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ABSTRACT

In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequal-
ities are established. These inequalities can be used as handy tools to research stability
problems of perturbed dynamic systems. As applications, based on these new estab-
lished inequalities, some new results of practical uniform stability are also given. A
numerical example is presented to illustrate the validity of the main results.

RESUMEN

En este articulo, establecemos algunas desigualdades integrales nolineales nuevas de
tipo Gronwall-Bellman. Estas desigualdades pueden ser usadas como herramientas
utiles para estudiar problemas de estabilidad de sistemas dindmicos perturbados. Como
aplicaciones, basados en las nuevas desigualdades establecidas, también damos algunos
resultados nuevos de estabilidad uniforme précticos. Un ejemplo numérico es presen-
tado para ilustrar la validez de los resultados principales.
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1 Introduction

In 1919, T.H. Gronwall [6] proved a remarkable inequality which has attracted and continues
to attract considerable attention in the literature. In the qualitative theory of differential, the
Gronwall type inequalities of one variable for the real functions play a very important role. The
first use of the Gronwall inequality to establish boundedness and uniqueness is due to R. Bellman
[1] . Gronwall-Bellman inequality, which is usually proved in elementary differential equations using
continuity arguments, is an important tool in the study of of qualitative behavior of solutions of
differential and stability.

The problem of stability analysis of nonlinear time-varying systems has attracted the attention
of several researchers and has produced a vast body of important results (see [2]-[I5] and the
references therein). In this paper, we present a new generalization of the Gronwall- Bellman lemma.
This new generalization can develop a simple command to exponentially stabilize a large class of
nonlinear systems. In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral
inequalities are given. As applications, we give some new classes of time-varying perturbed systems
which are globally uniformly practically asymptotically stable. Moreover, we give an example to
illustrate the applicability of the results.

2 Definitions and notations

We consider the following system :
x(t) = f(t,x(t)), x(to) = xo, (1)
where t € R, is the time and x € R™ is the state.

Definition 1. (uniform boundedness).
A solution of (1) is said to be globally uniformly bounded if for every o > 0 there exists ¢ = c(a)
such that, for all to >0,

%o | o= x(t) |[< e, VE2>to.

Let v > 0 and B, = {x € R"/ || x ||< r}. Flirst, we give the definition of uniform stability and

uniform attractivity of By.

Definition 2. (uniform stability of B ).
i. By is uniformly stable if for all € > r, there exists & = 8(¢) > 0 such that for all to > 0,

Ixo <8 =]x(t) < Vit to.

ii. B, is globally uniformly stable if it is uniformly stable and the solutions of system (1) are globally
uniformly bounded.
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Definition 3. (uniform attractivity of B, ).
B, is globally uniformly attractive if for all ¢ > v and c, there exists T(e,c) > 0 such that for all
to > O)

[x(t) [<e, Vt>to+T(ee) [ x0l<c
The system (1) is globally uniformly practically asymptotically stable if there exists v > 0
such that B, is globally uniformly stable and globally uniformly attractive.

Definition 4. A continuous function o : [0,a) — [0,+00) is said to belong to class K if it is
strictly increasing and «(0) = 0. It is said to belong to class Koo if @ = +00 and a(r) — +o0 as
T — 400.

Definition 5. A continuous function B : [0, a) x [0, +00) — [0, +00) is said to belong to class KL
if, for each fized s, the mapping PB(r,s) belongs to class K with respect to v and, for each v, the
mapping B(r,s) is decreasing with respect to s and B(r,s) — 0 as s — +o0.

Proposition 1. If there exists a class K-function «, and a constant v > 0 such that, given any

initial state xo, the solution satisfies
| x(t) [[< (] %o [[) +1 Vt > to,
then the system (1) is globally uniformly practically stable.

Proposition 2. If there exist a class KL-function 3, a constant v > 0 such that, given any initial
state xo, the solution satisfies

| x(t) |[< B xo [, t—to)+1 Vt>to,

then the system (1) is globally uniformly practically asymptotically stable.

The next definition concerns a special case of practical global uniform asymptotic stability,
namely, if the class KL in the above proposition consists of functions B(r,s) = kre~Ys.

