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ABSTRACT

The aim of this paper is to introduce and characterize the notions of (1i,j)-w-semiopen
sets as a generalization of (i,j)-semiopen sets in bitopological spaces. We also define
and discuss the properties of (i,j)-w-semicontinuous functions.

RESUMEN

El objetivo de este articulo es introducir y caracterizar las nociones de conjuntos (i,j)-
w-semiabiertos como una generalizacién de conjuntos (i,j)-semiabiertos en espacios
bitopoldgicos. También definimos y discutimos las propiedades de funciones (i,7j)-w-

semicontinuas.
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1 Introduction and Preliminaries

The concept of a bitopological space was introduced by Kelly [3]. On the other hand, S. Bose [1],
introduced the concept of (i,j)-semiopen sets in bitopological spaces. Recently, as generalization
of closed sets, the notion of w-closed sets was introduced and studied by Hdeib [2]. A point x € X
is called a condensation point of A, if for each U € T with x € U, the set U N A is uncountable.
A is said to be w-closed [2], if it contains all of its condensation points. The complement of a
w-closed set is said to be w-open. It is well known that a subset W of a space (X, T) is w-open
if and only if for each x € W, there exists U € T such that x € U and U\W is countable. In
this paper, we introduce the concept of (i,j)-w-semiopen sets as a generalization of (1,j)-semiopen
sets in bitopological spaces. We also define and discuss the properties of (i,j)-w-semicontinuous
functions. For a subset A of X, the closure of A and the interior of A are denoted by CI(A)
and Int(A), respectively. A subset A of a bitopological space (X,7T7,7T2) is said to be (i,j)-semi
open, if A C Ti-cl(tj-Int(A)), where i # j, i,j = 1,2. The complement of a (i,])-semiopen set
is said to be a (i,j)-semiclosed. The (i,j)-semiclosure of A, denoted by (i,j)-scl(A) is defined by
the intersection of all (i,j)-semiclosed sets containing A. The (i,j)-semi interior of A, denoted
by (i,j)-sInt(A) is defined by the union of all (i,j)-semiopen sets contained in A. The family
of all (i,j)-semiopen (respectively (i,j)-semiclosed) subsets of a space (X,T1,72) is denoted by
(1,j) — SO(X), (respectively (i,j) — SC(X)). A function f : (X,T1,72) — (Y,01,02) is said to be
(1,j)-semi continuous, if the inverse image of every oj-open set in (Y, 01, 02) is (i,j)-semi open in
(X,7t1,72), where i #j, i,j =1,2. A oi-open set U in (Y, 07, 02) means U € 0.

2 (i,j)-w-semiopen sets

A set X equipped with two topologies is called a bitopological space. Throughout this paper, spaces
(X, t1,72) (or simply X) always means a bitopological spaces on which no separation axioms are
assumed unless explicitly stated.

Definition 2.1. Let X be a bitopological space and A C X. Then A is said to be (1,j)-w-semiopen,
if for each x € A there exists a (i,j)-semiopen Uy containing x such that Uy — A is a countable

set. The complement of a (i,j)-w-semiopen set is a (1i,j)-w-semiclosed set.

The family of all (i, j)-w-semiopen (respectively (i,j)-w-semiclosed) subsets of a space (X, T1,7T2)
is denoted by (i,j) — w — SO(X), (respectively (i,j) —w — SC(X)). Also the family of all (i,j) — w-
semiopen sets of (X,7Ty,T2) containing x is denoted by (i,j) — w — SO(X,x). Note that every
(1,j)-semiopen set is a (i,j)-w-semiopen. The following example shows that the converse is not

true in general.

Example 2.2. Let X ={a,b,c}, 71 ={0, {a,b}, X}, 12 ={0, {b,c}, X}. Then {a,c} is a (i,j)-w-
semiopen but not (i,j)-semiopen.
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Theorem 2.3. Let X be a bitopological space and A C X. Then A is said to be (i,j)-w-semiopen
if and only if for every x € A, there exists a (1,])-semiopen set Uy containing x and a countable

subset C such that U, — C C A.

Proof. Let A be a (i,j)-w-semiopen set and x € A, then there exists a (i,j)-semiopen subset Uy
containing x such that Uy, — A is countable. Let C=Uy, — A =U, N (X—A). Then U, — C C A.
Conversely, let x € A. Then there exists a (1, j)-w-semiopen subset U, containing x and a countable
subset C such that U, — C C A. Thus U, — A C C and U, — A is countable. O

Theorem 2.4. Let X be a bitopological space and C C X. If C is a (1,j)-w-semiclosed set, then
C C KUB, for some (1,]j)-w-semiclosed subset K and a countable subset B.

