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ABSTRACT

In this paper a Calderén-type reproducing formula for g-Bessel convolution is estab-
lished using the theory of g-Bessel Fourier transform [I3| [I7], obtained in Quantum
calculus.

RESUMEN

En este trabajo se prueba una férmula de tipo Calderén para convolucién g-Bessel,
usando la teorfa de g-Bessel transformada de Fourier [I3 [I7], obtenida en calculo

cuéntico.
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1 Introduction

Calderén’s formula [I] involving convolutions related to the Fourier transform is useful in obtaining
reconstruction formula for wavelet transform, in decomposition of certain spaces and in character-
ization of Besov spaces [6l [8] [10]. Calder6n’s reproducing formula was also established for Bessel
operator [4,[5]. This work is a continuation of a last work [9], and we establish formula for g-Bessel
convolution for both functions and measures witch generalize the above one.

In the classical case this formula is expressed for a suitable function f as follows:

O R (1)

where g, h € L2(R) and g¢(x) = g(%), hi(x) = %h(%), t > 0 satisfying

Joo @(xt)ﬁ(xt)% =1, forallteR\{0},
0

where § and R is the usual Fourier transform of g and h on R.
If 1 is a finite Borel measure on the real line R, identity ({]) has natural generalization as follow

flx) = [ im0 )

where 1 is the dilated measure of p under some restriction on p, the LP-norm of (2]) has proved
in [2]. A general form of (2) has been investigated in [3].

In this paper we study similar questions when in () and (@] the classical convolution * is
replaced by the g-Bessel convolution *4 4 on the half line generated by the g-Bessel operator
defined by

1
Ag,of(x) = XM—HDq [x2* 1 D4f] (7 "x). (3)

In this paper we prove that, for ¢ and VP € L!X‘q (Rq,+,dqo(x)) satisfying

= d
L }—oc,q((P)(i)fa,q(ll’)(i)%& =1 (4)
we have - -
flx) = JO (fayq @ Fogq W)=, f€ Ll o (Rq,+, dqo(x)). (5)
(T+9)% 1« N 1 X
where dal) =R o W dgx = bo, g™ dax, @) = 7z e(D):
In particular for ¢ € I_nyq (Rq,+,dqo(x)) such that
* d
| Faaleen S5 =1, -
0 g
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and for a suitable function f, put

s 5 dqt
& (X) = (f *o,q Pt *ayq (pt)(x) t
£
then
||f5»5_f|‘2’(xyq 50 as € — 0 and 6 — oo. (8)

In the case f € I_(]x,q (Rq,+,dqo(x)) such that Fu f € LL‘q(Rq,+, dqo(x)) one has

lim  f©%(x) = f(x), x € R. (9)
e—0
5 — oo

Then we prove that for p € M/(Rq‘+), such that the g-integral

> dqA
Cumia = | Falb) () (10)
0
is finite. Then for all f € Léq(Rq,Jﬂ dqo(x)), we have
lim 9% = ¢y a,qf (11)
e—0
§ — o0

where the limit is in Lé‘q (Rq,+,dqo(x)). And if p € M/(Rq,+) is such that the g-integral

o0 d
L (0, 1) =2 (12)
is finite, for all f € Léq(Rq&, dqo(x))
im % =cpaqf, nl%,(Rqq,dqo(x)). (13)
e—0
5 — oo

The outline of this paper is as follows: In Section 2, basic properties of g-Bessel transform
on Ry of functions and bounded measure and its underlying g-convolution structure are called
and introduced here. In Section 3, we give the first main result of the paper, the g-Calderon’s
reproducing formula for functions. Section 4 is consecrate to establish the same result as in section

3 for finite measures.

