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ABSTRACT

We define and study the Fourier-Wigner transform associated with the Dunkl operators,
and we prove for this transform a reproducing inversion formulas and a Plancherel
formula. Next, we introduce and study the extremal functions associated to the Dunkl-
Wigner transform.

RESUMEN

Definimos y estudiamos la transformada de Fourier-Wigner asociada a los operadores
de Dunkl, y probamos una férmula de inversion y una formula de Plancherel para esta
transformada. Luego introducimos y estudiamos las funciones extramales asociadas a
la transformada de Dunkl-Wigner.
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1 Introduction

In this paper, we consider R with the Euclidean inner product (.,.) and norm |y| := \/{y,y). For
o € RN\{0}, let o« be the reflection in the hyperplane H, C RY orthogonal to o

2{et,y
Oay:i=y— <|oc)\2 >oc

A finite set Re ¢ R9\{0} is called a root system, if Re "R.a = {—«, &} and o4 Re = Re for
all « € Re. We assume that it is normalized by |&|?> = 2 for all & € Re. For a root system Re,
the reflections o4, o € Re, generate a finite group G. The Coxeter group G is a subgroup of the
orthogonal group O(d). All reflections in G, correspond to suitable pairs of roots. For a given
B e Rd\u(x6Re Hy, we fix the positive subsystem Rey := {«x € Re : (&, f) > 0}. Then for each
« € Re either o« € Rey or —x € Re;..

Let k : Re — C be a multiplicity function on Re (a function which is constant on the orbits
under the action of G). As an abbreviation, we introduce the index y = yy := ZaeRc+ k().

Throughout this paper, we will assume that k() > 0 for all « € Re. Moreover, let wy
denote the weight function wy(y) = HoceRC+ (o, y)|#*() | for all y € R4, which is G-invariant
and homogeneous of degree 2vy.

Let ¢ be the Mehta-type constant given by ¢y = ([pa eily‘z/zwk (y)dy)~'. We denote by
1<

U the measure on R¢ given by duy(y) := cxwy(y)dy; and by LP (), p < oo, the space of

measurable functions f on R4, such that

1/p
Il o= ([ FwPaiety)) " <o, 1<p <00,
R

[IfllLoe () := ess sup [f(y)] < oo,
yeRd

and by LP ., (px) the subspace of LP(py) consisting of radial functions.

For f € L' (uy) the Dunkl transform of f is defined (see [3]) by

Felf)x) = JRd Ex(—i%,0)f(y)dimc(y), x € RY,

where Ey (—ix,y) denotes the Dunkl kernel. (For more details see the next section.)

The Dunkl translation operators T,, x € R4, [I8] are defined on L?(uy) by
]:k(Txf)(U) = Ek(lx)y)]:k(f)(y)) y € Rd'

Let g € L2_,;(1tk). The Dunkl-Wigner transform Vj is the mapping defined for f € L? () by

Vy (f)(x,y) = JRd ()T gy (D dmk(t),
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where

grw (2) = Fi (/1 Ful9)?) (2).
We study some of its properties, and we prove reproducing inversion formulas for this transform.
Next, Building on the ideas of Matsuura et al. [6], Saitoh [I1] [13] and Yamada et al. [20], and
using the theory of reproducing kernels [10], we give best approximation of the mapping V4 on the
Sobolev-Dunkl spaces H3 (1 ). More precisely, for all A > 0, h € L?(ux @ i), the infimum

. 2 2
R N R LS AR

is attained at one function f} 1, called the extremal function, and given by

L Ex iy, 2) /TP () il 1) )
R I ot e )

In the Dunkl setting, the extremal functions are studied in several directions [14} [I5] 16} [17].

In the classical case, the Fourier-Wigner transforms are studied by Weyl [21] and Wong [22].
In the Bessel-Kingman hypergroups, these operators are studied by Dachraoui [1J.

This paper is organized as follows. In Section 2, we recall some properties of harmonic analysis
for the Dunkl operators. Next, we define the Fourier-Wigner transform V4 in the Dunkl setting,
and we have established for it a reproducing inversion formulas. In Section 3, we introduce and
study the extremal functions associated to the Dunkl-Wigner transform V.