Proof. 1f C is a (i,j)-w-semiclosed set, then X— C is a (1, j)-w-semiopen set and hence by Theorem
23 for every x € X — C, there exists a (i,j)-semiopen set U containing x and a countable set B
such that U—=B C X—C. Thus CC X—(U—B) =X—(UN(X—B)) = (X—UW)UB, let K=X—1.
Then K is a (i,j)-semiclosed set such that C C KU B. O

Theorem 2.5. The union of any family of (1,j) — w-semiopen sets is (i,j)-w-semiopen set.

Proof. If {Aq : o € I} is a collection of (i,j)-w-semiopen subsets of X, then for every x € |Jyc; Ax,

X € Ay, for some o € I. Hence, there exists a (i,]j)-w-semiopen subset U containing x, such that
U — Ay is countable. Now as U — ([Jyc;Aa) € U— Ag, and thus U — ([ 1 Ao) is countable.

Therefore | Jy o1 Aw is a (i,j)-w-semiopen set. O

Definition 2.6. The union of all (1,j)-w-semiopen sets contained in A C X is called the (1,j)-w-
semi-interior of A and is denoted by (1,j) — w-SInt(A). The intersection of all (i,j)-w-semiclosed
sets of X containing A is called the (i,j)-w-semiclosure of A and is denoted by (i,j)-w — SCL(A).

Remark 2.7. The (i,j)-w-SCL(A) is a (i,j)-w-semiclosed set and the (i,j)-w-SInt(A) is a (i,j)-

w-semiopen set.

Theorem 2.8. Let X be a bitopological space and A,B C X. Then the following properties hold:

(1) (3,§)-w-SInt((i,j)-w-SInt(A)) = (i,j)-w-SInt(A).

(2) If A C B, then (i,j)-w-SInt(A) C (i,j)-w-SInt(B).

(3) (i,j)-w-SInt(ANB) C (i,j)-w-SInt(A) N (i,j) — w — SInt(B).

(4) (,j)-w-SInt(A) U (i,j)-w-SInt(B) C (i,j)-w-SInt(A UB).

(5) (1,7)-w-SInt(A) is the largest (i,})-w-semiopen subset of X contained in A.
(6) A is (i,j)-w-semiopen if and only if A = (i,j)-w-SInt(A).

(7) (1,j)-w-SCL((1,j)-w-SCUA)) = (i,j)-w-SCLA).
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(8) If A C B, then (i,j)-w-SCL(A) C (i,j)-w-SCL(B).

(9) (i,j)-w-SCL(A) U (i,j)-w-SCL(B) C (i,j)-w-SCL(A UB).

(10) (i,7)-w-SCUANB) C (i,7)-w-SCUA) N (i,})-w-SCL(B).

Proof. (1), (2), (6), (7) and (8) follow directly from the definition of (i,j)-w-semiopen and (i,j)-
w-semiclosed sets. (3), (4) and (5) follow from (2). (9) and (10) follow by applying (8). O

Example 2.9. Let X be the real line, T1 = {0, Re, Q¢} and 12 = {0, Re, Q, Q¢}. Take A = (0, 1),
B = (1,2), then (i,j)-w-SCUA N B) C (i,j)-w-SCUA) N (i, })-w-SCL(B).

Example 2.10. Let X be the real line, T1 = {0, Re, Q} and 12 = {0, Re,Q}. The collection of
(1,3) = SO(X) is {0, Re, Q}. take A = Q, B ={n}. Then (i,j)-w-SCL(A) =Q, (i,j)-w-SCL(B) = {n}
and (i,§)-w-SCLA) U (i,)-w-SCL(B) C (i,])-w-SCL(A UB).

Theorem 2.11. Let X be a bitopological space. Suppose A C X and x € X. Then x € (i,j)-w-
SCUA) if and only if UNA #£( for every U € (1,7)-w-SO(X, x).

