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Abstract 

In this work, we studied the optimization of synthetic approaches to cre-
ating structurally modified metal-organic frameworks under various syn-

thesis conditions. We investigated the influence of the various solvents 
and zinc salts on the structural characteristics of the metal-organic frame-
work based on benzene-1,3,5-tricarboxylic acid (H3BTC). The results indi-

cate that the variation of the types of both solvent and salt is a parameter 
affecting the crystallinity, phase purity, and morphology of the metal-or-

ganic framework. This was confirmed by comprehensive structural char-
acterization (SEM, EDX, PXRD). 
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Key findings 

● The synthesis method for obtaining ZnBTC. 

● New morphology of ZnBTC not previously described in the literature was obtained. 

● It was found that the type of solvents and the type of salts used in the synthesis of the ZnBTC affect the morphology of 

the compounds. 

© 2022, the Authors. This article is published in open access under the terms and conditions of  
     the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction 

Materials have always played an important role in the devel-

opment of humanity. The past 20 years have been marked by 

major achievements in the theoretical and applied materials 

science, which continues to develop rapidly. The main direc-

tions of modern materials science are as follows: a) polyfunc-

tionality – giving the material the maximum number of dif-

ferent useful properties; b) the use of nano-sized materials; 

c) creation of smart materials capable of changing their char-

acteristics under the effect of various external factors (light, 

temperature, electromagnetic field, etc.). 

Currently, various materials have been intensively stud-

ied in materials science, such as inorganic nanoparticles [1–

3], molecular crystals [4–6], COF (covalent organic frame-

work) [7, 8]. Applications for these materials include elec-

tronics [9], cancer treatment [10], catalysis [11], etc.  

Porous materials attract special attention in materials 

science. Porous materials are solids with voids filled with 

air or other gases. Porous materials can be ordered (crys-

talline, with a regular pore system) and disordered (irreg-

ular pores system). Inorganic materials often have a highly 

ordered structure, whilst plastics, for example, are amor-

phous or partially ordered. 

Amorphous materials have certain advantages: they are 

inexpensive and easy to process. Their disadvantage is the 

uncertainty of the structure (due to the difficulties in X-ray 

diffraction analysis). Their synthesis is most often unpre-

dictable; they exist in the form of several modifications and 

have low mechanical strength. 

More interesting are the highly ordered materials, the 

structure of which can be studied by X-ray diffraction 

methods. These are, for example, crystalline zeolites [12, 

13]. They have a regular structure, are strong, and possess 

the ion exchange capability. Their main applications are is 

molecular sieves and catalysts [14–16]. The development 

of a new class of highly ordered hybrid structures – metal-

organic frameworks – is the next stage in the development 

of zeolite-like materials. 

Metal-organic framework (MOF) are a class of crystal-

line porous coordination compounds with a 1-, 2-, 3-dimen-

sional structure consisting of metal ions or clusters linked by 

organic linkers [17–21]. Different functionality, adjustable 

porosity, mechanical strength and thermal stability can be 
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imparted to the framework by changing its constituent parts 

[22]. Due to these properties MOF appear as promising ma-

terials that can be used for the adsorption/storage and sepa-

ration of gases, in catalysis, biomedicine, and also for the cre-

ation of sensor devices [23–26]. Of particular interest is the 

further modification of the structure of MOFs, including their 

intracrystalline space, to create new properties or optimize 

existing structural/chemical characteristics [27,28]. 

However, there are just a few studies that demonstrate 

the conditions for the MOFs synthesis effect on the struc-

ture and properties of the framework. The comprehensive 

understanding of the framework’s synthesis and formation 

and its effect on the final structure are still missing [29–31]. 

Among the ligands for the synthesis of MOFs, trimesic 

acid has a leading position. Thus, the most famous and one 

of the first MOFs, HKUST-1, is based on trimesic acid and 

copper salt [32, 33]. Trimesic acid and its derivatives are 

available and ecofriendly substances that can be used as 

intermediate pharmaceutical products and as drug deliv-

ery agents as parts of MOF [34, 35]. There are many pub-

lications on MOFs based on Ni [36], Fe [37], Co [38, 39] 

and other metals [40], where trimesic acid played the role 

of a ligand [41–43]. Basically, these publications investi-

gated the possible applications MOF: catalysis [44–46], 

medicine [47, 48], adsorption [49–51], sensors [52–53]. 