2 The Dunkl-Wigner transform

The Dunkl operators Dj; j = 1,...,d, on R4 associated with the finite reflection group G and
multiplicity function k are given, for a function f of class C' on R9, by

Djt(y) = a%jf(yH > k(cx)ocjw.
x€Re )

For y € RY, the initial problem Dju(.,y)(x) = yju(x,y), j = 1,...,d, with u(0,y) = 1 admits
) and called Dunkl kernel [2] [4].
This kernel has a unique analytic extension to C% x C¢ (see [7]). The Dunkl kernel has the

a unique analytic solution on R¢, which will be denoted by Ey (x,y

Laplace-type representation [8]

Eelxy) = J WA (), xeRYyeC, (2.1)
R

where (y,z) := Z?:] yizi and Ty is a probability measure on R%, such that
supp(Ty) C{z € R4 : |z| < |x|}. In our case,

Ex(ix,y)| <1, xyeR9, (2.2)
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The Dunkl kernel gives rise to an integral transform, which is called Dunkl transform on R¢,
and was introduced by Dunkl in [3], where already many basic properties were established. Dunkl’s
results were completed and extended later by De Jeu [4]. The Dunkl transform of a function f in
L' (ux), is defined by

A= | Bt y)fly)dunly), xR
R
We notice that Fy agrees with the Fourier transform F that is given by

F) = (zn)—d/ZJ e iV f(y)dy, x € RY,
]Rd

Some of the properties of Dunkl transform Fy are collected bellow (see [3, []).
Theorem 2.1. (i) L' — L™-boundedness. For all f € L' (), Fi(f) € L®(uy), and

||]:k(f)||L°°(uk) < ”fHL'(Hk)'

(ii) Inversion theorem. Let f € L' (wy), such that Fi(f) € L' (wy). Then

f(x) = F(Fe(f))(—x), a.e. x € R4,

(iii) Plancherel theorem. The Dunkl transform Fy extends uniquely to an isometric isomor-
phism of L% () onto itself. In particular, we have

1112 () = 1Pk ()2 (-

iv) Parseval theorem. For f,g € Wk ), we have
iv) P 1 th For f L2 () h

(fy )12 (uy) = (Fr(f)y Fr(g)) 12 (o) -

The Dunkl transform Fj allows us to define a generalized translation operators on L%(uy) by
setting
Fie(tx)(y) = Belix, y) Fe(ly), yeR (2.3)

It is the definition of Thangavelu and Xu given in [I§]. It plays the role of the ordinary translation
T.f = f(x +.) in R4, since the Euclidean Fourier transform satisfies F(t,f)(y) = e™Y F(f)(y).
Note that from (2.2) and Theorem 2.1 (iii), the definition (2.3) makes sense, and

Itxflliz () < iz, f € L (). (2.4)
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Rosler [9] introduced the Dunkl translation operators for radial functions. If f are radial
functions, f(x) = F(|x|), then

wtly) = | Py 2,2 Jan(zs vy e R,

where Ty is the representing measure given by (2.1).

This formula allows us to establish the following results [I8] [19].
Proposition 2.2. (i) For all p € [1,2] and for all x € R4, the Dunkl translation Tty : LY (1) —

LP (uk) is a bounded operator, and for f € LY, (1), we have

I Txfllr (o) < [Ifllee (ui)*

Tad

(ii) Let f € Ll 4(px). Then, for all x € R4, we have

[, mertidnt) = | .
The Dunkl convolution product *i of two functions f and g in L? () is defined by
fre g(x) == JRd T f(—y)g(y)dp(y), xR (2.5)
We notice that #y generalizes the convolution * that is given by

fxg(x) = (2) 92 Jw fx—y)gly)dy, xR

The Proposition 2.2 allows us to establish the following properties for the Dunkl convolution
on R4 (see [18]).
Proposition 2.3. (i) Assume that p € [1,2] and q,r € [1,00] such that 1/p+1/q =1+ 1/r.
Then the map (f,g) — f* g extends to a continuous map from LP_ () x L9(uy) to L™ (wy), and

rad

I % gller ey < Hfllee o l191La (-

(ii) For all f € Llad(uk) and g € 1% (uy), we have

Fi(f *x g) = Fi(f) Filg).

