has been considered in an NPR- Finsler space. Such transformation
is being called special recurrent transformation if the recurrence vector of the NPR-
Finsler space is Lie invariant. Besides different properties of such transformation, the
conditions for such transformation to be curvature collineation and an affine motion
have been obtained.

RESUMEN

En este articulo se considera una transformacion infinitesimal x* = x*+ev! (xJ), donde
el vector v es recurrente, en un espacio NPR- Finsler. Tal transformacién se dice
transformacién recurrente especial si el vector recurrente del espacio NPR- Finsler es
Lie invariante. Ademaés se han obtenido diferentes propiedades de dicha transformacion

v las condiciones para que ésta sea una colineacién de curvatura y una mocién afin.
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1 Introduction

Let an n-dimensional Finsler space F,, be equipped with fundamental metric function F(x*, x*),
metric tensor gij and Berwald connection G}“k. Covariant derivative of any tensor with respect to
Berwald connection is given by [6]

B T =T — (0, THGL X" + T] Gy — TLGT (1.1)
where 0y = % and 0, = %.

The commutation formulae for the operators By and 0y are given by

B Bi T — BB T = ThiHh, — THI e — (0, THHJ ., (1.3)
where
Gjkh = OnGjk, (1.4)
Hixn = 3;Gin + GhrjGE + G5 GLn —j/k (1.5)
and
Hie = Hienk™. (1.6)

The symbol -j/k means the subtraction of the earlier terms after interchanging j and k. The tensor
G}kh is symmetric in its lower indices and satisfies

Gink™ = Ginkx™ = Gijx™ =0 (1.7)
while the Berwald curvature tensor H}kh satisfies
(@) Hixn = —Hijn, (b) Hixn = OnHjy. (1.8)
The Berwald deviation tensor H} is defined by
(a) H} = Hjix, (b) Hix = 1/30xH} —j/k. (1.9)

Pandey[2] proved that the relation between the normal projective curvature tensor N}kh defined
by Yano [7] and the Berwald curvature tensor H}kh is given by

ol

. . X .
Njkn = Hjxn — mahH;krs (1.10)
Njxr = Hjkr. (1.11)

The relation between the tensors N}kh and H}k is given by

Njinx™ = Hy. (1.12)
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2 An NPR-Finsler Space

An NPR-Finsler space was defined by P. N. Pandey [2] in 1980. It is a Finsler space whose normal
projective curvature tensor N]@ k h satisfies

B Njkn = Am Nign, (2.1)

where A, is a covariant vector called recurrence vector. This vector is atmost a point function,
i.e. independent of the directional arguments.
It was observed by P. N. Pandey [2] that the tensors H}k and H} are recurrent in NPR-Finsler
space. Thus in an NPR-Finsler space, we have

(@) B Hix = AmHj,  (b) B Hj = A H. (2.2)

However, an NPR-Finsler space is not necessarily a recurrent Finsler space. Also, a recurrent
Finsler sapce is not necessarily an NPR-Finsler space. In another paper, P.N. Pandey [4] established
the following identities:

}\mN}kh+}\jN;’<mh+)\kNinjh:O) (2.3)
AmHicn + AjHimn + AcHb o =0, (2.4)
AmHje + A Him 4+ AcHL 5 =0, (2.5)

He further proved that in such space, the second Bianchi identity splits into the following identities:
Bm Hikn + BjHimn + B Hyjn =0, (2.6)
H« Ginr + Hym Ginr + Hypj Giny =0. (2.7)
Contracting the indices in (2.2b) and using H! = (n — 1)H, we get
B H = A, H. (2.8)
Differentiating (2.8) covariantly with respect to x* and taking skew-symmetric part, we have
(BnBm — B Br)H = A H (2.9)

where Ahm = %h }\m — %m )\h.
Using (1.3) in (2.9), we have
— O, HH] ., = Anm H, (2.10)

which after further covariant differentiation gives
— (B0, H)HL = (B Apm) H. (2.11)
Using the commutation formula (1.2) and the equation (2.10), we get

BrxAhm = Ak Ahm (2.12)
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provided H is non-vanishing. If we multiply (2.10) with Ay and take skew-symmetric part, we find
AMArm + A Amk +Am Axn =0 (2.13)

provided H # 0. Thus, we find that the recurrence vector A, of an NPR-Finsler space satisfies
(2.12) and (2.13) provided H # 0.

