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ABSTRACT

We study K-theory for the C*-algebras of all continuous functions on certain homoge-
neous spaces in the semi-simple connected Lie groups SL,, (R) by the discrete subgroups
SLw(Z), mainly. As a byproduct, we also consider a certain nilpotent case similarly.

RESUMEN

Estudiamos la K-teoria para las C*-algebras de todas las funciones continuas sobre
ciertos espacios homogéneos, principalmente en los grupos de Lie conexos semi- sim-
ples SL,,(R) y subgrupos discretos SL,,(Z). Como subproducto consideramos un caso
nilpotente en forma anéloga.
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1 Introduction

This work is started with an attempt to find a candidate for the K-theory groups for the full
or reduced group C*-algebras of the discrete groups SL,(Z). Our idea comes from the fact that
K-theory for the group C*-algebra of the discrete groups Z™ of integers is the same as that for
the C*-algebra of all continuous functions on the tori T™ viewed as the quotient R™/Z™, via the
Fourier transform, and that this picture should have some similar meanings in more general or

noncommutative setting, at least in K-theory level.
Refer to [5] for some basics of K-theory and C*-algebras.

After a quick review in Section 2 about the abelian case of commutative connected Lie groups,
we consider in Section 3 homogeneous spaces in SL;(R) a semi-simple connected Lie group and
compute the K-theory groups of the C*-algebras of all continuous functions on those spaces. More-
over, we consider the case of SL,;(R) (n > 3) in Section 4. The results obtained would be useful
for further research in this direction. Furthermore, as a byproduct, we consider a certain nilpotent
case of discrete Heisenberg groups.

2 Abelian case

For convenience, recall that we have the following short exact sequence of abelian (or commutative
Lie) groups:
0—=Z" - R" > T" —0.

Consider their group C*-algebras C*(Z™), C*(R™), and C*(T™). By Fourier transform, they are
isomorphic respectively to C(T™), Co(R™), and Co(Z™) the C*-algebras of all continuous functions
on T™, on R™ and Z™ vanishing at infinity. Their K-theory groups are well known as follows ([5]):

1
Ko(C*(R?*™)) = Ko(Co(R*™)) = Ko(C) =Z, K;(C*(R*™)) =K;(C) =0,
Ko(C*(R*™ 1)) = Ko(Co(R*™ 1)) = Ky (C) =0, K;(C*(R*™ 1)) = Ko(C) = 7Z,
Ko(C*(T™)) = Ko(Co(Z™M)) = &™"Z, K;(C*(T™)) = Ky (Co(Z™)) =0,

where ®* means the k-times direct sum. Observe that K-theory of the group C*-algebra of the
discrete group Z™ is the same as that of the C*-algebra of all continuous functions on the quotient
™ =R"/Z™.

3 Homogeneous spaces in SL;(R)

Consider the following inclusion and its homogeneous space denoted as:

0— SLz(Z) — SLZ (R), SLZ (R)/SLZ (Z) = H;.
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Let SI>(R) = KAN be the Iwasawa decomposition. More precisely, we have the following homeo-

morphism:

SL,(R) ~ KAN = SO(2)A, N>,

0 —sind .
where  SO(2) _{<C°S st ) IGER} = —(ei®|0 c R},

sin®  cos©

0
Az_{<a] >|a1a2—1,a1>0,a2>0},
0 a2
1 b
Ny = ‘bER .
0 1

SL2(Z) = KzAzNgz = SO(2)7A2 zN2 7,
where SO(2)z =S} ={e'® € Z?|0 € R} = {(£1,0), (0, £1)},

{09}

It follows from considering quotient spaces that the homogeneous space H; is homeomorphic to

It follows that

the following product space:
H, ~ (L'R)T xR x T,

where LR means the disjoint union of k copies of R, and X* means the one-point compactification
of X, and SO(2)/SO(2)z ~ (L*R)*, and A; ~ R, and N3 /N3 7 ~ T.

Let Co(H2) be the C*-algebra of all continuous functions on H, vanishing at infinity. We
compute its K-theory groups as follows. First of all, we have

Kj(Co(H2)) = K;(Co((L*R)* x R x T))
=Ky 1 (C(U'R)T x T)),
by the Bott periodicity, where j + 1 (mod 2). Consider the following short exact sequence of
C*-algebras:
0 —— Co((L*R) x T) —— C((L*R)* xT) —3I— C(T) —— 0.