(iil) Let f € Lfad(uk) and g € L?(we). Then fx g belongs to L*(wi) if and only if Fi.(f) Fi(g)
belongs to 12 (), and

Fief i g) = Fie(f)Felg),  in the L* () — case.
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(iv) Let f € L2 4(px) and g € L2(ux). Then

J I+ g () dpc(x) :J' i (F)(2)1*1Fi(9) (2)* dp(2),
Rd RAd

where both sides are finite or infinite.

Let g € L2 ,(1k) and y € R4, The modulation of g by y is the function gk,y defined by

Gy (z) = ]-'k( Ty\]:k(gﬂz) (z), zeR.

Thus,
l9xylliz oo = lI9llcz, o) (2.6)

rad

Let g € L%a a(pk). The Fourier-Wigner transform associated to the Dunkl operators, is the
mapping Vg defined for f € L?(u) by

Vy (f)(x,y) == JRd () TGy (—Ddme(t), %y € R 2.7)

Proposition 2.4. Let (f,g) € L?(w) x L2 4 ().
() Vg(f)(x,y) = Gieyy *x f(x).

(i) V4(f)(x,y) = JRdEk(ix, 2)Fi(f)(2)y/ Tyl F(g)12 (z) dp (2).

(ili) The function V4(f) belongs to L (we ® uy), and

Ve (Ol (uieme) < Ifllzuollglliez, , o

rad
Proof. (i) follows from (2.5), (2.7) and the fact that Txgr y(—t) = Tx i,y (—1).
(ii) By Theorem 2.1 (iv) and (2.3) we have

Vy(f)(x,y) = JRd Ex (ix, 2) i () (2) Fic (G y ) (—2) d e (2).

We obtain the result from the fact that

Filgiy)(=2) = Fi(Gicy) (2) = /Tyl Fi(9)I* (2).

(iil) follows from (2.7), by using Holder’s inequality, (2.4) and (2.6). O
Theorem 2.5. Let g € I_fad(pk).

(i) Plancherel formula: For every f € L?(uy), we have

Vel (weawo = l9llz  (wollfllz (uo)-

Tad
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(ii) Parseval formula: For every f,h € L?(uy), we have

<Vg(f)»vg (h)>Lz(Hk®Hk) = ngifad(uk)“’ h)LZ(uk)-

(iii) Inversion formula: For all f € L' N L2(wy) such that Fi(f) € L' (1), we have
1 -
() = o | [ Vol x i X ()i )
”gHLZ (ny) R JRA

Proof. (i) From Theorem 2.1 (iii), Proposition 2.2 (ii), Proposition 2.3 (iv) and Proposition 2.4
(i), we obtain

J J Vg (£, y)Pduc () dpely) = Gy FO0Rdie ()i (y)
R4 JRA R4 JRA

= Fi(Gio,0) (2) P Fk () ()1 dpsse (2) d e (y)
Rd J ]Rd

= Ty | Fi(9)17 (2)1 Fic(F) (2) 1 dpac (2) d e (y)
R4 JRdA

= ol oy |, PO L2)

(ii) follows from (i) by polarization.