2 Preliminaries

In this section we recall some basic result in harmonic analysis related to the g-Bessel Fourier
transform. Standard reference here is Gasper & Rahman [7].
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For a,q € C the g-shifted factorial (a;q)x is defined as a product of k factors:
(a;q)x = (1—a)(1 —aq)..(1 —ag*'), keN% (a;q)o =1. (14)

If |q] < 1 this definition remains meaningful for k = 400 as a convergent infinite product:
(65q)o0 = [ (T — aq"). (15)
k=0

We also write (aj, ..., ar; q)x for the product of r g-shifted factorials:
(ar,-,an )k = (a3q9)x..-(ar; q)x (k € Nor k = o0). (16)

A g-hypergeometric series is a power series (for the moment still formal) in one complex variable z

with power series coefficients which depend, apart from q, on r complex upper parameters ay, ..., a,
and s complex lower parameters by, ..., b as follows:
o (ar, -, an5q)k DRRIUE DIV
ap, - ,ap by, ,bsiq,x) = — 7 ]It (for 1,5 € N).
r(Ps( 1) y Ury U1, y 0554, ) ];)(bh"')bs;q)k(q;q)k( ) ( ) )
2.1 g-Exponential series
eald) = 10002 =Y A= i< (17)
S ad  (Zd)e
0 %k(k—])zk
Eq(z) = opol——a,-2)=) T = (zqle (z€0). (18)
D CH )
2.2 g-Derivative and g-Integral
The g-derivative of a function f given on a subset of R or C is defined by:
f(x) —flqx)
D =
) = T (x#0,a£0), (19)

where x and gx should be in the domain of f. By continuity we set (D4f)(0) = £'(0) provided
£'(0) exists.

The g-shift operators are

(Agflx) = flax),  (Ag'Hx) =f(q %) (20)
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For a € R\ {0} and a function f given on (0, a] or [a,0), we define the g-integral by

J f(x)dgx = (1—q)a ) _f(aq™)q™, (21)

0 n=0

provided the infinite sum converges absolutely (for instance if f is bounded). If F(a) is given by
the left-hand side of (ZI]) then D4F = f. The right-hand side of (2I)) is an infinite Riemann sum.

For a g-integral over (0,00) we define

(e’e] +o0
| fodx=01-@ 3 la)a~ (22)
O —00
Note that for n € Z and a € Rq, we have

9] [eS) a aq
J flq™x)dqx = LHJ' f(x)dqx, J flq"x)dgx = an' f(x)dqx. (23)
0 q= Jo 0 q
The g-integration by parts is given for suitable functions f and g by:
b b b
| fxDagixIagx = [fixlg0] |~ | Dattrigixidgr (24)
a a

The g-Logarithm log, is given by [19]

_[dax _1-—gq
logqx—J X~ Togg log x. (25)
For all a,b € q%,a<b
logg(b/a)=(1—q) > 1. (26)

k:a<qk<b

The improper integral is defined in the following way

oo /A +oo qn qn
f =(1-— fl—)—-—. 2
J,ose=n-0 3o (5) 27)
We remark that for n € Z, we have
co/q™ 0
J f(x)dqx = J f(x)dgx. (28)
0 0

The following property holds for suitable function f

o0 X o0 o0
J J f(x,y)ldqydgx = J J f(x,y)dqxdqy. (29)
o Jo 0 Jay
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2.3 The g-gamma function

The g-gamma function is defined by [7, [16]

Mz = Bw gy 0 qatiz20,-1,-2,..

(9% 9)eo

(1—q)!

= J t* TEq(—(1 — q)qt)dqt, (Rez>0)
0

moreover the g-duplication formula holds

Tq(22)T2 (%) =(1+q)* T2z + %),

2.4 Some g-functional spaces

We begin by putting
Rq+ ={+q5keZ), Rqy={+qkezIU{0}

and we denote by

o LY 4(Rq,+), pell,+ool, (resp. L% (Rq,+) ) the space of functions f such that,

]

Py%,q = (J:o \f(x)|pdq0(x))% < +o0.

(resp. ||f]lco,q =ess sup |[f(x)] < 4o0).

x€ERq, +

(34)

(35)

o Sq,+(Rq) the g-analogue of Schwartz space of even functions defined on R4 such that D‘;’Xf(x)

is continuous in 0 for all k € N and

Ngnx(f) = sup |(1 +x2)“Dz,Xf(x)| < +o0.
x€ERg

e The g-analogue of the tempered distributions is introduced in [I2] as follow:

(36)

1 -distribution | in 1s sald to be tempered 1f there exists > 0 an € N suc
i) A g-distribution T in Ry is said to b d if th ists Cq > 0 and k € N such

that:

(T, f)l < CqNgmn,x(f); fe Sq,«(Rq).