Definition 6. B, is globally uniformly exponentially stable if there exist v > 0 and k > 0 such
that for all to € Ry and xo € R™,

[ x(t) [< k[l xo [ exp(—=y(t—to)) +1 Vt>to.

System (1) is globally practically uniformly exponentially stable if there exist v > 0 such that
B is globally uniformly exponentially stable.

3 Basic results

Lemma 1. Let u, v and w nonnegative piecewise continuous functions on [0,400) for which the

inequality
t
u(t)ﬁc—kJ(uv—l—w) Vt>a (2)

a
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holds, where a and c are nonnegative constants. Then,

t t

Jv J(V—I-K)
u(t) <cela +rela T Vt>a,vr>0. (3)

Proof

It follows from (2) and the classic inequality
e >x+1 Vx>0

that forallr>0and t > a
t

ogu(t)<(c+reﬁ¥)+J uv (4)
a
which implies that

u(t)

<1.
c+ref37+f:luv

Since v > 0, we obtain

w(t)v(t) + wit)ela ¥ <)+ wit)ela

ctrela ¥+ [fuv T c+rela

R
—~
ot
N

then we take

t t
f(t):J' v—l—log(c—l—ref;¥)—log(c+reﬁ%+J uv) Vt> a.

a a
It is clear that f is defined, continuous and piecewise continuously differentiable on [a,+o00). Con-
sequently, we get for all b > a, a sequence {ay, ..., an} of [a, b] verifying
w(t)el o

¢ +rela

g
_ W(t)e . W+ u(t)v(t) Vt c [a) b] —{ao) ceny an}-
C+T€fﬂT +fauv

(1) =v(t) +

4| -l

By using the inequality (5), we obtain
f'(t) > 0.

Thus, f is increasing on the intervals [a, ao),...(an, b]. Since f is continuous on [a,b], then f is
increasing on [a, b]. Consequently, we get

f(b) > f(a)
however, f(a) = 0 which implies that

f(b) >0 Vb>a.

Consequently

t t
1og(c+refa%+l[ uv) SJ v+log(c+refu¥) Vt>a

a a
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hence

t
c+rJ3¥+¢~uv§(c+rJ5¥kﬁv

a
by using the inequality (4), we have finally

u(t) < celov 4 refalvis),

Lemma 2. Let ¢ € LP (R, R, ) where p € [1,+00]. We denote by || & ||, the p-norm of d. Then,
forallto >0,s>0andt > to

t
[RCELFRI (©)
to

where N = [§ & + M and L = E-LM with Mg = difs, 100) [lp -

Proof
We first consider the case p € (1,+00). By using Holder inequality to the function ¢, we obtain
for all t > to :

%
)
rs
IN
el
)
<
=
<=
et
>
-
"':1
S|

A
=
|
-
o
y
%
<
=
=
o|=

We put

then, f is differentiable on (0,+o00) and verifying

-1
f'(x) = p—(1 —xP).
P
Hence, f is decreasing on (0, 1] and increasing on [1,+00). Since (1) = 0, we conclude that f is

positive on (0,+00) which means that

_ 1 _
xpT] < -+ P x Vx>0
P

consequently, we have

— —1

(t—to) " <—+ P (t—ty) Vt>to

then

t T p—1

OSJ < My, l= +——(t—to)] (7)
to p p

where My, =|| ®|(ty,+00) [lp - This inequality holds also for p € {1, +o0}.
Now, for all to > 0, s > 0 and t > to, we distingue three cases :
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es <ty <t

In view of (7), we obtain

%
>
<
A
=
o
| —
+
"d
=
|
-
2

M, p—1
+ P oM.,
p p

IN

Now, since fg ¢ > 0, we obtain

Jt $ < (rd>+ M5)+p%(t—toJMs.

to 0 p

eth<s<t
We can write by using (7)

KRR
< E¢+[]13+pp%‘(t—snms

then

however, s € (to,t] then

ety <t<s
It is clear that

—
<
IN

o %)
<

IN

then the lemma is proved.