Note that this extension of C*-algebras splits, clearly. We then have the following six-term exact
sequence of K-groups:

Ko(Col(U'R) x T)) —=— Ko(C((L*R)* x T)) —=— Ko (C(T))

I l

Ky (C(T)) 2 Ky (C((L*R)* x T)) =— Ki(Col(L*R) x T)),
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with
K;(Co((U'R) x T)) = @*K;(Co(R x T))
= ¢*Kj1(C(T)) = Z*

for j = 0,1, where ©* means the direct sum of k copies. The commutative diagram also splits into
two short exact sequences of Ko and Ky-groups, by the splitting short exact sequence of C*-algebras.
Therefore, we obtain

0—=Z* 5 K(C(L'"R)T xT) - Z—0

forj = 0, 1. Since extensions of groups by Z also split, certainly known, we obtain that K;(C((L4R)* x
T)) = Z> for j = 0,1. Hence we get

Theorem 3.1. Let Hy = SIL,(R)/SL2(Z) = KAN/KzAzNz be the homogeneous space via the
Twasawa decomposition. Then Hy is homeomorphic to the product space (L*R)* x R x T, and

Kij(Co(H2)) =7, (j=0,1).

Moreover, we obtain

Proposition 3.2. Let K/Kz = SO(2)/SO(2)z = KAN/KzAN be the homogeneous space of the
compact group SO(2). Then K/Kz is the compact space (LU*R)*, and

Ko(C(K/Kz)) =Z and Ki(C(K/Kz))=Z*.
Proof. Consider the following short exact sequence of C*-algebras:

0 —— Co(U*R) —— C((L*R)+) —% C 0.

Note that this extension of C*-algebras splits. We then have the following six-term exact sequence

of K-groups:
Ko(Co(L'R)) — = Ko(C((L'R)M)) ——  Ko(C)
Ki(€) % — Ki(C(UR)Y)) e—— Ki(Co(LIR)),
with
Kj(Co((L*R))) = &*K;(Co(R)) = &*K;11(C)
for j = 0,1. The commutative diagram also splits into two short exact sequences of Ko and
Ki-groups. Therefore, we obtain that Ko(C((U*R)*")) = Z and K;(C((L*R)T)) = Z%. O

Remark. Note that the quotient space N/Nz is isomorphic to T as a group. Thus, K;(C(N/Nz)) =
Z for j =0,1.

Furthermore, we have
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Proposition 3.3. The homogeneous space SL;(R)/K = AN is homeomorphic to the product space
R x T, and K;(Co(AN)) = Z for j =0, 1.

Proof. We have
Kj(Co(R x T)) = Ky (C(T)) 2 2

for j =0,1T. O
Notes. Tt is shown by Natsume [2] that for C*(SL2(Z)) the full group C*-algebra of SL,(Z),
Ko(C*(SLa(Z))) = Z8, K4(C*(SLa2(Z))) =0,

and the same holds by replacing C*(SL2(Z)) with its reduced group C*-algebra of the regular
representation of ST, (Z).

More precisely, since SL,(Z) is isomorphic to the amalgam Z4 xz, Zg of cyclic groups with
orders 2,4, 6, we have C*(SL;(Z)) isomorphic to the amalgam C*(Z4)*c+(z,) C*(Zs) of their group
C*-algebras, so that

Kj(C*(Za) *c+(z,) C*(Ze)) = (Kj(C*(Za)) ® K;(C*(Z6))) /K (C*(Z2))
for j = 0,1. In particular, Ko(C*(SLy(Z))) = Z8 = 7'°/7Z?. Also,
K;(C*(Za) * C*(Ze)) = K;(C*(Z4)) ® K;(C* (Zs))

for j = 0,1, where C*(Z4) x C*(Zg) is the full free product of C*-algebras. More generally, for 2« B
the full free product of C*-algebras 2 and B, we have ([I])

K (2« B) = K;(2) & Ki(B), (j=0,1).