(37)

(ii) A linear form T: Sq..(Rq) — C is said continuous if there exist Cq4 > 0 and k € N

such that:

(T ) < CqNgmnk(f);  f € Sq«(Rq).

(38)
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) S(;‘*(Rq) the space of even g-tempered distributions in R4. That is the topological dual of
Sq ¥ (Rq )

e Dy «(Rq) the space of even functions infinitely q-differentiable on Rq with compact support
in Rq. We equip this space with the topology of the uniform convergence of the functions
and their g-derivatives.

o Cq,+,0(Rq) the space of even functions f defined on R4 continuous on 0, infinitely g-differentiable

and

lim f(x) =0, |fllc,.o= suﬂg If(x)| < +o0. (39)
x€Rq

o Hq,«(Rq) the space of even functions f defined on Ry continuous on 0 with compact support
such that

1fll#,.. = sup [f(x)| < +oo. (40)
x€ERy

2.5 (-Bessel function

The following properties of the normalized g-Bessel function is given (see [13]) by

. (X’ 2) - T ( + ” i (_quk(k_l) ( X )Zk (41)
SR = e T L i D (et k+ 1) 1+ g
This function is bounded and for every x € R4 and o > —% we have
.2 1
a5 q7) < G (42)
1 : (1—q) .
(;Dq)la(-;qz)(x) :_(]_qiz?“rz))oc—o—](qqu)) (43)
1 20 2 1— qm 2(a—1); 2
;Dq (x*%j«l(x;q7)) :ﬁx ja—1(x97), (44)
. 1— X
Dyjulxia?) < —1 9 (45)

- (1-q2) (g92)%
We remark that for A € C, the function j (Ax; q?) is the unique solution of the g-differential system

Aq,ocu(xv q) = —AZU(X, q))
(46)
U(O, Q) =T Dq,xu(X) q)|X:0 = O)
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where Aq « is the g-Bessel operator defined by
1

Aq.af(x) = XﬂTﬂDq X2 Dof] (™ 'x) (47)
G2 Agflx) + A9 D (g ) (48)
‘ (T—q)g~"x " ’
where
Aqf(x) = Ay'D3f(x) = (D3f) (g~ %), (49)
and for k € Nand A € Ry 4,
AX Ga(A%q%) = (1) Ao (Ax; ¢2). (50)

2.6  g-Bessel Translation operator

Tgx1Xx € Rq,+ is the g-generalized translation operator associated with the q-Bessel transform is
introduced in [13] and rectified in [I7], where it is defined by the use of Jackson’s g-integral and
the g-shifted factorial as

Taxfly) = J:OO f(t)De,q(x,y, )2 T dgt, a>—1 (51)
with .
D“»q(X»U»ZJZCiqL joo(xt; 42N (Yt 2)j(2t; )12 dgt
where

1 (q2¢x+2;q2)oo
—q (4%9%)

In particular the following product formula holds

Ca,q = 1

Téx,xjrx(ya qz) = joc(xa qz)joc(ya qz)
It is shown in [I8] that for f € LL,q(Rq,+), Toxfe I_(]x,q (Rg,+) and

HTgifol,oc,q = ||fH1,cx,q-

2.7 The g-convolution and the g-Bessel Fourier transform

The g-Bessel Fourier transform F 4 and the g-Bessel convolution product are defined for suitable

functions f, g as follows

Fag(A) = L F(x)j (A 42)dgo (),
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“+oo
frmq glx) = L To F(y)gly)deoly).

