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ABSTRACT

A complete eigenvalue analysis is given for a certain class of dynamic systems with a

single delay. The stability region is determined and it is demonstrated that there is only

one stability switch. Special cases from economics, biology and engineering illustrate

the importance of such models.

RESUMEN

Un análisis completo de los autovalores se entrega para una clase de sistemas dinámicos

con retardo simple. La región de estabilidad se determina y se demuestra que existe so-

lamente un switch de estabilidad. Casos especiales para Economı́a, Bioloǵıa e Ingenieŕıa

ilustran la importancia de los modelos mencionados.
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1 Introduction

In examining economic and engineering systems we often face with delayed data and delayed

responses. In the case of fixed delays the system is described by a difference-differential equation

and in the case of continuously distributed delay the model is a Volterra-type integro-differential

equation. Delay models have many applications in engineering, biology and economics to name

only the most important fields (Hale (1979); Cushing (1977); Invernizzi and Medio (1991)).

Without time delay the governing dynamic model is a system of ordinary differential equations,

the asymptotical behavior of the solution trajectories can be examined by well established methods

such as the usage of Lyapunov functions and local linearization. If the system is linear, then

local asymptotical stability implies global stability, and the spectrum is finite making the analytic

investigation relatively simple. In the case of continuously distributed delay with gamma-density

weighting functions, the spectrum remains finite, however for fixed delays the spectrum is usually

infinite. In the case of linear systems with fixed delays the characteristic equation is an exponential-

polynomial equation. There is a large literature on delayed equations with one delay (see for

example, Hayes (1950) and Burger (1956) for the earliest studies), however only very few studies

are devoted to multiple delays (see for example, Hale and Huang (1993) and Piotrowska (2007)).

In this paper we will consider a special case of nonlinear dynamics with one delay and will

present an elementary analysis of its spectrum which can lead to a complete understanding of its

local asymptotical behavior.

2 Practical Examples

Consider first a monopoly where one firm produces a product and sells it to a homogeneous market.

Let x be the production output of the firm and p(x) = a− bx (a, b > 0) the price function. If the

firm determines its production level based on a delayed price information, then it is a− bx(t− τ),

where τ is the delay. Assuming gradient adjustment process in the dynamics, in the absence of

time delay the governing dynamic equation would be as follows:

ẋ(t) = α(x(t))(a − c− 2bx(t)), (1)

since the profit is given as

ϕ = x(a− bx) − cx (2)

where c is the firm’s marginal cost. In the presence of delay, equation (1) has to be modified as

ẋ(t) = αx(t)(a− c− 2bx(t− τ)) (3)

where we assume that α(x) = αx with a positive coefficient α. The only positive steady state of

the system is

x̄ =
a− c

2b
.
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In order to guarantee that this output level is positive, we have to assume that a > c. Linearizing

equation (3) around x̄ and introducing the new variable z = x− x̄ a single delay ODE is obtained:

ż(t) = −γz(t− τ) (4)

where γ = α(a− c) > 0.

Consider next an electrical system with state feedback, where the feedback is delayed. Assume

the systems equation is linear:

ẋ(t) = Ax (t)+Bu (t) (5)

where x is the state and u is the input. Let K be the feedback matrix and τ the delay. Then the

delayed feedback system can be written as

ẋ(t) = Ax (t)+B (u(t)+Kx (t− τ)). (6)

In the single-dimensonal case this equation reduces to the following:

ẋ(t) = Ax(t) + BKx(t− τ) + Bu(t)

In the special case of constant input, u(t) ≡ u0, and A = 0 introduce the new variable z = x+u0/K

to have

ż(t) = BKz(t − τ), (7)

which has the same form as equation (4) with γ = −BK.

Models in population dynamics are often delayed equations, when reproduction is not instan-

tenuous. Assuming exponential growth rate, the model can be written as

ẋ(t) = rx(t− τ) (8)

where r is the reproduction rate and τ is the delay. Notice that this equation also has the form as

(4) with r = −γ.

3 Spectrum Analysis

As usual, we look for the solution in the exponential form z(t) = eλtv, and substitute it into

equation (4) to get

λ + γe−λτ = 0.

Multiplying by τ and introducing the new variables ∆ = λτ and A = γτ, this equation is simplified

as

∆+Ae−∆ = 0. (9)

Assume that ∆ = α+ iβ is a complex root. Then

α+ iβ +Ae−α(cosβ − i sinβ) = 0.
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Equating the real and imaginary parts with zero,

α+Ae−α cosβ = 0 (10)

and

β− Ae−α sinβ = 0. (11)

From (11),

e−α =
β

A sinβ
, (12)

if sinβ 6= 0. If sinβ = 0, then from (9), ∆ is real and therefore is the solution of the real equation

Ae−∆ = −∆.

Depending on the value of A, there is either no solution, or 1 or 2 negative solutions. So the real

solutions (if exist) are negative. Assume now that sinβ 6= 0, then from (10) and (12),

α +A
β

A sinβ
cosβ = 0

showing that

α = −β cotβ. (13)

Without losing generality we may assume that β > 0, since if ∆ is a solution of equation (9), then

its complex conjugate is also a solution. From (13) we see that the real part of ∆ is negative if and

only if

β ∈ (nπ,
π

2
+ nπ), n = 0, 1, 2, ...