In view of the commutation formula given by (1.2), we get

0 Bm Ak — Bm A = —Ar Gl ik

which due to the fact that the recurrence vector is independent of x*, gives

% Bm A = A Gl k. (2.14)

Taking skew-symmetric part of (2.14), we get

3 Amx = 0. (2.15)
Now
aj%kAhm—%kajAhm :_ArmGkahl_AhrGkam (2.16)
which, in view of (2.12) and (2.15), gives
ArmGjrkh-f—AhTGjrkm:O. (2.17)

3 A Recurrent Vector Field in An NPR-Finsler space

A vector field vt is called recurrent if it satisfies
B vh= 109 vi. (3.1)

Differentiating (3.1) covariantly with respect to x) and using the commutation formula (1.3), we
get

Hijkhvh = ujkvi (3.2)
where wjx = Bj5 ux — By y;. The tensor pjx may or may not vanish. Let us consider the case
when pj # 0. From (1.10) and (3.2), we find

ol

. X . .
<N§kh + m ah Ngkr) Vh = ij\ll. (33)

Differentiating (3.3) covariantly with respect to x™, and using (2.1) and (3.1), we have

ol

. X . .
<7\m N, + e BmahN;kT) V= VB, (3.4)

which in view of (1.2), gives

) xt . xt )
Am<N}kh + T“F] On J'rkT)vh + n+1 (N;kr ;.mj + ersr ‘?Lmk) vh = vl%m”’jk' (35)
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From (3.3) and (3.5), we get

ol

(}\m Hijk — Bm p’jk)vi + vt (NTskr shmj + Nrjsr Shmk) = 0. (36)

n+1
Transvecting (3.6) by y; and using y; X' = F2, we get

. 2
(Am Hijk — %m ij)yivl + nL—th (Nrsk‘r Gshm] + Ngsr Gshmk) =0
which implies

vh

n+1

1 )
( rskr imj + Ngsr shmk) = 2 (%m Hijk — Am ujk)yivl . (3.7)
Using (3.7) in (3.6), we get
(Am ik — B ik )V — ULy (A pjx — By ) = 0 (3.8)

where 1! = x'/F and 1, = y,/F.

(3.8) may be rewritten as

()\m ij — SBm ij) (\1i — U lr\)r) = 0.
This implies at least one of the conditions

(a) Bm Uik = Am Bjk, (b) vi= 1T (3.9)
Suppose that the condition (3.9 b)holds. Then the partial differentiation with respect to x™ gives
0 = (OnlH)LV" 4+ UH(Onl v (3.10)

Using dnlt = 1(8% — 1') and Only = L(ghr — lnly) in (3.10),we find

0= (8 — L) Lv" + 1i(ghy — Ll )"

Contracting the indices i and h and using 8! =n and U"l, = 1, we get (n —1)l,v" =0.

This implies 1,v" = 0 for n # 1. In view of L,v" = 0, (3.9 b) gives v} = 0, a contradiction. Therefore
(3.9b) can not be true. Hence, we have (3.9a). From (2.4) and (3.2), we may deduce

Am Wik + Aj Hkm + Axmj = 0. (3.11)
This leads to:

Theorem 3.1. In an NPR-Finsler space admitting a recurrent vector field vt given by (5.1), the
tensor Wk either vanishes identically or is recurrent and satisfies the identity (3.11).

Differentiating (3.1) partially with respect to X and using the commutation formula (1.2), we
get
Gjir VI = (05 ) V' (3.12)
Transvecting (2.17) by v x™ and using (3.12), we get

Arm V" X™ 0y, = 0. (3.13)
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This gives at least one of the following conditions:
(@) Ay V" Xx™ = 0, (b) dy pp = O. (3.14)
If (3.14a) holds, then its partial drivatives with respect to x* gives
A v = 0. (3.15)
Transvecting (2.13) by v* and using (3.15), we find
MVEApm = 0. (3.16)

Since Apm # 0, we have
A vE = 0. (3.17)

Thus we have

Theorem 3.2. In an NPR-Fnsler space admitting a recurrent vector field v' characterized by
(3.1), we have at least one of the conditions (3.14b) and (3.17).