Proof. Suppose that x € (i,j)-w-SCL(A) and we show that UN A # 0, for all U € (i,j)-w-
SO(X,x). Suppose on the contrary that there exists U € (i,j)-w-SO(X,x) such that UN A = (),
then A C X—Uand X— U is a (i,j)-w-semiclosed set. This follows that (i,j)-w-SCL(A) C (i,j)-
w-SCLX —U) = X —U. Since x € (1,j)-w-SCL(A), we have x € X — U and hence x ¢ U. Which
contradicts the fact that x € U. Therefore, UN A # (). Conversely, suppose that U N A # () for
every U € (1,j)-w-SO(X,x). We shall prove that x € (i,j)-w-SCl(A). Suppose on the contrary
that x ¢ (i,j)-w-SCL(A). Let U = X — (i,j)-w-SCL(A), then U € (i,j)-w-SO(X,x) and UNA =
(X—((1,j)-w-SCLA)))NA C (X—A)NA =0. This is a contradiction to the fact that UN A £ .
Hence x € (1,j)-w-SCL(A). O

Theorem 2.12. Let X be a bitopological space and A C X. Then the following properties hold:

(1) (,j)-w-SCUX\A) = X\(i,j)-w-SInt(A);

(2) (i,j)-w-SInt(X\A) = X\(i,)-w-SCL(A).

Proof. (1). Let x € X\(i,j)-w-SCL(A). Then there exists V € (i,j)-w-SO(X,x) such that VN A =
() and hence we obtain x € (i,j)-w-SInt(X\A). This shows that X\(i,j)-w-SCL(A) C (i,j)-w-
SInt(X\A). Now consider x € (i,j)-w-SInt(X\A). Since (i,j)-w-SInt(X\A) N A = ), we obtain
x & (1,j)-w-SCL(A). Therefore, we have, (i,j)-w-SCLUX\A) = X\(i,j)-w-SInt(A).

(2). Let x € X\(i,j)-w-SInt(X—A). Since (i,]j)-w-SInt(X\A)NA = 0, we have x ¢ (i,j)-w-SCL(A)
implies x € X\(i,j)-w-SCL(A). Now consider x € X\(i,]j)-w-SCL(A), then there exists V € (i,j)-w-
SO(X,x) such that VN A = ), hence we obtain that (i,j)-w-SInt(X\A) = X\(i,j)-w-SCL(A). O

Definition 2.13. Let X be a bitopological space and B C X. Then B is a (i,j)-w-semineighbourhood
of a point x € X if there exists a (i,])-w-semiopen set W such that x € W C B.
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Theorem 2.14. Let X be a bitopological space and B C X. B is a (i,])-w-semiopen set if and only
if it is a (1,])-w-semineighbourhood of each of its points.

Proof. Let B be a (i,j)-w-semiopen set of X. Then by definition B is a (i, j)-w-semineighbourhood
of each of its points. Conversely, suppose that B is a (i,j)-w-semineighbourhood of each of its
points. Then for each x € B, there exists Sy € (1i,j)-w-SO(X,x) such that Sx € B. Then B =
(J{Sx : x € B}. Since each Sy is a (i,j)-w-semiopen and arbitrary union of (i,j)-w-semiopen sets is
(1,j)-w-semiopen, B is a (i,j)-w-semiopen in X. O

Theorem 2.15. If each nonempty (i,])-w-semiopen set of a bitopological space X is uncountable,
then (1,3)-SCL(A) = (i,j)-w-SCL(A), for each subset A € T1 N T3.

Proof. Clearly (i,j)-w-SCL(A) C (i,j)-SCL(A). On the other hand, let x € (i,j)-SCL(A) and B
be a (i,j)-w-semiopen set containing x. Using Theorem [2.3] there exists a (i,j)-semiopen set V
containing x and a countable set C such that V— C C B. Follows (V—C)NA € BN A and
so (VNA)—CCBNA. Nowx €V, x € (1,j)-SCL(A) such that VN A # @) where VN A is a
(1,j)-w-semiopen set, since V is a (i,]j)-semiopen set and A € t1 N12. Using the hypothesis, each
nonempty (i, j)-w-semiopen set of X is uncountable and so is (VNA)\C. Thus BNA is uncountable.
Therefore, BN A # () implies that x € (i,j)-w-SCL(A). O

Theorem 2.16. Let X be a bitopological space. If every (i,j)-w-semiopen subset of X is Ti-open
in X. Then (X, (i,j)-w-SO(X)) is a topological space.

Proof. 1. (), X belong to (i,j)-w-SO(X)

2. Let W,V € (1,j)-w-SO(X) and x € UN V. Then there exists (i,j)-semi open sets G,H in X
containing x such that G\U and H\V are countable. Since (GNH)\(UNV)=(GNH)N ((X\U)U
(X\V)) € (Gn (X\W) U (HN(X\V)) implies that (G N H)\(UN V) is a countable set and by
hypothesis, the intersection of two (i,j)-semi open set is (i,j)-semi open. Hence UNV € (i,j)-w-
SO(X)).