The g-Bessel Fourier transform F, 4 is a modified version of the q-analogue of the Hankel transform
defined in [15].
It is shown in [13} 17, [14], that the q-Bessel Fourier transform Fy 4 satisfies the following properties:

Proposition 2.1. If f € szyq(Rqﬁ), then Fo q(f) € Cq,,0(Rq,+) and

H]:Ot,q(f)HCq,*,o < Boc,quH],oc,q-

where y etz 2
T (—9%59%)(—9°*"%; q%)
(1—q) (d4%;,9%)o0

Proposition 2.2. Given two functions f, g € LL,q(Rq,+), then

Ba,q =

f*oc,q ge sz,q(Rq,Jr)a

and
]:oc,q(f*oc,q g) = ]:oc,q(f)foc,q(g)-

Theorem 2.3. (Inversion formula)

1 Iff e L) 4(Rq,+) such that Fo q(f) € L

a‘q(Rq,Jr), then

for all x € Ry, we have

flx) = L Faoa()(9)j o605 42) dq o).

2. Fu,q(f) is an isomorphism of S, q(Rq) and ]-'i‘q(f) =Id.

e Note that the inversion formula is valid for f € L!X‘q (Rq,+) without the additional condition
Fayqlf) € Ll(,q(Rq,+).
Fa,q(f) can be extended to L%c,q (Rq,+) and we have the following theorem:

Theorem 2.4. (g-Plancherel theorem )
Fu,q(f) is an isomorphism of Léq(Rq&), we have || Fu,q(f)l2,0,q = lIfll2,a,q, forfe Li,q(Rq#)
and ]-';Y]q(f) = Fu,q(f).

Proposition 2.5.

(i) For f € L& q(Rq,+), p € [1,00[, g € I—lc,q(Rq,+) we have fxqq g € L& q(Rq,+) and
|If *oq ng,cx,q < Hf||p,oc,qH9||1,oc,q~

o0

(ii) L fa,qm(a)g(a)dqc(a):j H(E) Farg(0)(£)dqo(E); g € Ll o (Rq.).

0
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(ii1) Fo,q(TEFE) = jal&X q%) Fa,q(F(E); e LY 4(Rq, ).

Specially, we choose q € [0, qo] where qo is the first zero of the function [17]:

q~ 1$1(0,q, q; q) under the condition % € 7.

Definition 2.6. [11,[9] A bounded complex even measure w on Ry is a bounded linear functional
won Hq«(Rq), i.e., for all f in Hq «(Rq), we have

(0] < ClIfllo. (52)

where C > 0 is a positive constant.

Denote the space of all such measure by M,(Rqu).

Note that p € M’ (Rq,+) can be identified with a function p on Hiq,+ such that [ restricted
to Rq, is I—clx,q(Rqu) :

(oo}

w(f) = u({0Pf(0) + L R(x)f(x)dq(x), (f€ Hgx(Rq)).

For u e M/(Rq,+) denote ||u|| = [ul(Rq,+) where [p| is the absolute value of p.

Definition 2.7. The q-Bessel Fourier transform of a measure | in M,(Rq‘+) is defined for all
(NS Sq,*(Rq) by

+oo
Foatlh) = b | - JaO0xs 02, (53)
0
The q-Bessel convolution product of a measure p € MI(Rq,+) and a suitable function f on Rq 1
is defined by
g fx) = | TaTw)duty) (54)
0

Proposition 2.8. (1) The q-Bessel Fourier transform Fy q of a measure y in M,(Rq,Jr) 1s the
q-tempered distribution Fu qu given by:

+oo
(Fo,ats @) = {1y For,q®) :J Fo,q@(A)dgr(A). (55)
0
(2) For all x,A € Rq,+ we have
+oo
TS Fuoqth) = bg J o[t 2V 42 dg (1), (56)
0

(3) Forallpe M/(Rq,+), Fu,qlt 5 continuous on Rq 4, and
lim Fo,qu(A) = 1({0). (57)
A—00

Fu,q maps one to one M/(Rq,+) into Cy(Rgq,+), (the space of continuous and bounded func-
tions on Rq 4 ).
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(4) Ifue M (Rq,+) and f € L% q(Rq,+), p=1,2 then wn,q f € Ly q(Rq,4) and
I *a,q fllp,oiq < IRllIfllp, e q- (58)
(5) Forallpe M/(Rq‘+) and f € L& q(Rq,+), p =1,2 we have