Suppose (3.14b) holds, then we have
0B tm = —Hr Gl (3.18)

Taking skew-symmetric part of (3.18) with respect to the indices k and m, we get

ajukm = 0. (319)

Differentiating (3.19) covariantly with respect to x™ and using commutation formula exhibitted by
(1.2) and the equation (3.9a), we find pym Gijn + Hxr Ghyyn = 0.

4 A Special Recurrent Transformation
An infinitesimal transformation
Xt = xt 4 evi(x¥) (4.1)

where v! is a covariant vector field and e is an infinitesimal constant, is called a special recurrent
transformation if the vector field v' is recurrent and the transformation does not deform the
recurrence vector A, of the NPR-Finsler space, i.e. if the vector field v satisfies (3.1) and

LA =0 (4.2)

where £ is the operator of Lie differentiation with respect to the infinitesimal transformation (4.1).
The necessary and sufficient condition for (4.1) to be an affine motion is given by

£GS, = 0. (4.3)
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Since every affine motion is a curvature collination, (4.3) implies

Operating (1.10) by the operator £ and using (4.4), we get

. xt .
£NLyy = Tha £ 0nHYy,, (4.5)
Since the operators £ and 9y, are commutative, (4.5) becomes £N§kh = —n*—J:] on £ H¥, . which
in view of (4.4), gives
£N¥y, = 0. (4.6)

Let us consider an NPR-Finsler space admitting an affine motion. Then we have (2.1), (4.3), (4.4)
and (4.6).
Operating (2.1) by the operator £ and using (4.6), we have

£B 0 Ny, = (£Am) Nij. (4.7)
In view of the commutation formula
£BL T — B LT = T £G — THLGY, — (0, T}) LG %° (4.8)

and equations (4.3) and (4.6), the equation (4.7) gives (4.2) for Nijkh # 0. Thus, we obsereve
that every affine motion generated by a recurrent vector field in an NPR-Finsler space is a special
recurrent transformation. Now, we wish to discuss its converse problem.

Let us consider a special recurrent transformation (4.1) in an NPR-Finsler space. This transfor-
mation is characterized by (3.1) and (4.2). In view of theorem (3.2), we have at least one of the
equations (3.14b) and (3.17). If (3.14b) does not hold, we must have (3.17), i.e. L = A.v" = 0.
We shall divide the special recurrent transformations in two classes according as L # 0 and L = 0.
A special recurrent transformation is called of first kind if L # 0 while it is called of second kind
if L = 0.

Let us consider a special recurrent transformation of the first kind. For such transformation L # 0.
Therefore in view of Theorem (3.2), the vector field px must be a point function, i.e. aj ux = 0.
Expanding the left hand side of equation (4.2) with the help of the formula

LT =v" B, T = T Bov! + TIBv" + (0, T1) Bev' %, (4.9)
we get
VB Am + Lpm = 0. (4.10)
Also
Bl =B, AVv) =v B, A + Lum. (4.11)

Using (4.10) in (4.11), we have
VT Ark + B L = 0. (4.12)



88 Anjali Goswami

Differentiating (2.3) covariantly with respect to xP and using (2.1), we have
(BpAmINfin + (BpA)INE + (BpAINL;, = 0. (4.13)
Transvecting (4.13) by vP and using (4.10), we get
HmNjin + BN + kN, = 0. (4.14)

Differentiating (2.11) and (2.13) covariantly with respect to xP and then multiplying by vP, we get
(vP By Ak) Arm + (VP B, An) Ami + (VP B, Am)Axn = 0,
and (VP B, M) thm + (VP Bp An) Hmk + (VP B, A) ukn = 0,
which imply

WAhm + BrAmk + BmAxn = 0 (4.15)
and

Hklhm + HhBmk + HmMkn = 0 (4.16)
since L # 0.
This proves the following;:

Theorem 4.1. An NPR-Finsler space admitting a special recurrent transformation admits the

identities (4.14), (4.15) and (4.16) provided L # 0.