3. The union follows directly.

3 (i,j)-w-semicontinuous functions

Definition 3.1. A function f: (X,t1,72) — (Y, 01,02) is said to be a (i,]j)-w-semicontinuous, if
the inverse image of every oi-open set of Y is (i,j)-w-semiopen in (X, T1,T2), where 1 #j, 1,j=1,
2.

Definition 3.2. A function f: (X,T1,72) — (Y, 01,02) is said to be a (i,])-semicontinuous, if the
inverse image of every oi-open set of Y is (i,]j)-semiopen in (X,7T1,72), where i #j, i,j=1, 2.

Theorem 3.3. FEvery (1,j)-semicontinuous function is (i,j)-w-semicontinuous.
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Proof. The proof follows from the the fact that every (i,j)-semiopen set is (i,j)-w-semiopen. [

However, the converse may be false.

Example 3.4. Let X = {(l,b,C}, T = {Qa{a}a {b}a{a) b}a X}; T2 = {Qa{a}a X}; 01 = {my{aa b}) X}7
02 ={0,{a, c}, X}. Then the identity function f: (X,Tt1,72) — (X, 01, 02) is (i,]j)-w-semicontinuous

but not (1,j)-semicontinuous.

Theorem 3.5. For a function f: (X,71,72) — (Y, 01,02), the following statements are equivalent:

(1) fis (i,j)-w-semicontinuous;

(2) For each point x € X and each oi-open set F in Y such that f(x) € F, there is a (i,j)-w-
semiopen set A in X such that x € A, and f(A) C F;

(3) The inverse image of each oi-closed set in'Y is a (i,j)-w-semiclosed in X;

(4) For A C X, f((i,j)-w-SCL(A)) C oy-cl(f(A));

(5) For B CY, (i,j)-w-SCL(f ' (B)) C ' (01-cL(B));

(6) For CCY, f 1(0i-Int(C)) C (i,j)-w-SInt(f~1(C)).
Proof. - (1)=(2): Let x € X and F be a oi-open set of Y containing f(x). By (1), f~'(F) is (i,j)-
w-semiopen in X. Let A = f~'(F). Then x € A and f(A) C F.
(2)=(1): Let F be oi-open in Y and let x € f~'(F). Then f(x) € F. By (2), there is a (i,j)-w-

semiopen set U, in X such that x € Uy and f(Uy) C F implies x € U, C f'(F). Hence f~'(F) is
a (i,j)-w-semiopen in X.

(1)&(3): This follows from the fact that for any subset B of Y, f~'(Y\B) = X\f~'(B).
(3)=(4): Let A C X. Since A C f~1(f(A)), we have A C f~1(0j- Cl(f(A))) By hypothesis f~' (o-
CI(f(A))) is a (i,]j)-w-semiclosed set in X and hence (i,j)-w-SCL(A)) C f~'(0;-Cl(f(A))). Follows

f((1,j)-w-SCL(A))) C f(f'(0:-CI(f(A))) C 0i-CI(f(A)).

(4)=(3): Let F be any o;-closed subset of Y. Then f((i,j)-w-SCL(f~'(F)) C oi-cl(f(f~'(F))) C oj-
cl(F) = F. Therefore, the (i,j)-w-SCL(f~'(F)) c f'(F). Consequently, f~'(F) is a (i,j)-w-
semiclosed set in X.

(4)=(5): Let B C Y. Now, f((i,j)-w-SCL(f~"(B))) C o;-C1(f(f " (B))) C 0;-Cl(B). Conse-
quently, (i,j)-w-SCL(f~"(B)) c £ '(03-C1(B)).
(5)=(4): Let B = f(A) where A C X. Then, (i,j)-w-SCUA) C (i,j)-w-SCL(f1(B)) c f'(o}-
CI(B)) = £ (0i-CI(f(A))), and hence f((i,j)-w-SCL(A)) C o:-CI(f(A)).
(1)=(6): Let B C Y. Clearly, ' (oi-Int(B)) is a (i,j)-w-semiopen and we have f~'(o;-Int(B)) C
(i,j)-w-SInt(f'oi-Int(B)) C (i,j)-w-SInt(f~'B).
(6)=(1): Let B be a oi-open set in Y. Then oi-Int(B) = B and f~'(B) C f~'(0y-Int(B)) C (i,j)-
w-SInt(f~1(B)). Hence, we have f~1(B) = (i,j)-w-SInt(f~'(B)). This implies that f~'(B) is a
(1,j)-w-semiopen in X. O
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Definition 3.6. The graph G(f) of f: (X,7T1,72) — (Y, 01,02) is said to be (i,j)-w-semiclosed in
X XY, if for each (x,y) € (XxY)\ G(f), there exists U € (i,j)-w-SO(X,x), i,j ={1,2} withi #j
and a oi-open set V of Y containing y such that (U x V) N G(f) = 0.