Lemma 3. Consider the differential system

where :

(J o+ My pp%](t—to)Ms.
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i. A is an n X N matriz whose entries are all real-valued piecewise-continuous functions of t € R,

ii. The function h is defined on Ry x R™, piecewise continuous in t, and locally Lipshitz in x.
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iii. There exist & and ¢ piecewise continuous functions, positives and verifying

[ h(t,x) < d(t) [ x || +e(t) VteR,. 9)

Then, for all (to,x0) € Ry xXR™, there exist a unique mazimal solution x of (8) such that x(to) = xo.
Moreover, x is defined on [tg, +00).

Proof
It is clear that the system (8) can be written

x(t) = f(t, x(t))

where

f(t,x) = A(t)x + h(t, x).

The function f is piecewise continuous in t and locally Lipshitz in x, then we have : For all
(to,x0) € Ry x R™, there exist a unique maximal solution x of (8) such that x(to) = xo.

We will prove that x is defined on [tg, +00). Supposed that is not true, then there exist Timax €
(to, +o0) such that x is defined on [to, Trnax). Then, for all t € [to, Tinax)

[ %(t) [[< (My +M2) || x(t) [| +M3

where
My = sup | A(H) |,
tOmiax
My= sup [ (1) |
[tOmiax]
and

Ms= sup | e(t)].

[tO 7Tmax}

It is clear that My, M, and M3 € R, therefore

t t
njxumu\s j|Mqus
to to
t
< JHM4+MﬁHXMH+Mﬂm
to

then
HxMHﬁHHMH+JHM4+MﬁmeH+Mﬂ®

to

By using the lemma 1, we obtain for all t € [to, Tmax)

|| x(t) || ﬁo(MH—Mz)ds 4 eﬁo(M1+M2+M3)ds

IN

[ x(to) || e
My

IN
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where

My =|| x(to) || e(Mi+M2)Tmax 4 o(M1+M2+M3)Tmax
Consequently, x remains within the compact Bm,, which is impossible. So, we conclude that
Trmax = +00.
Theorem 1. Consider the following time-varying :
x(t) = A(t)x(t) + h(t,x(t)) (10)

where :

(1) A is an 1 X N matriz whose entries are all real-valued piecewise-continuous functions of
teR,.

(2) The transition matrixz for the system
x =A(t)x

satisfies :
| R(tys) [|[< ke Y() v(t,s) € RZ (11)

for some k >0 andy > 0.
(3) The function h is defined on Ry x R™, piecewise continuous in t, and locally Lipshitz in x.

(4) There exist d and € piecewise continuous functions, positives and verifying

[ h(t,x) [[< &(t) [ x [| +e(t) vt eR,. (12)
(5) b € LP(Ry,Ry) for some p € [1,+00).
(6) There exist a constant M > 0 such that

e(t) < Me Y. (13)
Then for all (to,x0) € Ry X R™, the mazimal solution x of (10) such that x(to) = xo, is verifying :

i. The function x is defined on [to,+00).

ii. For allt >ty
I %(8) IS L | xo || e8(7t) 4 Ne~0

where N,L > 0 and 6,0 € (0,v].
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Proof of theorem 1

i. By using the lemma 3, we proved that the system (10) has a unique maximal solution x such
that x(to) = xo. Moreover, x is defined on [tg, +00).

1. We can write the solution x of (10) as

x(t) = R(t, to)x(to) + Jt R(t,s)h(s,x(s))ds

to

where R(t,tp) is the transition matrix of the system
x =A(t)x.

Further, we have :

[ x(t) |l

IN

[ R(t, to) ([ x(to) | +J [ R(t,s) [l nls,x(s)) || ds

t
ke Y (7t | x4 | +J' ke Y5 | (s, x(s)) || ds.

to

IN

From the inequalities (11) and (12), we deduce that

u(t) < ku(to) + Jt (kb (s)u(s) +keY®e(s)lds

to
where

u(t) =¥ [ x(t) || .