]:oc,q(H*cx,q f) = foc,q(H)Foc,q(ﬂ~ (59)

Definition 2.9. Let n € M/(Rq,+) and a > 0. We define the q-dilated measure pq of pu by

o0

| otdanate) = | " olaxaquix), o€ o (Ry) (60)

Proposition 2.10. (i) When p = f(x)x***1dyx, with f € szyq(anL), the measure [q, a >0,
is given by the function

1
fo(x) = Wf(g), x> 0. (61)

(i) Let p € M/(Rq,Jr), then
Foyq(ta)(A) = Faq(1)(ar), forall A>0. (62)

(iii) For n € M/(Rq,+) and T € LE q(Rq,+),p = 1,2 we have
i{% Ha *o,q T = H(Rq,+)f- (63)
where the limit is in LE q(Rq,+).
(iv) Let g € Ll(,q(anL) and T € LK q(Rq,+), 1 <p < co. Then
lim f*q,qga =0 (64)
a—oo

where the limit is in Ly q(Rq,+).

Proof. Statement of (i) and (ii) are obvious. A standard argument gives (iii). Let us verify (iv).
If f,g € Dq,«(Rq) then by (G8) and (GIl) we have

It *o,q 9allp,asa < [Iflh1,eall9allp,eq
—2(a+1)(p—1)
= a P Ifll1,0,qll9llp,,g = 0, as a— oo.
For arbitrary g € szyq (Rq,+) and f € LE 4(Rq,+) the result follows by density. O

Given a measure QL € M/(Rq,+). Denote

Chsoa = | FraWNS. (65)
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3 g-Calderdn’s formula for functions

In this section, we establish the q-Calderén’s reproducing identity for functions using the proper-
ties of g-Fourier Bessel transform Fy 4 and gq-Bessel convolution *4 4.

Theorem 3.1. Let @ and P € szyq (Rq,+) be such that following admissibility condition holds

EGIEEMOEE SR (66)

then for all f € szyq(RqﬂL), the following Calderdn’s reproducing identity holds:

dqt

) = | (10,0 01 50 000

Proof. Taking q-Bessel Fourier transform of the right-hand side of ([67), we get

Fosa [, (a0t 5mawd0LE| (€)= | " Foa DO Fugl00)€)Frqbi)E) 22

= Fual0E) | Fuglon@Fuqb (@)L

= Fual§E) | Fuqlo)te)Fuq ) (10)

= Faqlf)(E).
Now, by putting t§ = s, we get
> dqt > dgs
| Faa@)t0Fuq@)E = [ Fual@)e) ()52 = 1.
0 0
Hence, the result follows. O

The equality (67) can be interpreted in the following [2-sense.

Theorem 3.2. Suppose @ € Llc,q(Rq,+) and satisfies

i d
| Faaleien S5 =1, (68)
0 g
For f e szyq(anL) N Liyq(RqﬂL), suppose that
£,0 ® dqt
O %) = | (f*a,q 9t *ayq (Pt)(X)T (69)

then
HfE»‘S_f”zyo"q —0 as ¢ = 0 and 6 — oo. (70)
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Proof. Taking g-Bessel Fourier transform of both sides of (69) and using Fubini’s theorem, we get

5
dqt
Faalf)E) = FagD(E) | Faale)te)? S
£
by Proposition 2.5 we have
[t *a,q Pt *o,q fll2,000 < [0 *a,q Otl1,0,qlfl2,00,
< 0ellf o ql1fll2,0,-

Now using above inequality, Minkowski’s inequality and relation (29), we get

52 = ° dqt >
182y = \J (04 #aq @1 g 1) "L Pdqo(x)
JO €
S poo
dqt
< [ ] 100t 00t N00P 000 S
Je JO
8
dqt
< ot *o,q Pt *«,q f”Z,oc,q%
Je
5
dqt
2
< oul el flzma | 2
£
2 6
= ||(Pt||1,oc,q|‘f||2,oc,q 1qu(g)
Hence, by Theorem 2.4] we get
lim Hfg,é _f”%,oc,q = lim H'F“yq(ft:’é) _]:Oéyq(f)”%,oc,q
e—0 e—0
d— o0 d— o0