Lemma 3.7. The graph G(f) of f: (X,T1,72) — (Y, 071,02) is (i,j)-w-semiclosed in X x Y if and
only if for each (x,y) € (X x Y) \ G(f), there exists U € (i,j)-w-SO(X,x), i,j ={1,2} with 1 # j
and a oi-open set V of Y containing y such that f(U) NV = (.

Proof. The proof is an immediate consequence of Definition O

Theorem 3.8. If a function f: (X,Tt1,72) — (Y,01,02) is a (i,j)-w-semicontinuous function and
(Y,01) is Ty i={1,2}, then G(f) is (i,]j)-w-semiclosed.

Proof. Let (x,y) € (X xY)\ G(f). Then y # f(x). Since (Y,0:) is Ty, there exist a oi-open set
V and W of Y such that f(x) € Vandy ¢ W and VNW = ). Since f is (1,j)-w-semicontinuous,
there exists U € (i,j)-w-SO(X,x) such that f(U) C V. Therefore, f(U) "W = (). Therefore, by
Lemma [B.7, G(f) is (1,]j)-w-semiclosed. O

Definition 3.9. A bitopological space X is said to be a (i,j)-w-semi-To space, if for each pair of
distinct points x,y € X, there exist U,V € (1,j)-w-SO(X) containing x and y, respectively, such
that U NV = 0.

Theorem 3.10. If f: (X,11,72) — (Y,071,02) is a (i,]j)-w-semicontinuous injective function and
(Y, 01) is a T2 space, then (X,T1,7T2) is a w-semi-T, space.

Proof. The proof follows from the definition. O

Theorem 3.11. Iff: (X,11,72) = (Y, 01, 02) is an injective (i,j)-w-semicontinuous function with
a (i,j)-w-semiclosed graph, then X is a (i,j)-w-semi-T, space.

Proof. Let x1 and x2 be any pair of distinct points of X. Then f(xq) # f(x2), so (x1,f(x2)) €
(X x Y)\G(f). Since the graph G(f) is (i,j)-w-semiclosed, there exist a (i,j)-w-semiopen set U
containing x; and V € o0y containing f(x;) such that f(U)NV = (). Since f is (1, j)-w-semicontinuous,
f=1(V) is a (i,j)-w-semiopen set containing x, such that UNf~1(V) = . Hence X is (i, j)-w-semi-
T,. O

Definition 3.12. A collection {Uy : o« € I} of (i,])-semiopen sets in a bitopological space X is
called a (i,j)-semiopen cover of a subset A of X, if A CJyer Ua-

Definition 3.13. A bitopological space X is said to be (i,j)-semi Lindeloff, if every (i,]j)-semi open
cover of X has a countable subcover. A subset A of bitopological space X is said to be (i,j)-semi

Lindeloff relative to X, if every cover of A by (i,j)-semiopen sets of X has a countable subcover.

Theorem 3.14. If X is a bitopological space such that every (1,j)-semiopen subset is (i,j)-semi
Lindeloff relative to X. Then every subset is (i,j)-semi Lindeloff relative to X
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Theorem 3.15. For a bitopological space X. The following properties are equivalent:

(1) X is (i,j)-semi Lindeloff.

(2) Every countable cover of X by (1i,]j)-semiopen sets has a countable subcover.