Now by the lemma 1, we get

u(t) < ku(to)eJ'tO to T Yt > to, Vr > 0

since

we obtain the estimation

t t keYSe(s)

K — y(t — to) J kp(s) + Jds — vt
+Te

() 1<k | xo | eL" to ’ : (14)

Let us denote N
M =suple¥te(t)] and M, = (J' ¢p)%

t>0 s

we deduce from the assumptions 5 and 6, that

M, M € R,
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it follows that

t vs
J keels) 4o <« My v > 1.
to T T

Moreover ¢ € LP(R,,R ), then
+o0o
==t
t t—+o0
and so there exist s > 0 such that

Y p
M e
S<kp—1

By using the lemma 2, we find for all t > tg

t S
J ¢§J o+ M m P o)
p p

to 0
from (15) and (16), we get :

s

t _
J K —y(t—to) < k(J o+ Moy nev, 2= e —to)
to 0 P P

and

J kb (s) + LY?(S)

-1 kM s M
Jds —yt < [—y+kMsp—p +T]t+k(J q>+7s).

to 0

Thus, (14) yields

P T P

I x(t) [|< ke U3 @+ | xq || e DkMa Pl (t=to) | o= ly—kMu Pt Ik b+ 22

Taking

- M
-
1
- %MS

~=

L = kek(Me+05¢)

N = reR(B=+[ @) — %L

—1
ézv—k"TMs € (0,v]

1 KM
Gzy—kaMs—Te(O,é).

Finally, we obtain
[ x(t) [[<L| %o || e 3t t) £ Ne™® vt > to.

Corollary 1. Under the same assumptions of theorem 1, we get
Vr > 0,Vt > to,Vxp € R\ B, :

I %(t) [|< P [ xo || ettt

where P >0 and 6 € (0,v).

(16)
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Proof
Due to theorem 1, we have

[ x(t) [<SL|Ixo | e ¥t ) £ Ne O vt > to.

Let r > 0, then for all xo € R™\ B,

N
[x() | < Liixol e dt )4 —re0ltrto)
T
N
< (L4 =) [Ixo || e 0ttt
T
Taking
N
P=L+ ? > 0,
we obtain

Ix() [< Pl xo [l e 0ttt

M
Remark 1. Take limit as v — m in theorem 1, we obtain
X p S
[ x(t) [SL|xo [ e )+ N Vvt>to (17)
with M .
K| @)
N= Y ]]:L e P ¢
X p M
In particular, if we choose p =1, we find
[ x(t) [SL|Ixo | e ¥+ N Vt>to (18)
with
L = kekll®lh
and M
N = kil
Y

The estimation (17) and (18) implies that the system (10) is globally uniformly practically asymp-
totically stable in the sense that the ball BN is globally uniformly asymptotically stable.

Theorem 2. Consider the following time-varying :
x(t) = A(t)x(t) + h(t,x(t)) (19)

where :

(1) A is an 1 X N matriz whose entries are all real-valued piecewise-continuous functions of
teRy.
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(2) The transition matriz for the system
x=A(t)x

satisfies :
| R(tys) [|[< ke Y) v(t,s) € RZ (20)

for some k >0 andy > 0.
(3) The function h is defined on Ry x R™, piecewise continuous in t, and locally Lipshitz in x.

(4) There exist ¢ and € piecewise continuous functions, positives and verifying

[ h(t,x) < d(t) [ x || +e(t) VteR,. (21)

(5) sup < Y for some s € [0, +00).
[s,+00) k

(6) There exist a constant M > 0 such that

e(t) < Me ", (22)
Then for all (to,x0) € Ry X R™, the mazimal solution x of (10) such that x(to) = xo, is verifying :

i. The function x is defined on [to,+00).

ii. For allt > to
[ x(t) [[< L[ xo [l e te) 4 Ne o

where N,L > 0 and 6,0 € (0,v].

Proof of theorem 2
i. By using the lemma 3, we proved that the system (19) has a unique maximal solution x such
that x(to) = xo. Moreover, x is defined on [to, +00).

4. Similar to the proof of theorem 1, it can be shown that :
t t keYSe(s

kp—vit—to) [ kpls)+ s
+re

[ x(t) <kl xo | eLO to ' Vt > to,Vr > 0.