The commutation formula for the operators £ and By in case of the recurrence vector A, is
given by
£B1Am — B LA = —A LG,
which, in view of (4.2), gives
£B1 A = A LG - (4.17)

Taking skew-symmetric part of (4.17), we get
£Amk = 0. (4.18)
Transvecting (4.14) by x" and using (1.12), we get
umHjik + wHE, + ukH,im- = 0. (4.19)

Now £Hf = TH + pHi{ v — i HAVE + iy HE VT + cH v
Transvecting (4.19) by v™ and using (3.2) in the above equation, we get
«EHjik = (L + I‘Lme')Hjik + (M — Hrerk)Vi-

This shows that £H;j = 0 if

L+ pmv™ =0 and ppje — peHjy = 0. (4.20)

We know that £ H]-ik = 0 is equivalent to £ Hjikh = 0.
Therefore we have:
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Theorem 4.2. A special recurrent transformation of the first kind is a curvature collineation if

(4.20) holds.
The Lie derivative of G jik is given by

£Gf = By Biv' + HE 0™ + Gy, Bov'x, (4.21)

m

which in the present case is given by
£Gjik = (Bjux + W )vt + Hrinjkvm, (4.22)

for Gjikrv’” = 5jukvi = 0.
Differentiating (2.4) covariantly with respect to xP and transvecting by vP, we ge
(VB Am)Hfy + (VPBRAHE L, + (VP BpAH L, = 0.
Using (4.10) in it, we find
mmHfin + wjHgm + pcHyy = 0 (4.23)
for L #£ 0.
Transvecting (2.4) and (4.23) by v™ and adding, we get
(M + uk)HTinjhvm — Ay + wy)HEv™ = 0.
From this we may conclude

Hignv™ = o + 1)Xy. (4.24)

for some tensor X%l. Therefore
£Gfi = (Bjme + wmv' + 6 + )X (4.25)

From this we find that the special recurrent transformation is affine motion if

(B me + vt = —d(A; + py)XL

Now we consider a special recurrent transformation of the second kind (L = 0). Transvecting (2.5)
by v™™ and using L = A,,v™ = 0, we get

AjHE V™ 4+ AHEv™ = 0.

This is possible only when
HL v™ = AX? (4.27)

for some vector field X!, Since yiHjik =0,y Xt = 0.
‘,r’ijik7 in view of (2.2), (3.1) and (3.17), becomes

where 1 = pxk.
Using (3.2) and (4.9) in (4.10), we get

£Hy = (e — weHJOVE + (A — )X (4.29)
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This shows that £ H]-ik = 0if
(@) wH = prpe (6) 1y = WA, (4.30)

where 1 is a scalar. Also £ Hj"“k = 0 if and only if £ H]-"“kh = 0.
This leads to

Theorem 4.3. A special recurrent transformation of the second kind in an NPR-Finsler space is
a curvature collineation if (4.30) holds.

In view of (4.21), we have
£Gfy = (Bjme + Wk + wdjmdvt + Hijoom (4.31)
which gives
LG = (Bjue + Hjkk + KOj )Vt + A Xy (4.32)
where X} = 9, X"
This shows that a special recurrent transformation of the second kind is an affine motion if
(Bjme + wjue + ué,-uk)vi = —?\,-Xli. (4.33)
Transvecting this equation by x*, we get
(B + pyp)x vt = =X (4.34)
Transvecting this equation by yi, we have
(Bje + pijm)x* =0 (4.35)

for yyvt # 0 and yi X' = 0.
Using (4.35) in (4.34), we get X' = 0. Therefore X\ = 0.
Using X} = 0 in equation (4.33), we get

B + wipk + wdjpk = O. (4.36)
Thus (4.33) implies (4.36). Conversely if (4.36) holds, its skew symmetric part gives
Wik = Bjue — By = 0. (4.37)

Using this in (3.2) we get Hjikh\)h = 0, which implies HT"njkvm =0.
Therefore Xli = 0.
Hence we conclude:

Theorem 4.4. A special recurrent transformation of the second kind in an NPR-Finsler space is
an affine motion if B + Wjpx + uaj ux = 0.
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