Corollary 1. We have
Ko(Co(H2)) ® K1 (Co(H2)) = Ko(C*(Za) * C*(Ze)) ® K1 (C"(Za) * C*(Zs¢)),
as a group, but

Ko(Co(H2)) & K1 (Co(Hz2)) # Ko(C*(SL2(Z))) & Kq (C*(SL2(Z))).

Remark. Since 10 > 8, it may say to be possible that K-theory data of the homogeneous space
C*-algebra contains that of the group C*-algebra of SI;(Z). In fact, in the group non-isomorphic
equation above, the right hand side can be a quotient of the left hand side. This picture might be
extended to the more general setting.
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4 Homogeneous spaces in SL,,(R)

Consider the following inclusion and its homogeneous space denoted as:
0 — SLL(Z) — SLy(R), SL,(R)/SL.(Z) = H,.

Let SL,,(R) = KAN be the Iwasawa decomposition. More precisely, we have the following homeo-

morphism:

SL.(R) ~ KAN = SO(n)A, Ny,

aj 0
where A, = Iﬂ}‘:]ajzl,aj>0 y
0 an
T bz -+ bin
Nn: ' . ' ' ‘bi,j 6R,(i<j)
bn—],n
0 1

It follows that
SLn(Z) ~ KzAzNz = SO(“)ZAn,ZNn,Z»

where SO(n)z consists of all matrices of SO(n) with components of integers, An,z of only the
n-th identity matrix, and Ny z of all matrices of N, with components of integers. It follows from
considering quotient spaces that the homogeneous space H; is homeomorphic to the following
product space:

(n—1)n

LA (SOM)/SOM)z) x R x T~ =7,
where A &~ R™ 1 and N, /Ny, 7 ~ T
Recall that as a topological space,

SO(n)/SO(m—1) ~ ST,

where S*1 is the n — 1 dimensional sphere. Indeed, SO(n) acts transitively on S™! by matrix
multiplication, and the isotropy group for the n-th standard basis vector in S* ! is SO(n — 1),
from which the homeomorphism is obtained. However, these quotient spaces do not split in general

into the product spaces:
SO(n)~SO(Mm—1) x S~ 1

but this is certainly true if and only if there is a continuous section from S™' to SO(n). This
is just the cases where n = 4 or n = 8, a well-known, non-tirvial, important result in algebraic
topology. Note that what is necessary in what follows may be the isomorphisms in topological
K-theory level:

KI(SO(n)) =K (SO(n—1) x S™ 1)
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(or mere replacements).

We have shown that SO(2)/SO(2)z =~ S'/S},. If we assume the homeomorphisms for SO(n),

inductively we have
SO(n)/SO(n)z ~ (SO(m —1)/SO(m —1)z) x (S™'/Sp~1),

where STZ‘_] means the set of all integral points in S™', and the equivalence relation on S by
82*1 is defined as: for &, € S, we have & ~n if and only if £ =n, or {1 € SE*]. Therefore,
we obtain

SO(n)/SO(M)z ~ (S1/Sz) x -+- x (S™1/Sp~1).

However, this may not be true in general, but even in such a case, we may replace SO(n)/SO(n)z
by the product space in the right hand side, as a reasonable candidate, and we continue. But what
is necessary in what follows may be the isomorphisms in topological K-theory level:

K (SO(n)/SO(n)z) =K ((SO(n—1)/SO(n —1)z) x (S*1/S37 1))
(or mere replacements).

We also have

52_] —{(:I:])O)"' vo)s (Osi])ov"' so)v"' s(ov"' ,O,ﬂ:” € Rn}-
Hence we identify STZ‘_] with U™Z; the n-fold disjoint union of Z; = Z/27Z. Therefore, we get

Sn71/5271 ~ Snfl/ un 7.

Let Co(Hy) be the C*-algebra of all continuous functions on H,, vanishing at infinity. We
compute its K-theory groups as follows. First of all, we have

(n—1)n

K;(Co(Hn)) = K;j(Co((SO(M)/SO(M)z) x R™ ' x T~ 2 "))
= Kj1n1(C(SO()/SO(n)z) x T 7)),
by the Bott periodicity, where j + 1 —1 (mod 2).