(iii) From Theorem 2.1 (iv), Proposition 2.3 (ii) and (iii), we have
J J V4 (F) (%, y) T2 gy (=) dmic () d b (y)
]Rd Rd
=J J 1 (9) P () Fie(F) (0 Exe (i, )y (£) e ().
Rd ]Rd

Then, by Fubini’s theorem, Theorem 2.1 (ii) and Proposition 2.2 (ii) we deduce that

L], Vot e I b0 diety) = ol || FeN0Eliz, tidus (0
Rd JRd rad Rd

2
= HgHLde(uk)f(Z)'
O

In the following we establish reproducing inversion formula of Calderén’s type for the Dunkl-
Wigner transform on R¢.
Theorem 2.6. Let A = de:][aj,bj], —00 < a; < by < oo; and let g € Lfad(uk) such that
Fi(g) € L®(uy). Then, for f € L?(uy), the function fao given by

fal2) ] H Vi (F) (% Y )T Gy ()it (x)d e (),
)y Ja Jra

~lgllez, oo
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belongs to L2 () and satisfies
ajli>n—100 ||fA - f”LZ(Hk) =0. (28)
bj—+o0

Proof. From Theorem 2.1 (iii), Proposition 2.3 (iv) and Proposition 2.4 (i), we have

1

a ”gHiz-ad(”k)

falz) JA JRd | Fi ()2 (0 Fe (1) (1) Exe (i, )y () d e ().

By Fubini’s theorem we get

mz)zj K a (6)F(F) (0 Ex iz, ) dis (1), (2.9)
R4
where ]
Ka(t) = Zij | (@) (V)dpk (y).
Hg”Lfad(Hk) A

It is easily to see that ||[Ka|lr=(u,) < 1. On the other hand, by Holder’s inequality, we deduce that

A
Kaltlf < | ﬁ“( ) J ey | Fe(g) P (0 P dme ).
Iz, (o I8
Hence, by (2.4) we find
A))? (1 (A))2]| Fie(9)]| 2
IKalE: (o) SH(TEAJ Fic(g) (0 dpi (t) < I (1)
J Faa i) R 9 L2 4 ()

Thus Ka € L N L2 (uy). Therefore and by (2.9) we obtain
Filfa)(t) = Kalt) A (f)(t).

From this relation and Theorem 2.1 (iii), it follows that fo € L?() and

1£a — 122 =J AR = Kat) du(b)
R
But by Proposition 2.2 (ii) we have

lim Ka(t)=1, forall teRY,
aj;——00
bj—?+00

and

IFi(F) (01 (T = Ka(t)? < [Fc(f)()?,  forall te R

So, the relation (2.8) follows from the dominated convergence theorem. O
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3 Extremal functions for the mapping V|

Let s > 0. We define the Sobolev-Dunkl space of order s, that will be denoted H® (), as the set
of all f € L?(y) such that (14 |z[?)%/2F(f) € L?(ux). The space H® () provided with the inner
product

(G ) = | 01+ 21 ) (I FRTOT e =),

and the norm
1/2

N R R RGBT

The space H*® () satisfies the following properties.
(a) HO (i) = L2 (o).

(b) For all s > 0, the space H®(uy) is continuously contained in L?(py) and (fllL2 () <
[l () -

(c) For all s,t > 0, such that t > s, the space H' () is continuously contained in H® (1) and
(s () < Il -

(d) The space H®(j), s > 0 provided with the inner product (.,.)ps () is a Hilbert space.

i)
Remark 3.1. For s >y + d/2, the function y — (1 + [z|>)73/2 belongs to L? (). Hence for all
f € H%(ux), we have || Fic(f)]|r2(w,) < IfllHs (uye), and by Holder’s inequality

du(z) 12
[FEMr (o) < URd (EERE [l () -

Then the function Fy (f) belongs to L' N L? (), and therefore

() = || Exlin2Adnid), ae xe R,

Let A > 0. We denote by (.,.)x hs(pu,) the inner product defined on the space H® () by
(f, h>7\»H5(uk) = A(f, h>H5(uk) + <V9(f))vg(h)>L2(uk®uk) )
and the norm ||f[[x 1s(u) = /(F F)aHs () -

In the next we suppose that g € L2, 4(px). By Theorem 2.5 (ii), the inner product (., DAHS (1)

can be written
(A s (o) = ME ) b () + H9||%,2.ad(uk)<f’ IET (3.1
Theorem 3.2. Let A >0 and s >y+d/2 and let g € L2 ;(1). The space (HS (), (., DAHE (1))

rad
has the reproducing kernel

dpk(z), (3.2)

) = [z B D)

ra A1+ [2]2)s + HQH%Z 2 (e)
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that is

(i) For ally € RY, the function x — Kg(x,y) belongs to H®(uy).

