
Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

Developing an Educational Game to Support Cognitive Learning

Cagin Kazimoglu, Mary Kiernan, Liz Bacon and Lachlan MacKinnon

University of Greenwich

Introduction

This paper outlines how an educational game can be used to support the learning of

programming within the Computer Science (CS) discipline and reports on the qualitative

results of a series of rigorous studies of the use of this game by first-year introductory

programming students. Although this paper applies to the CS discipline, computational

thinking (CT) as an intrinsic part of the games process is applicable to any discipline. This is

because CT combines logical thinking with CS concepts to produce a recipe for solving

problems, regardless of where a problem lies.

Many studies indicate that learning through educational games appeals widely to students,

regardless of their backgrounds (Liu et al, 2011; Papastergiou,2009). However, though many

of these studies demonstrate enthusiasm for educational games and indicate that games

can enhance motivation for learning, they offer very few conclusions about what students

learn from playing them or whether or not they acquire cognitive abilities thereby (Denner et

al, 2012; Connolly et al, 2011).

Learning to Program

Introductory programming students often perceive the learning of computer programming as

difficult. Guzdial (2011) emphasises that a 30-50% worldwide failure rate in introductory

programming courses has been reported for decades. Even after passing their

programming courses, many students still do not have the ability to use programming codes

to solve problems within the CS discipline (Loftuset al, 2011). One reason for this may lie

within the nature of computer programming. Learning to program in order to solve real-life

problems successfully requires comprehending abstract concepts about CS and arranging

these into a rational order.

Computational Thinking

This term was first introduced by Papert (1996) as a powerful infrastructure for learning.

Wing (2006) expanded this notion and argued that CT is a problem-solving approach which

combines logical thinking with CS concepts to produce a way to solve problems. It is widely

accepted that CT is concerned with conceptualising, developing abstractions and designing

solutions, which overlaps with logical thinking and requires fundamental concepts similar to

computing (Wing, 2011; Wing, 2008). Although there is still lack of clarity of definition

amongst researchers (Berland & Lee, 2011), many agree that there are five key ingredients

involved in CT:

1. Conditional logic refers to solving problems with logical thinking through using

various computational models. Students can evaluate a problem and specify

appropriate criteria in order to develop applicable abstractions. At this stage, students

distinguish between problems and understand them at an abstract level.

Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

2. Building algorithms involves the construction of step-by-step procedures for solving

a particular problem and developing abstractions robust enough to be reused to

solve similar problems.

3. Debugging is the analysis of problems and errors in logic or activities. At this stage,

students receive feedback on their algorithms and evaluate them accordingly.

4. Simulation is the demonstration of algorithms and involves designing and

implementing models on the computer, based on the built algorithm(s). At this stage,

students design or run models as test beds, to make decisions about which

circumstances to consider when completing their abstraction.

5. Socialising refers to coordination, cooperation and/or competition during the stages

of problem solving, algorithm building, debugging and simulation. It is reported that

socialising is one distinct feature of CT that distinguishes it from traditional computer

programming, as this characteristic allows brainstorming, assessment of incidents

and strategy development among multiple parties.

Game-Based Learning (GBL)

According to the large survey study undertaken by the Interactive Games Association

(2012), the top two reasons why people play games are: a) despite being challenging,

playing games is an entertaining activity; b) games provide meaningful feedback that

engages and motivates players to continue to play. The survey results also show that many

players spend considerable time playing games and they also demonstrate systematic plans

to overcome certain challenges during their game-play, even when they do not do well in the

game.

As games are immersive environments, it is imperative to harness this energy into learning

for educational purposes, particularly in the practice of CT, so that students will be able to

transfer knowledge and skills acquired from games to other problems they encounter when

learning computer programming (Kumar & Sharwood, 2007).

Figure 1: Interaction - Feedback Loop Model (IFLM) for Games Based Learning

Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

In Figure 1, we developed the Interaction-Feedback Loop Model (IFLM) that builds on the

work of Garris et al (2002) and is proposed as a way to address the flaws of their input-

process-output model. The crucial difference is that in the IFLM the learning material is an

integral part of aesthetics, dynamics and game mechanism, rather than being overlaid on top

of the game-play. Thus, we argue that the IFLM was explicitly designed to develop CT skills

within a cyclic mechanism and, as players interact within the game and demonstrate good

game-play, they also develop their skills in computational thinking through a constructivist

approach to learning.