Proof. (2)=(1): Since every (i,j)-semiopen set is (i,j)-w-semiopen, the proof follows. (1)=(2):
Let {Uy : o € I} be any cover of X by (i,j)-w-semiopen sets of X. For each x € X, there exists an
oy € I such that x € Uy, . Since Uy, is a (i,j)-w-semiopen, then there exists a (i,j)-semiopen set
Ve, such that x € V«, and Vi, —Ug, is countable. The family {V : « € I}is a (i, j)-semiopen cover
of X and X is (i,j)-semi Lindeloff. Therefore there exists a countable subcover &y, with i € N such
that X = U;jen Va,, - Since X = Uy [(Va,, —Ua, ) U U, I =Uien [V, = Ua, ) Uien U, J-
Since Vocxi — U, is a countable set, for each o(x;), there exists a countable subset Iy (x,) of I
such that Vo, — U, C UIMXi) U, and therefore X C UieN(UoceI‘x(xi) Uo) U (Uien Ux(x))- O

Definition 3.16. A bitopological space X is called pairwise Lindeloff if each pairwise open cover

of X has a countable subcover.

Theorem 3.17. Let f : (X,T1,72) — (Y,01,02) be a (i,j)-w-semicontinuous function. If X is
(1,j)-semi Lindeloff, then' Y is pairwise Lindeloff.

Proof. Let {Uy : « € I} be any cover of Y by oj-open sets. Then {f~'(Uy) : & € I} is a (i,j)-w-
semiopen cover of X. Since X is (i,j)-semi Lindeloff, there exists a countable subset Iy of I such

that X =J Uy. Therefore, Y is a pairwise Lindeloff. O

x€lp

Definition 3.18. A function f: (X,t1,7T2) — (Y, 01,02) is said to be:

1 (i,j)-w-semiopen if f(U) is a (i,j)-w-semiopen set in Y for every Ti-open set U of X.
2 (i,j)-w-semiclosed if f(U) is a (1,]j)-w-semiclosed set in Y for every ti-closed set U of X.

Theorem 3.19. For a function f: (X,T1,72) — (Y, 01,02), the following properties are equivalent:

(1) fis a (i,j)-w-semiopen.
(2) f(ti — Int(W)) C (i,j)-w-SCL(f(U)), for each subset U of X.

(3) ti —Int(f~1(V)) C F1((1,j)-w-SInt(V), for each subset V of Y.

Proof. (1)=(2): Let U be any subset of X. Then t; — Int(U) is a Ti-open set of X. Then
f(ti — Int(W)) is a (i,j)-w-semiopen set of Y. Since f(t; — Int(W)) C f(U), f(ti — Int(U)) = (i,j)-
w-SInt(f(t; — Int(W))) C (i,j)-w-SInt(f(L)).

(2)=(3):Let V be any subset of Y. Then f(t; — Int(f~'(V))) C (i,j)-w-SInt(f(f~1(V))). Hence
T — Int(f~ (V) C £ 1((i,j)-w-SInt(V)).

(3)=(1): Let U be any Ti-open set of X. Then t; — Int(U) = U. Now, V=1, — Int(V) C t; —
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Int(f~ 1 (f(V)) C 1 ((i,})-w-SInt(f(V)))). Which implies that f(V) C (= ((i,j)-w-SInt(f(V))))
C (i,j)-w-SInt(f(V)). Hence (V) is a (i,j)-w-semiopen set of Y. Thus f is (i,j)-w-semiopen. [

Theorem 3.20. Let f : (X,71,72) — (Y,01,02) be a function, then f is a (i,j)-w-semiclosed
function if and only if for each subset V of X, the (i,j)-w-SCL(f(V)) C f(ty — CL(V))).

Proof. Let f be a (i, j)-w-semiclosed function and V be any subset of X. Then f(V) C f(t;— CL(V))
and f(ty — Cl(V)) is a (1,]j)-w-semiclosed set of Y. Hence (i,j)-w-SCL(f(V)) C (i,j)-w-SCL(f(T; —
Cl(V))) = f(ti — Cl(V))). Conversely, let V be a Ti-closed set of X. Then f(V) C (i,j)-w-
SCL(f(V)) C f(ti — CL(V))) = f(V). Hence f(V) is a (i,j)-w-semiclosed set of Y. Therefore, f is a

(1,j)-w-semiclosed function O

Definition 3.21. A bitopological space X is said to be (i,j)-w-semiconnected, if X cannot be
expressed as the union of two nonempty disjoint (1,j)-w-semiopen sets.

Definition 3.22. A bitopological space X is said to be pairwise connected [3], if it cannot be
expressed as the union of two nonempty disjoint sets U and V such that U is ti-open and V is

Tj-open, where 1,j ={1,2} and 1 #j.

Theorem 3.23. A (i,j)-w-semicontinuous image of a (i,j)-w-semiconnected space is pairwise

connected.

Proof. The proof is clear. O
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