(ii) The reproducing property: for all f € H®(uy) and y € RY,

(f, Ks (5 YD aHs (uy) = F(Y)-

. d : . Ek(_iyvz)
Proof. (i) Let y € R%. From (2.2), the function @y : z — RTF) 912, . belongs to

L' NL2(uy). Then, the function K is well defined and by Theorem 2.1 (i), we have

Ks(x,y) = Fi ' (Dy)(x), x € R

From Theorem 2.1 (iii), it follows that K(.,y) belongs to L?(uk), and we have

Ek(_iy)z) d
Fi(Ks(,y))(z) = , z€RY (3.3)
kel N+ + 9l o
rad
Then by (2.2), we obtain
1
Ks(s, < —,
[P (Ks (- y))(2)] NIFREEE
and : e (2)
2 iz
1Ks (oW s () < pJ'Rd Aty =%

This proves that for all y € RY the function K(.,y) belongs to HS ().

(ii) Let f € H*(wx) and y € R4. From (3.1) and (3.3), we have

<f3 KS("y»?\,HS(Hk) = J B Ek(iyvz)]:k(f)(z)duk(z))
R
and from Remark 3.1, we obtain the reproducing property:

<f) Ks (-) y)>7\,H5 (he) = f(y)
This completes the proof of the theorem. O

The main result of this subsection can then be stated as follows.
Theorem 3.3. Let s >y +d/2 and g € L2_,(u). For any h € L?(w ® w) and for any A > 0,

Tad
there exists a unique function f;\,gi where the infimum

: 2 2
fe}ilsl{uk){)\HfHHs (1) + Hh - VQ () ”LZ (Hk®uk)} (3:4)

is attained. Moreover, the extremal function f,n s gwen by

f;,h(y) :J

J R Qs (%, )i (t)dpe (),
R4 JRd
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where

1 i 2
Q) = [ B VIR 1

R4 A1 +|Z‘2)s+||9”%z_ 2 (1)

Proof. The existence and unicity of the extremal function fan satisfying (3.4) is given by Kimel-
dorf and Wahba [5], Matsuura et al. [6] and Saitoh [12]. Especially, f3 , is given by the reproducing

kernel of H® () with [[.[|x s () norm as
) = Ve (K (b y)) ez (e (3.5)
where Kj is the kernel given by (3.2).
But by Proposition 2.4 (ii) and (3.3), we have
Vo(Ks(,y))x, 1) = J | Bl 2) Ac(Ks (L y))(2)y/ el Fie(9) (2) e (2)
R

_ J Exlix, 2Bty 2) VAP E o

Rd A1+ 1z12)s + HQH%Z 2()

This clearly yields the result. O

Theorem 3.4. Let s >y +d/2 and g € qud(pk). For any h € L?(w ® W) and for any A > 0,
we have
1/2
. « HhHLz(u ®uy) J de(Z)
f < — ek =
(1) ‘ )\,h(y” = 2\/X Rd (] +‘Z|2)S
. . 1 2 2
(i) 175 )12 ) < 35 de L@ Ih(x, 12X 11240, (4)dyu (x).

Proof. (i) From (3.5) and Theorem 2.5 (i), we have

IN

Ifan(Y)l M2 (e Ve (Ks (YD 2 (uy o)

A

< Mz eenollglliz oo IKs (Y ez (-

rad

Then, by Theorem 2.1 (iii) and (3.3), we deduce that

@ < Il sun 192, oo 1P Ke Uz o)
dyui (2) 172
< hll; 2 2 [J
e | Y R

2
Using the fact that [7\(1 +1212)* + llgl12. (Hk):| > 4AN(T+ [z12)*(lg]12. , we obtain the result.
rad T

aalm)
(ii) We write

f;,h(y) ZJ

—(I1x|? 2 «I2 2
dJ L€ (NP /4 X+ IID /A (x, ) Qi (x, Y, ) die (1) dpuie (X).
R R

Applying Hoélder’s inequality, we obtain

15 (y)P? < J

2 2
L meuRet 210, x, y, O g e ).
R4 JR
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Thus and from Fubini-Tonnelli’s theorem, we get