Research Vehicle

In order to test the IFLM, a game prototype named Program Your Robot

(http://www.programyourrobot.com/) (Figure 2) was built, in which the previously-identified

CT characteristics (except socialisation, which has still to be fully implemented) were

blended into a puzzle-solving game. Program your robot was designed to achieve two

important goals: firstly, to develop a framework that would allow players to practise their

skills and abilities in CT, even with little or no programming background; secondly, to support

the learning of procedural and applied knowledge for a limited number of key introductory

computer-programming constructs. The theme of the game is to help a robot to escape from

a grid platform by reaching the teleport square which will take players to the next level in the

game. There are six levels in the current version of the game, each more difficult than the

previous.

Figure 2: Program Your Robot game

The game provides both formative and summative feedback to evaluate students’ learning

progress. Whilst formative feedback provides suggestions based on student actions,

allowing them to try different solutions and to understand the problem at a deeper level,

summative feedback rewards students for achieving their goals through an integrated reward

system of achievements and high scores.

http://www.programyourrobot.com/

Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

Associating game-play with Computational Thinking

Four out of the five cognitive skills characterising CT can be practised during the game-play

in Program Your Robot. The game was not explicitly designed to encourage the remaining

CT skill of socialising because it was primarily aimed to encourage the development of

individual cognitive abilities to support the learning of computer programming. Nevertheless,

a limited level of socialising can happen indirectly through the reward systems integrated into

the game. For those players who want to have additional challenges, a high score list has

been designed, to which advanced players can submit their scores and share them with

other players. Table 1 shows a set of game activities and describes how students can

develop their skills in CT through game-play and, more specifically, through playing Program

Your Robot.

Table 1: Examples of game activities associated with various categories of CT

Task
Associated CT
skill category

Game activity Rationale of the skill category

Problem

identification and

decomposition

Problem Solving

Help the robot to reach the

teleporter. Activate robot’s light

when robot stands on the

teleporter.

CT is described as a problem-solving

approach in various studies (Guzdial

2008; Wing, 2006). In conjunction with

this, Schell (2008) explains the idea of

what a game is: “a problem-solving

activity, approached with a playful

attitude.”

Creating efficient

and repeatable

patterns

Building

Algorithms

Create a solution algorithm to

complete all levels with as few

slots as possible. Use functions

to create repeatable patterns.

Perkovic et al (2010) describe

computation as “the execution of

algorithms that go through a series of

stages until a final state is reached.”

Practising

the

debug-mode

Debugging

Press the debug button to

monitor your solution algorithm to

detect any potential errors in your

logic.

Wing (2006) describes “debugging” as

an essential component of both CT and

programming.

Practising the run-

time mode
Simulation

Observe the movements of your

robot during the run-time. Can

you follow your solution

algorithm? Do you observe the

expected behaviours?

Moursund (2009) reports that “the

underlying idea in computational

thinking is developing models and

simulations of problems.”

Brainstorming Socialising

Examine the winning strategies of

other players. Compare their

solutions with yours. What

advice would you give yourself

and to them for scoring better in

the game? Discuss.

Berland & Lee (2011) refer to the social

perspective of CT as “distributed

computation in which different pieces of

information or logic are contributed by

different players during the process of

debugging, simulation or algorithm

building.”

Experimental Studies

Two different rigorous studies were designed for first-year introductory programming

students, in order to establish a systematic and structured evaluation of Program Your Robot

and the underlying game model. Over 200 students from two different countries participated

in this research and in this paper we share a sample of the qualitative feedback obtained

from the studies in relation to the five main characteristics of CT. Student quotes are cited

below to demonstrate the flow of game activities relating to the computational thinking

stages from the game description.

Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

Associated computational thinking skill: conditional logic

Student 1: “I tried all sort of tricks using decision making instruction but I failed going any

further than level 4 probably because of my poor problem solving skills . Nonetheless, it

was good fun crossing the first 3 levels. I liked the fact that the further I was going the more

sense it was making.”

Student 2: “I enjoyed playing the game and it enhanced my knowledge towards methods and

how to call declared functions. Overall, I thought the game encourages you to think logically

and was really entertaining at the same time.”

Associated computational thinking skill: building algorithm

Student 3: “The game is very well designed and it is one of the games which need a lot of

thinking. I got total score of 30750. I didn’t experience any errors while finishing this game

and it was very easy. In my point of view this game was really good to introduce the fun of

programming to students who want to study programming.”

Associated computational thinking skill: debugging

Student 4: “I found the debug button useful because it provides messages when I forgot to

call a function. However, when I ran the debug mode it didn’t find an error or tell me that I

have missed the lights or I could not progress until I have done it.”