[eS) 5
— | Fae®) <1—J [foc,q(cp)(tanz?) Pdqolx) =0.

e—0 YO €
0 — o0
8 5 dgt
Since |Fu,q(f)(E) [ 1 —J [Fo,q(@)(tE)] % | < [Fo,q(f)(E)], therefore, by the dominated con-
&€
vergence theorem, the result follows. O

The reproducing identity (G7) holds in the pointwise sense under different sets of nice condi-
tions.

Theorem 3.3. Suppose f, Fu qf € szyq(anL). Let ¢ € szyq(anL) and satisfies

2 dgt

=1 (71)

J []'—oc,q @(tE)]
0
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then
lim  £9%(x) = f(x),
e—0
d =00

where £° is given by (GJ).

Proof. by Proposition 2.5 we have

ot *er,q @t *ayq Fll1,00q < N021T o qllfl1,0000-

Now
00 1)
dqt
60 ma = [ 1] (00 g 0 11005 lagot)
J £
S poo
dqt
< J (¢ *oq @t *ooq T) (¥ dqolx) 98
Je JO t
1)
dqt
< [0t *a,q Pt *otyq Fll1,009——
JE t
P )
< 100l 1o o8 (2.

CUBO
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(72)

Therefore, &% € szy q(Rgq,+). Also using Fubini’s theorem and taking g- Bessel Fourier transform

of &0, we get

%) )
. dgt
Fo,qf(E) = jo(xE;9?) (J (Pt *a,q Pt *o,q f)(X)%) dqo(x)
0 I3
= [ ] a0 kg 01 g D000 S
e JO
° dqt

= ]:cx,q(Pt(a)]:oc,q(Pt(a)]:oc,qf(a) t
5
= fa,qf(a)J Faqolte)? 29

€

Therefore by (1)), \fo(‘qfs‘é(f,)\ < | Fa,qf(&)]. Tt follows that Fo qfS° € szyq(anL). By inversion,

we have
o0

i) — F0 () = J o X3 2 [Fa(E) — Fu.af(E)] dqo(E).

0

Putting

9% (%, &) = ja(x&q?) [Fayqf(E) — Fa,qf0(8)]

13
o3 07) Fo (£) [1 - | Faqetee)? %1 ,

€

(73)

(74)
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we get

fx) = F8(x) = JO o (X3 42) [Fnng F(E) — Fg T (£)] dqolE)

= | ot tiagete.

0
Now using (([[1)) and (74), we get
lim ¢®%(x,&) =0. (75)
e —0

5 — o

1
5 |Fa,qf(E)l; the dominated convergence theorem yields the result.

Since [g®°(x,&)| < ———
970 &) (9,9%)%

d

4  g-Calderdn’s formula for finite measures

It is now possible to define analogues to (2] for the g-Bessel convolution #4, q and investigate its
convergence in the Liy : (Rq,+) g-norm. To this end we need some technical lemmas

Lemma 4.1. Let u e M,(Rq,Jr), for 0 <e << oo define

(A
GE»B(Xaq )—W, x>0 (76)
and
P o dqa
Kes0?) = | Fuawl@an)®%, A > 0. (77)
Then Ggs € LL‘q(Rq,Jr) and
1
Foa(Ge,s) (A q%) = Ke (A q%) — ({0} logg (), (78)
where log is given by (23).
Proof. We have by (23] and (29),
o % (T dgx
| eestiatagd < [ (] dgluliy) 25
0 JO X

o]r ofx

dgx

= d — Ed —
J, 1], aahity) = | " aqhatyn =g

[ [ dgx © dgx
_ [J L—J 4% 4. 1ul(y)
qsy X

JOo qey x
> €
= 10gq(3)dq|u\(y)
Jo

~ €
= |u(Rq,+) 1qu(g) < 00.
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Using again relation (29) and g-Fubini’s theorem we obtain