(mn—1)n

Now let S, = SO(n)/SO(n)z and T,, = T~ z . Since C(Sn X Tn) = C(Sn) ® C(Tn) a
C*-tensor product, the Kiinneth formula implies

Ko(C(Sn x Tn)) = (Ko(C(Sn)) @ Ko(C(Tn))) @ (K1 (C(Sn)) @ K (C(Tn))),
Ky (C(Sn x Tn)) = (Ko(C(Sn)) @ K1 (C(Tn))) & (K1 (C(Sn)) © Ko(C(Tn))).

For j = 0,1, we have

(n—1)n 2271(n71)n71

Kj(C(Ta)) = Kj(C(T 2 ™)) = 2

22*‘ (n—2)(n+1)

=7

Let S*/Sk =V for 1 <k <n—1 and (51/52) x -+ x (Sk/SK) = Uy. Since we have

C((S1/Sz) x -+ x (S™1/Sp 1) = C(S$1/Sz) @ --- @ C(S™ /sy~ 1),
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the Kiinneth formula implies that, for instance,

Ko(C(U3))
Kq(C(Us))

[l2

D(iy,i2,i5)e15 Ki; (C(V1)) @ Ky, (C(V2)) @ Ki, (C(V3),
D ‘jz‘j3)613K]'1 (C(V1 ) ® Kiz(C(VZ)) & Ki3 (C(V3)))

12

where

I3 ={(0,0,0),(0,1,1),(1,0,1),(1,1,0)},
Js =1{(0,0,1),(0,1,0), (1,0,0), (1,1, 1)},

where note that for each tuple in I3, the number of 0 is 3 or 1 odd, while for each tuple in J3, the
number of 0 is 2 or 0 even, and the cardinal numbers of I3 and J3 are computed as:

I3 =3C3+3C =14+3=2% |[J351=3C2+3Co=3+1=2%
where ;; Cx means the combination of k elements in n elements. As one more example, similarly,

|I4‘:4C4+4CZ+4CO:1+6+1 :23)
4l = 4C3 4+ 4C =4 +4 =23,

Therefore, more generally, we have

Ko(C(Ux))
Ks (C(Uy))

ll2

Diy o ien K (CVI)) @ -+ @ Ki, (C(Vi)),
Dy ensioe) Ky (CVI)) @ -+ @ Ky, (C(Vi))y

[12

where if k is even, then
k| = kCx +kCrx—2 + -+ +Co = 25,
x| = xCx—1 +kCx_3 +--- +1Cq = 2%,
and if k is odd, then
I| = kCx + kCx—2 + - +1Cq = Zky
x| = xCx—1 +«kCx_3 + -+ - +kCo = 2%,

and in both cases, Iy and Jx consist of tuples with elements 0 or 1 chosen accordingly to the above

combinatorial sums.
Note that the quotient space Vi_1 is just
Vi1 =S8/ 08 Zy = (ST (UFZ0) T =)

the one-point compactification V;\ of the open subspace Vi of Sk~ Tobtained by removing points
of U"Z, from Sk T.

Consider the following short exact sequence of C*-algebras:

0 —— CoW) —— Cc(V) —— ¢ 0.
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Note that this extension of C*-algebras splits, clearly. We then have the following six-term exact
sequence of K-groups:

Ko(CoW)) —=— Ko(C(VH)) —2—  Ko(C)

l

Ki(C) 2 Ki(C(V})) e—=— Ki(Co(Vk)),

and the commutative diagram also splits into two short exact sequences of Ky and K;-groups. It
follows that

Ko(COV)) = Ko(CoWi)) @ Z,  Ki(C(V)) =Ki(Co(W)).
Moreover consider the following short exact sequence of C*-algebras:

0 —— CoW) —— C(s 1) —5 @2"C —— 0

corresponding to attaching 2k points to 2k holes in Vy to make S*~'. We then have the following
six-term exact sequence of K-groups:

Ko(Co(Vk)) —=— Ko(C(SK 1)) —5  @2%K,(C)

I l

&K (C) — Ki(C(S57)) e—— Ki(Co(Vi)).
Furthermore consider the following short exact sequence of C*-algebras:

0 — 5 Co(Rx1) — L ¢c(s&1) —9 ¢ 0,

where note that S¥~1 ~ (R™1)*. Note that this extension of C*-algebras splits, clearly. We then
have the following six-term exact sequence of K-groups:

Ko(Co(RF 1)) —= Ko(C(SK 1)) —2s  Ko(C)

I l

Ki(C) 2 Ky (C(SH ) e Ky (Co(R¥ 1))

and the commutative diagram also splits into two short exact sequences of Ky and K;-groups. It
follows that for k > 2,

Z  if k even,

k—=Tyy ~ k=1 =
Ko(C(S*71)) = Ko(Co(R ))@Z—{ZZ if k odd;

Z if k even,

Ki(C(8%71)) = Kq(Co(R¥ 1)) = {o i k odd.
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Therefore, we obtain that if k is even, then

Ko(Co(Wk)) —2— Z —+ a2z,
0 7 " Ky(Co(Vi))
and if k is odd, then
Ko(Co(W)) —— 72 -2 2z
0 9 " Ky (ColVi)).

In both cases, the Ko-class corresponding to the unit of C(S*~') is mapped injectively under the

map q., while the Ko-class corresonding to the Bott projection in a matrix algebra over C(S*~T)
for k odd is mapped to zero under .. It follows that if k is even, then Ko(C(Vk)) = 0, while if k
is odd, then Ko(C(Vy)) = Z. Therefore, we obtain that if k is even, then K;(Co(Vi)) = Z?¥, and

if k is odd, then K (Co(Vk)) = Z2*~'. Hence we get

Z  if k even,

Ko(C(Vie-1)) = Ko(C(W))) = {ZZ if k odd;

7.2k if k even
K1 (C(Vi1)) = K1 (CVH)) = ’
1(C(Vi—1)) =K (COV)) {sz if k odd.

Note that the case where k = 2 is considered in the previous section.

Summing up the argument above, we obtain

Theorem 4.1. Let H,, = SLy(R)/SL,,(Z) = KAN/KzAzNyz be the homogeneous space via the
Twasawa decomposition. Then Hy, is homeomorphic to the product space (SO(n)/SO(n)z) xR™ 1 x

T(n?)n, and
Ko(Co(Hn)) = Kq(Co(Hn))

)21

(n—2)(n-+1
= ®i_0,1(K5(C(SO(n)/SO(n)z)) @ 22" °
Proof. If n is even, then
(n—1)n

Ko(Co(Hn)) =K1 (C(SO(M)/SOM)z) @ C(T™ =)

(n—2)(n—+1)

(n—1)n

K1(Co(Hn)) = Ko(C(SO(n)/SOM)z) ® C(T™ =)

(n—2)(n+1)

= (Ko(C(Mw))®Z% 7 ) @Ki(C(Tn)) ® 72

(n—2)(n-+1)

= (Ko(C(Mw))®Z* 7 oK (C(Th)®z*

)

(n—2)(n+1)

),
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where T,, = SO(n)/SO(n)z for short, and in particular, we get Ko(Co(Hn)) = K7 (Co(Hn)).

If n is odd, then we can deduce the same conclusions by the same calculation as above. [

Remark. The results obtained above and below in K-theory might contain (some of) K-theory
data for the (full or reduced) group C*-algebra of SL,(Z) or the (full or reduced) free product
C*-algebra corresponding to the generators of SL,,(Z). It is known that if n > 3, then SL,(Z) is
not an amalgam, but a certain multi-amalgam of subgroups, by Soulé [4].

Moreover, we obtain

Proposition 4.2. Let K/Kz = SO(n)/SO(n)z = KAN/KzAN be the homogeneous space of the
compact group SO(n). For convenience, as a candidate, we replace K/Kz with the compact product

space:
(S'/S}) x (S%/S3) -+~ x (S™71/Sp7 1,

which is identified with
(ST/WPZa) x (S*/ P Zy) x -+ x (S™ /UM Zy)
A~ (ST\U2Z2)F x (S2\LBZo)T x oo x (S™T\ L Zy) T,

or we may assume that we replace the topological K-theory of K/Kz with that of the product space.
Then

Ko(C(K/Kz))
K1 (C(K/Kz))