2 2
15l ) gj J O R 2 Q12 b (D).
R R

The function z — -2 VT (g belongs to L' N L?(uk), then by Theorem 2.1 (i), we get

A(T+]z[2) 5-0-||gH (
aatx)

Ex(—ix, z) Tt\fk(g)lz(Z))( )

(x,y,t) = F !
Qv . (7\(1+Iz2)5+llglﬁg

aalmx)

Thus, by Theorem 2.1 (iii) we deduce that

1Qs %y V12 ) = JRd 1Fc(Qs (%, 1)) (2) P (2)

J ) Fi (9) 1% (z)dpk(2)
A+ z2)s + ||9Hf§

5+
ad(Hk)]

Then
1

o, < !
R
L) = ZNgl,

J Tl P9 (2)dpe(2) < .
]Rd

1Q(x,.,t) 2

>

(1)
From this inequality we deduce the result. O

Theorem 3.5. Let s >y +d/2 and g € L2 4(px). For any h € L?(u ® i) and for any A > 0,
we have

. Ex (iy, 2)v/Te| Fi(9)12 (z) Fx (h
)£ ):J J v ) e (B (2).
O n) = |, S AT +122)¢ +||g|\L,z_ad(pk)

JR Tl Fi(9)12 (2) Fic(h(., 1)) (z)dpe (t)
(i) Fie(fy n)(z) = =5

AT +12P)s +llglEz (.

||]’1||L2 (L ®@ui)"

(i) [l < 5=

Proof. (i) From Theorem 3.3 and Fubini’s theorem, we have

x _ Ex (iy, 2) /Tl Fi(g)I* (2) [ .
finly) = JRd JRd A+ 22) s+||gH22 N JRd h(x, t)Ex(—ix, z)dpi (x) | dpc(t)dp(z)

B \/72
— J J' k(iy, 2) /Tl Fi(9)1% (2) Fic(h duk( )dpx (2).
R4 JRd

AT+ 25 + 9]l

aalrK)

| VriAdaE @AM D

A(1+z[2)s+][g]l?
HQHL%ad(Pk)

belongs to L' N L?(py). Then

(ii) The function z —
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by Theorem 2.1 (ii) and (iii), it follows that f3,n belongs to L2 (), and

JRd el Fe(9) 2 (2) Fie(h(y 1) (2) dpse ()

}\(1 + ‘Z|2)s + Hg”IZ_Z d(uk)

Fi(fyn)(z) =

(iii) From (ii), Holder’s inequality and (2.6) we have

HQH%gad(uk)

2)s 2
(T +1212)* +1lglIz2 (0,

F(fin) (@) < i B JRd [Fic(nly ) (2) P dpsc (1).

Thus,

2\s 2
T - J (1+1z19) ”9”]_30‘1(”)
ARIHS () = ra A(

THERE 0l

]2 |:J;gd ‘]:k(h(-)t))(zﬂzdpk(t) de(Z)
)

‘ 1
a JRd URd fk(h(-)t))(Zszuk(t)} diti(2) = N E2 (o0,

which ends the proof. O

Theorem 3.6. Let s >y +d/2 and g € L2 4(px). For any h € L?(u ® i) and for any A > 0,
we have

J Ex (ix, 2) /Tl Fic(9)  (2) Ty [P (9) 2 (2) Fic (h(., 1)) (2)
Rd

Vg(fan)(x,y) =
()00 = | N+ 2 + 9l

Rd

dpx (t)dpk(z).
aalbx)

Proof. From Proposition 2.4 (ii), we have

Vo(fan)(x,y) = JRd Ex(ix, 2) Fic(f3 1) (2)/ Tyl Fic ()12 (z) dpc (2).

Then by Theorem 3.5 (ii), we obtain the result. O
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