K-theory for the group C^* -algebras of a residually finite discrete group with Kazhdan property T

Takahiro Sudo

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan. sudo@math.u-ryukyu.ac.jp

ABSTRACT

We compute the K-theory groups for the full and reduced group C^* -algebras of a residually finite, finitely generated discrete group with Kazhdan property T.

RESUMEN

Calculamos los grupos de la K-teoría para grupo de C^* -algebras de reducido y completo de un grupo discreto generado finitamente y residualmente finito con la propiedad T de Kazhdan.

Keywords and Phrases: Group C*-algebra, K-theory, discrete group, projection.

2010 AMS Mathematics Subject Classification: 46L05, 46L80, 19K14.

50 Takahiro Sudo

1 Introduction

In this paper, first of all, we compute the K-theory groups for the full group C^* -algebra of a residually finite, finitely generated discrete group with Kazhdan property T, such as $SL_n(\mathbb{Z})$ ($n \geq 3$) the $n \times n$ special linear groups over the integers. The highly non-trivial and interesting problem to compute the K-theory groups has been considered by the author [6], but it was found to be not completed, and to be corrected as [7] (perhaps partly). This time we obtain a sort of solution for this problem to settle the issue, without using the results of [5] used in [6], but more precisely K_0 only, with a mysterious part left. We next compute the K-theory groups for the reduced group C^* -algebra of a residually finite, finitely generated discrete group with Kazhdan property T, by using the six-term exact sequence of K-groups and the results obtained in the full case.

2 The main result

Proposition 1. Let Γ be a residually finite, finitely generated discrete group with Kazhdan property T and $C^*(\Gamma)$ its full group C^* -algebra. Then the K_0 -group $K_0(C^*(\Gamma))$ has a direct summand isomorphic to the group generated by the infinite direct sum of copies of $\mathbb Z$ and one copy of $\mathbb Z$ corresponding to the unit.

Proof. Since Γ is residully finite, then there is a (separable) family of finite dimensional irreducible representations π_{λ} of Γ such that the intersection of their kernels is trivial (see [4, p. 480]). Denote also by π_{λ} the corresponding finite dimensional irreducible representations of $C^*(\Gamma)$. Then $C^*(\Gamma)$ has a *-homomorphism (which can not be injective in general, see [2]) into the direct product C^* -algebra $\Pi_{\lambda}M_{n_{\lambda}}(\mathbb{C})$ of the $n_{\lambda} \times n_{\lambda}$ matrix algebras $M_{n_{\lambda}}(\mathbb{C})$ over \mathbb{C} , where $n_{\lambda} = \dim \pi_{\lambda}$, by the direct product representation $\Pi_{\lambda}\pi_{\lambda}$ of $C^*(\Gamma)$. The representation implies the K-theory homomorphism:

$$K_*(C^*(\Gamma)) \xrightarrow{(\Pi_\lambda \pi_\lambda)_*} K_*(\Pi_\lambda M_{n_\lambda}(\mathbb{C}))$$

for *=0,1, and $K_*(\Pi_\lambda M_{n_\lambda}(\mathbb{C}))\cong \Pi_\lambda K_*(M_{n_\lambda}(\mathbb{C}))$ with $K_0(M_{n_\lambda}(\mathbb{C}))\cong \mathbb{Z}$ and $K_1(M_{n_\lambda}(\mathbb{C}))\cong 0$. Note that since Γ is discrete, $C^*(\Gamma)$ has the unit and that the map $(\Pi_\lambda \pi_\lambda)_*$ is unital.

On the other hand, since Γ has Kazhdan propery T, then $C^*(\Gamma)$ has $M_{n_{\lambda}}(\mathbb{C})$ as a direct summand (see [9]). Hence $K_*(C^*(\Gamma))$ has $K_*(M_{n_{\lambda}}(\mathbb{C}))$ as a direct summand. Since $K_*(M_{n_{\lambda}}(\mathbb{C}))$ is mapped injectively under the induced map $(\Pi_{\lambda}\pi_{\lambda})_*$, it follows that both $K_*(C^*(\Gamma))$ and the image of $K_*(C^*(\Gamma))$ contain the infinite direct sum $\bigoplus_{\lambda} K_*(M_{n_{\lambda}}(\mathbb{C}))$. Furthermore, all or nothing principle tells us that the image of $K_0(C^*(\Gamma))$ does not contain other classes corresponding to other non-trivial (infinite) projections in $\Pi_{\lambda}M_{n_{\lambda}}(\mathbb{C})$ except projections in the group generated by the direct sum $\bigoplus_{\lambda} \mathbb{Z}$ and \mathbb{Z} of the unit class, because if it does contain, the principle implies that the image must be equal to $\Pi_{\lambda}K_0(M_{n_{\lambda}}(\mathbb{C}))$, so that $C^*(\Gamma)$ has $\Pi_{\lambda}M_{n_{\lambda}}(\mathbb{C})$ as a quotient, but the direct product is non-separable, while $C^*(\Gamma)$ is separable, a contradiction. Indeed, we can not find the difference among those extra infinite projections in $\Pi_{\lambda}M_{n_{\lambda}}(\mathbb{C})$. Hence the proof is completed. \square

Remark. Unfortunately, we do not know about the mysterious kernel $\operatorname{Ker}(\Pi_{\lambda}\pi_{\lambda})_*$ of the K-theory homomorphism in the K_0 and K_1 -groups $K_*(C^*(\Gamma))$ which may not be trivial in general, so that we could not determine the K_0 and K_1 -group.