Let us denote
M = suple”te(t)] € R,
>0

it follows that
Jt keYSe(s) s kM

to

Hence, there exist s € R such that
sup ¢ < Y
[s,+00) k
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then we can apply the lemma 2, we deduce that

J ¢sj¢+(wp¢wiw V> to

to 0 [s,400)

consequently, we obtain

s kM $
3K ks dlit—to) vk swp -tk 0
H x(t) HS ke Jo H X0 H e [s,+00) +re [s,4+00) 0
Taking
T > M
>
—— sup ¢
k [s,+00)
L =keklo®

N =reklo®) — I
TE 0 X

S=vy—k sup ¢ €(0,Y]

[s,400)
kM
0=v—k sup ¢ —— €(0,6).
[s,+00) T

Finally, we obtain
[ x(t) [<SL|Ixo | e ¥t ) £ Ne ® vt >t

Corollary 2. Under the assumptions (1),(2),(3),(4) and (6) of theorem 2, and by replacing the
condition (5) by

(5"): () m 0

then, we obtain the same consequences of theorem 2.

Proof
Since . 1113 &(t) =0, then there exist s > 0 such that
—+00
Y
t > t) < —
Vt>s  ¢(t) < K
therefore
sup ¢ < X.
[s,+00) k

Thus, we can apply theorem 2 to prove the result.

Remark 2. It is clear that if we choose € =0 in theorem 1 or 2, we obtain due to M =0

1
6:6:y—kR;—MS
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L = kek(55+J5 @)

Mg s
N =redFHo®) v

as v — 01, we get the classic result:

[ x(t) <L x| et ) wvi>t,.

We can see that the claim of the theorem 1 is true by examining a specific example, where a
solution of the scalar equation can be found.

Example 1. Consider the stability of following system :

X]Z—X1—tX2+ 72
T+t9)% 2+x ]+X1

2)\2
“Ft 1+1/x1 +x3

(23)
X2 =tx7 —x2 +

which can be writing as

where
X1
X2
-1 —t
t -1
and
hy(t
h(t, X) _ 1( )X)
hZ(taX)
with
h] (t) X)
+t2 1+ ,/x%+x i +X1
hZ(t)X)

1+1t2) /
1—|— x%—}—xz

x = A(t)x

it 1s clear that the system
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is globally uniformly asymptotically stable. Indeed, the transition matrixz R(t,to) satisfies :

R(tatO) = e(titO)A
—(t—to) cost —sint
= e
sint cost

IR(t,to) |= ke {7t

thus, we obtain

withy =k=1 and || || represents the euclidean norm. On the other hand,
I | = Riltx) +hi(tx)
1 2.2 —2t
< m (X] + Xz) + 2e .

By using the classic inequality

vazZ+b2<a+b Va,b>0

we get
Ih(t,x) [|< () [ x(t) || +e(t) vt=0
where :
MTREGH
and
e(t) =v2e t.

It is easy to verify that & and € are continuous, positive and bounded on [0, +00), in particular
¢€LP(R+,R+) Vp€[1,+oo]

To estimate || ¢ ||, we use the inequality :

since || ¢ o= T, then

e

however fgoo & =1, then
[ ly<t =1,

Consequently || ¢ |lp< FE_1 Vp > 1, and we can apply theorem 1 to prove the following results :
o Y(to,x0) € Ry x R?, there exist a unique mazimal solution x of (8) such that x(to) = Xo.
Moreover, x is defined on [tg, +00).
oVt > ty,Vp > 1

Ix(t) [|< ev [ xo [l e » )+ 2v2e 5w
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by choosing r = 2+/2p.

In particular

I x(V) 1< e [l xo | et +2v/2e. (24)

The estimation (24) implies that the system (23) is globally uniformly practically asymptotically
stable in the sense that the ball B, s, is globally uniformly asymptotically stable.

X1

05 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Time (s)

Figure 1:
Time evolution of the state x1(t) of system (23)
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15 8
1r ]

%
0.5 4
of- V\r

-0.5 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time (s)
Figure 2:
Time evolution of the state x,(t) of system (23)
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