kel

[ (e . d X
Foq(Ges)(N) = qu(U))ocU\X;qz)%
JO u%
roo »qéy . d X
= jo(Ax; q%) —=dqp(y)
JO Jqey x
= ja(Axy; %) —=dgr(y)
0 Jqe S
qé o0 d X
=[] ey a?)gniy) S
qe JO X
ras dgx
= Foo,qH(AX) — p({oh —=
Jqe S
rd dgx
= | Fu,qr(ghx) — u({O})%
JE

= Kool %) — ({0} logy (2

Lemma 4.2. Let pu € M/(Rq‘+), then for f € L& q(Rq,+),p = 1,2 and 0 < € < § < oo, the

function
5

d
005 00) = | Frogg alug?) S48 (79)
&€
belongs to LY q(Rq,+) and has the form
S
90 (x;q%) = f%a,q Gae,q5 (% 9%) + n{ONF(x) logg (2)- (80)
where G5 is given by (4.1)).

Proof. Applying g-Fubini’s theorem we get

5 poo
. « dqa
o) = ] Tatlay)dguty) 2

€

oo b
dqa
TS 0y fx)——d
L L a,ay f(X) = —dqnly)

F(x)((0] logq () + J

€ Rq,+

ey
as
= O logg (1) + | Toaflal] "4 dguty)
q,+ a3

= )0 o (3) +  #asq Gaeyas (1)
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From this relation, inequality (8)) and Lemma [Tl we deduce that f&° belongs to L q(Rq,4+). O

Lemma 4.3. Let p € M/(Rq,Jr), then for f € Liyq(Rqﬁ), we have
Fa,q(f2) (X 9%) = Fq(£) (A 4*)Kge,q5 (A 47), (81)

where K¢ 5, is the function defined in ([07).

Proof. This follows from (B9), (67)) and (80). 0

Theorem 4.4. Let p € M/(Rq,+), be such that the q-integral

o dgA
Cumia = | Falb) () (52
0
be finite. Then for all f € Liyq(RqﬂL), we have
lim (9% — ¢y o, qfll2,a,q = O- (83)
e—0
d— o0
Proof. By identity (BI)) and Theorem [Z.4] we have
110 —cuyyaflZ g = 1Foalf™) = cuoaFaa(3,a,q

[Fo,a(F)Ke,s = €0l

2
12,00q-

Or lim K¢ 5(A) = cy,«,q, for all A > 0 the result follows from the dominate convergence theo-
e—0

0 — oo
rem. O

Lemma 4.5. Let u e M/(Rqu), be such that the q-integral

L \u([O,y])\d;—y (84)

be finite. Then the q-integral ¢, « q 5 finite and admits the representation

o0 d
Cuand :J (0, y)) daY. (85)
0 y

Proof. From ([76]) we have
(S

’ 2aiz = Ge— G (86)



140 Belgacem Selmi SEI(ZBM?)

where

0
Gly) = % (87)

and G., Gs the dilated function of G. Since G € LL,q(Rq,+), we deduce from (62)) and (78) that
A
dqa 5
FugBeol®) = | Foqula) 4% (10} logg () (58)
€
= Fu,qG(eN) — Fu,qG(OA),

for all A > 0. Or (84)) implies necessarily n({0}) = 0. Hence when ¢ =1 and 6 — 0o, a combination

of (B8)) and (1) gives

> d
FaqGA) = J fa,qp(a)%“, for all A > 0. (89)
A
Now the result follows from Formula (84) by using the continuity of Fy, q (). o

Theorem 4.6. Let p € M/(Rq,+) such that

o d
G (90)
0 Y
is finite and f € Li’q (Rq,+). Then
lim  [[f° —cpoqfll2,a,q =0 (91)
e—0
5 — o0
Proof. By (80) and (84 we have
9% =g q Ge — f*o,q G, (92)
where G is as in (7). Equation ([@1) is now a consequence of Proposition 2.5. O
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