Associated computational thinking skill: simulation

Student 5: “The game is very well thought out, for example, the demonstration of decision

making logic through an if statement was a well thought out example, and the graphical

demonstration of this concept is quite creative.”

Student 6: “I thought that the whole idea behind the game is a good one and I found that

using it was quite enjoyable because it included one of the very fundamental premises for

teaching programming which is motivating students to continue through regular reward for

accomplishment.”

Associated computational thinking skill: socialising

Student 7: “The game needs a high score page to reward people who use guile and don’t

rush through the screen. Nonetheless, I enjoyed playing it because I competed against a

friend of mine.”

None of the participants stated that they experienced a crash in the game. However, some

participants reported bugs (i.e. degraded performance and quality in the game) and almost

all of them provided constructive feedback regarding the game mechanics and user

interface. Some of these suggestions are cited below:

Student 8: “It is not clear you need to activate the lights at the end of the run, if you run

debug mode it doesn’t find an error or tell you that you have missed the lights.”

Student 9: “The game has an auto save system which is impressive but it doesn’t notify

Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

users of [sic] such a system exist.”

Student 10: “I have completed all levels in the game. I did not encounter any problems but I

found the game interface quite complex and overly done. As the game went on, it became

more complex but I managed to understand the concept behind it.”

Conclusion and Future Work

The qualitative feedback gathered from the studies provided strong evidence that Program

Your Robot has the potential to enhance the computational thinking skills of students who

are learning introductory programming. Many participants provided a critical evaluation of the

game and their comments provided strong qualitative evidence to support the conclusion

that using Program Your Robot does provide a motivational route for practising computer-

programming constructs and that the progressively more complex levels made them use CT

skills to solve the problem. The research presented here is being statistically analysed and

quantitative results of three empirical studies will be published in the near future.

Currently, the Interaction-Feedback Loop Model (IFLM) has been utilised to develop CT

skills within the Computer Science discipline; however, an important area of future work is to

ascertain if this model could be used to develop CT skills in students from other disciplines.

Finally, Program Your Robot was not designed to measure the social aspect of CT. Possible

future work could explore how an explicitly-socialised game-experience could have impact

upon students’ learning progress. One strategy for doing this would be to adapt Program

Your Robot into one of the social networks (Facebook, Google+). By this means, the social

aspect of learning and how it affects the learning of computer-programming constructs might

be investigated at the CT level.

References

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for
distributed computational thinking. International Journal of Game-Based Learning, 1(2), 65.

Connolly, T. M., Stansfield, M., & Hainey, T. (2011). An alternate reality game for language
learning: ARGuing for multilingual motivation. Computers & Education, 57(1), 1389-1415.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls:
Can they be used to measure understanding of computer science concepts? Computers &
Education, 58(1), 240-249.

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research
and practice model. Simulation & gaming, 33(4), 441-467.

Guzdial, M. (2011). A Definition of Computational Thinking from Jeannette Wing. Available
at: http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-
from-jeanette-wing/ (last access: October, 2013).

Interactive Games Association, 2012, Available at:
www.theesa.com/facts/pdfs/esa_ef_2012.pdf (last access: October, 2013)

http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://www.theesa.com/facts/pdfs/esa_ef_2012.pdf

Case Studies

Compass: Journal of Learning and Teaching, Vol 5, No 9, 2014

Kumar, D. D., & Sherwood, R. D. (2007). Effect of a problem based simulation on the
conceptual understanding of undergraduate science education students. Journal of Science
Education and technology, 16(3), 239-246.

Liu, C. C., Cheng, Y. B., & Huang, C. W. (2011). The effect of simulation games on the
learning of computational problem solving. Computers & Education, 57(3), 1907-1918.

Loftus, C., Thomas, L., & Zander, C. (2011). Can graduating students design: revisited. In
Proceedings of the 42nd ACM technical symposium on Computer science education, 105-
110. ACM.

Papastergiou, M. (2009). Digital Game-Based Learning in high school Computer Science
education: Impact on educational effectiveness and student motivation. Computers &
Education, 52(1), 1-12.

Papert, S. (1996). An Exploration in the Space of Mathematics Educations, International
Journal of Computers for Mathematical Learning, Vol. 1, No. 1, 95 – 123.

Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science concepts
via Alice game-programming. In Proceedings of the 43rd ACM technical symposium on
Computer Science Education (pp. 427-432). ACM.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1881), 3717-3725.

Wing, J. M. (2011). Computational thinking. In VL/HCC (p. 3).