12

EB(J'1 2y yin—1)€Jn—1 (Ki1 (C(V1 )) ®-® anfl (C(Vn—l ))))

Dlir,iz, - in1)€ln (Kil (CVi))@---® Ki, (C(Vn-1))),

I2

with Vi = S¥/SX, where if n is odd , then
M1l =n-1Cn1+n-1Cn3+--+n_1Co = zn—l)
|]n71| =n-1Cn 2+ n-1Chg+---+n1-1Cy = znfl .
and if n is even, then
‘In—]| =n1-1Ch1 +n-1Ch3+ -+ 11Cy = znfl)
Jn-1l=n-1Ch24+n-1Cn_a+ -+ n_1Co = zn—l)

and in both cases, I,,_1 and J,,—1 consist of the tuples with elements 0 or 1 chosen accordingly to
the above combinatorial sums.

Moreover, we obtain

Ko(C(Vk-1))

12

Z  if k even,
Z? if k odd;

Ky (C(Vi-1))

[l

7% if k even,
721 if k odd.
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Remark. For example, as n =5 we compute

Ko(C(V1)) @ Ky (C(V2)) @ K1 (C(V3)) @ Ko(C(Va))
27QRLQL @7 =713 =738,
where (0,1,1,0) € 14.

Note that the quotient space N/Ng is homeomorphic to T=1n27" a9 5 space. Thus,
n— n —1
K;j(C(N/Nz)) ~ g2 forj =0,1.

Furthermore, we have

Proposition 4.3. The homogeneous space SL (R)/K = AN is homeomorphic to the product space

T(n—2)(n+1)

R x T=1n27" and Kj(Co(AN)) = 22° for j =0, 1.

Proof. We have

(n—1)n (n—1)n

Kij(CoR™' x Tz ) =Kjen 1 (C(T 2 ) =Z

n—2)(n+1)
2z

forj =0,1. O

5 Nilpotent case

Recall that the discrete Heisenberg group H%,, 41 of rank 2n + 1 is defined by

1 at ¢
H .1 =< |0n 1. b|€GLi2(Z)]a,beZMceZ
0 0t 0

where 1, is the n x n identity matrix, 0, is the zero in Z™, a,b,0, are column vectors, and x*

R
2n+

replacing Z with R in the definition above. Then we have the homogeneous space:

means the transpose of x. The Heisenberg Lie group H3,  ; with dimension 2n + 1 is defined by

R Z ~ m2n+1
H2n+1 /H2n+1 ~T

as a space.

Let C*(H%,.4) be the group C*-algebra of H%, ;. It is shown by the author [3] that for
j=0,1,
Ky (C (M) = 277

It follows that
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Proposition 5.1. We have

2n
Kj(C(H5, 4 /HZ, 1)) = 77

for j =0,1, but forn > 1,
Kj (C(H§n+1 /H%nJr] )) % Kj (C*(H%nJr] ))
Proof. Because 22™ # 3™ forn > 1. O

Remark. We have 4™ > 3™, so that it may say to be possible that K-theory data of the homogeneous
space C*-algebra contains that of the group C*-algebra. In fact, in the group non-isomorphic
equation above, the right hand side can be a quotient of the left hand side. This picture might be
extended to the more general setting.

Conjecture. Let I' be a nilpotent discrete group with rank n. Then we have
rankzK; (C*(T")) < 2™

for j = 0,1, where rankz(X) means the Z-rank of X.

Remark. The equality holds if I' = Z™ and the estimate is ture if I' = H%, _; as checked above.

It is certainly known that a discrete nilpotent group I' can be viewed as a subgroup of matrices,
i.e. to be linear. Also, it can be viewed as a successive semi-direct products by the abelian groups
Z*i of integers for some kj > 1 (1 <j <mn). In this case, I' is a subgroup of the connected, simply
connected nilpotent Lie group G obtained as a a successive semi-direct products by R, so that
the homogeneous space G/I" is homeomorphic to:

G/T ~ TZi=1 4,

Our conjecture says that
rankzK;(C* (M) <27 1HZi-1 b,

Acknowledgement. 1 would like to thank Shuichi Tsukuda and Michishige Tezuka for providing
some useful (also in the future) information about spheres splitting in algebraic topology,
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