Corollary 1. For $n \geq 3$, the abelian group $K_0(C^*(SL_n(\mathbb{Z})))$ has a direct summand isomorphic to the group generated by an infinite direct sum of copies of \mathbb{Z} and one copy of \mathbb{Z} .

Proof. Note that $SL_n(\mathbb{Z})$ for $n \geq 3$ are residually finite, finitely generated groups with Kazhdan property T. Indeed, it is known that every finitely generated subgroup of $SL_n(\mathbb{C})$ is residually finite (see [1] and also [4]) and that $SL_n(\mathbb{Z})$ have Kazhdan property T (see [3, p. 34]).

Theorem 1. Let Γ be a non-amenable, residually finite, finitely generated discrete group with Kazhdan property T and $C_r^*(\Gamma)$ its reduced group C^* -algebra. Then

$$K_0(C_r^*(\Gamma)) \cong \mathbb{Z} \oplus \mathfrak{q}_*[Ker(\Pi_\lambda \pi_\lambda)_*]$$

and $K_1(C_r^*(\Gamma))$ is a quotient of $K_1(C^*(\Gamma))$, where this quotient and q_* are induced from the canonical quotient map $q: C^*(G) \to C_r^*(G)$.

Proof. Denote by \mathfrak{I}_{Γ} the kernel of \mathfrak{q} . Then we have the following six-term diagram:

where i_* is induced by the inclusion $i: \mathfrak{I}_\Gamma \to C^*(\Gamma)$. Note that the infinite direct sum of $\mathbb Z$ in $K_0(C^*(\Gamma))$ is mapped to zero by q_* since Γ is non-amenable, so that $C^*_r(\Gamma)$ has no finite dimensional representation (a fact of the representation theory for Γ), and the other copy of $\mathbb Z$ in $K_0(C^*(\Gamma))$ is mapped injectively. It follows that $K_0(\mathfrak{I}_\Gamma)$ is isomorphic to the direct sum $\oplus \mathbb Z$. Since i_* on K_0 is injective, the index map from $K_1(C^*_r(\Gamma))$ is zero, so that q_* on $K_1(C^*(\Gamma))$ is surjective. Since the class of the unit in $K_0(C^*_r(\Gamma))$ is mapped to zero by the exactness of the diagram, it follows that $K_0(C^*_r(\Gamma)) \cong \mathbb Z \oplus q_*[\mathrm{Ker}(\Pi_\lambda \pi_\lambda)_*]$ and i_* on $K_1(\mathfrak{I}_\Gamma)$ is injective.

Corollary 2. For $n \geq 3$, we have

$$K_0(C_r^*(SL_n(\mathbb{Z}))) \cong \mathbb{Z} \oplus q_*[Ker(\Pi_\lambda \pi_\lambda)_*],$$

and $K_1(C_r^*(SL_n(\mathbb{Z})))$ is a quotient of $K_1(C^*(SL_n(\mathbb{Z})))$.

Remark. Note that $q_*[\mathrm{Ker}(\Pi_\lambda \pi_\lambda)_*]$ is not trivial. Because if it is zero, then $K_0(C_r^*(SL_n(\mathbb{Z}))) \cong \mathbb{Z}$, which implies that $C_r^*(SL_n(\mathbb{Z}))$ does not contain non-trivial projections. But $SL_n(\mathbb{Z})$ has torsion since it contains $SL_2(\mathbb{Z}) \cong \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$ as a subgroup, so that $C_r^*(SL_n(\mathbb{Z}))$ has non-trivial projections, a contradiction.

52 Takahiro Sudo

The Kadison-Kaplansky conjecture is that if Γ is a torsion free, discrete group, then $C_r^*(\Gamma)$ has no non-trivial projections. See [8] about the conjecture.

Received: March 2013. Revised: September 2013.

References

- [1] R. Alperin, An elementary account of Selberg's lemma, L'Ensignement Math. 33 (1987), 269-273.
- [2] M. B. Bekka and N. Louvet, Some properties of C*-algebras associated to discrete linear groups, C*-algebras, Springer (2000), 1-22.
- [3] P. DE LA HARPE AND A. VALLETTE, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175 (1989), Soc. Math. France.
- [4] E. KIRCHBERG, On non-semisplit extensions, tensor products and exactness of group C*-algebras, Invent. Math. 112 (1993), 449-489.
- [5] C. Soulé, The cohomology of $SL_3(\mathbb{Z})$, Topology, 17 (1978), 1-22.
- [6] T. Sudo, K-theory for amalgams and multi-ones of C*-algebras, Ryukyu Math. J. 21 (2008), 57-139.
- [7] T. Sudo, Erratum: K-theory for amalgams and multi-ones of C*-algebras, Ryukyu Math. J. 21 (2008), 57-139, Ryukyu Math. J. 22 (2009), 115-117.
- [8] A. VALETTE, The conjecture of idempotents: A survey of the C*-algebraic approach, Bull. Soc. Math. Belgique 41 (1989), 485–521.
- [9] P. S. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), 19-34.