Substituting (13) into relation (11), we get a single-variable equation for β :

1

A
β = eβ cotβ sinβ. (14)

Let f(β) denote the right hand side of this equation. We will next examine the shape of the

graph of this function. Clearly

lim
β→0

f(β) = 0

and for n ≥ 1,

lim
β→nπ−0

f(β) = 0,

since β cotβ converges to −∞ as β tends to nπ from the left. Similarly

lim
β→nπ+0

f(β) =






∞ if n is even

−∞ if n is odd

since the value of K = β cotβ tends to ∞ as β tends to nπ from the right and

f(β) = eK
1

K
β cosβ.
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In addition,

lim
β→

π
2
+nπ

f(β) =






1 if n is even

−1 if n is odd,

sinceK → 0 here. Simple differentiation shows that

f′(β) = cosβeβ
cosβ
sinβ + sinβeβ

cos β
sinβ

(cosβ − β sinβ) sinβ − β cos2 β

sin2 β

=
1

sinβ
eβ

cos β
sinβ [sin 2β − β]

(15)

Notice that there is a unique β∗ ∈ (0, π/2) such that sin 2β∗ = β∗, and for β < β∗, sin 2β > β and

for β > β∗, sin 2β < β. Therefore

f′(β) > 0 if and only if either β ∈ (0, β∗) or β ∈ ((2k − 1)π, 2kπ), k = 1, 2, ...

and

f′(β) < 0 if and only if either β ∈ (β∗, π) or β ∈ (2kπ, (2k + 1)π), k = 1, 2, ...

The graph of f(β) is shown in Figure 1. The value of β is the intersection of this graph with the

linear function β/A. Assume first that A > π/2. Then function β/A crosses the β = π/2 vertical

line under one, so there is a root between π/2 and π. Here the value of α is positive making the

system unstable regardless of the other solutions. If A < π/2, then there is no intersection between

π/2 and π, however depending on the value of A there is the possibility of solution between 0 and

π/2, where α is negative.

Figure 1. Shape of the graph of f(β)
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Notice that in this case line β/A crosses the β = π/2 vertical line above one, so the other inter-

sections with the graph of f(β) are in intervals (2kπ, π
2
+2kπ), k = 1, 2, ..., where the corresponding

α value is negative. Hence we have the following result.

Proposition 3.1. Assume A > 0. Then the system (9) is asymptotically stable if A < π
2
, and

unstable if A > π
2
.

Consider next the case of A < 0 in equation (9). If sinβ = 0, then equation (11) implies that

β = 0, so ∆ is real, and solves equation

∆ = −Ae−∆. (16)

This equation always has a positive solution, so the system is always unstable.

4 Stability Switches

Assume again that A > 0. Stability switches are usually examined by looking for pure complex

eigenvalues ∆ = iβ (β > 0 since complex conjugate is also a solution). With α = 0, equations (10)

and (11) are reduced to the more simple equations

A cosβ = 0 (17)

and

β −A sinβ = 0 (18)

From (17),

β =
π

2
+ nπ,

however from (18), sinβ has to be positive, so

β =
π

2
+ 2nπ (n = 0, 1, 2, ...)

are the stability switches with the corresponding values of A = β. In order to detect the direction

of the stability switches we consider ∆ as the function of the bifurcation parameter A. Implicitly

differentiating equation (9) with respect to A gives

∆′ + e−∆ −Ae−∆∆′ = 0

showing that

∆′ =
e−∆

Ae−∆ − 1
=

∆

A∆+ A
=

iβ

iβA +A
=

iβ(A− iβA)

A2β2 +A2

with real part β2/(Aβ2+A) > 0 showing that the real part of the eigenvalue changes from negative

to positive. Notice that A = π/2 is the only stability switch, since for all A = π
2
+ 2nπ (n ≥ 1)

there is an eigenvalue with positive real part with β ∈ (π/2, π) so regardless what happens with

the other eigenvalues the system is unstable anyway. At A = π
2
Hopf bifurcation occurs giving the

possibility of the birth of limit cycles.
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5 Conclusions

A special class of dynamic systems was examined where a single delay was present. Based on

elementary analysis the spectrum of the system was completely described and the stability region

characterized. We proved that the system is asymptotically stable if A < π
2
and unstable if A > π

2
.

If A = π
2
, then Hopf bifurcation occurs. In the model of a monopolistic firm A = λτ, where

τ is the delay and γ is the product of the marginal speed of adjustment and the difference of

the maximum price and marginal cost. Since both γ and τ are positive, the stability region is the

domain between the positive branch of the hyperbola τ = π
2γ

and the γ = 0 positive horizontal axis.

Similar interpretation can be given for the delay electrical systems and for the delay population

dynamic models in the paper.

We also demonstrated that there are infinitely many values of A which correspond to pure

complex eigenvalues, however the smallest such value is the only stability switch. The case of

multiple delays is much more complicated. It will be the subject of our future study.
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