However, to the best of our knowledge, there is no re-

search on the development of a synthesis strategy and de-

sign of BTC-based MOFs. 

Nowadays, there are different methods for MOFs pro-

duction: solvothermal (synthesis under high pressure, in 

a boiling solvent), microwave (synthesis by radiation of a 

microwave explosion), sonochemical (synthesis under the 

action of ultrasound), microfluidic (control of liquid flows 

at micro- and nanoscales), mechanochemical, electro-

chemical and slow evaporation method (does not require 

any traces, electricity or mechanical action). Conse-

quently, there is often a discrepancy in the structural data 

between different reports on the same MOF, which usually 

arises from using different methods and parameters of 

synthesis.  

ZnBTC is a well-known MOF in which infinite zinc 

chains are connected by organic ligand into a three-dimen-

sional microporous framework [54]. Despite only one syn-

thesis method, there are various ZnBTC morphologies 

known, which can be explained by different conditions of 

the solvothermal reaction. Among existing morphologies, 

nonuniform rod-like [55], large crumps with irregular 

shapes [56], and spherical nanoparticle [57, 58] structures 

of ZnBTC can be distinguished. It is important to mention 

that all known methods for the synthesis of ZnBTC take 

place at high temperatures ( >120 °C). 

Here we report the optimization of the MOFs synthesis 

based on zinc salt and trimesic acid. We studied the critical 

role of the solvent type variation on the morphology and 

crystallinity of the synthesized MOF based on zinc salt. We 

report the soft synthesis conditions (80 °C temperature). In 

this regard, the following adjustments to the synthesis 

technique were attempted: a) variation of the solvent mix-

ture; b) precursor (zinc salt type) variation. 

2. Experimental 

All the chemical reagents were obtained from commercial 

sources and used without further purification unless other-

wise specified: Zn(NO3)2·6H2O (Sigma-Aldrich, ≥98.0%), 

ZnSO4·7H2O (Sigma-Aldrich, ≥98.0%), Zn(CH3CO2)2·2H2O 

(Sigma-Aldrich, ≥98.0%), 1,3,5-benzenetricarboxylic acid 

(Sigma-Aldrich, Trimesic acid (H3BTC), 95%), dimethylfor-

mamide (ACS reagent, ≥99.8%), ethanol (ACS reagent, 

≥99,5%), 1,4-dioxane (Dioxane, ACS reagent, ≥99,5%), eth-

anol (EtOH, ACS reagent, ≥ 99,5%), toluene (Tol, ACS rea-

gent, ≥99,5%), chlorobenzene (PhCl, ACS reagent, 

≥99,5%), and dimethyl sulfoxide (DMSO, ACS reagent, 

≥99,5%) were used in all syntheses.  

The chemical composition and homogeneity of obtained 

compounds were controlled with a scanning electron micro-

scope (SEM, Quanta 200, FEI, Netherlands) with an accel-

erating voltage of 10 kV. Dry samples were coated with a 

gold thin film and imaged with SEM.  

Diffraction patterns of the samples were recorded on a 

Shimadzu 7000-maxima X-ray diffractometer with a 2 kW 

characteristic Cu Kα (Kα1 λ = 1.54059 Å, angular range 

2θ = 5° – 80°) X-ray radiation source and a Bragg-Brentano 

goniometer geometry. The angular resolution during the anal-

ysis was 0.05 degree at a scanning speed of 1 degree/min. 

Energy-dispersive elemental analysis was performed 

using SEM SUPRA 55 VP at an accelerating voltage of 10 kV. 

Before imaging, samples were coated with gold. 

2.1. General synthesis of ZnBTC  

Fifteen different ZnBTC samples were each prepared as fol-

lows. Two precursors, a zinc salt and 1,3,5-benzenetricar-

boxylic acid, were taken in the quantities listed in Table 1 

and dissolved under ultrasound in a mixture of three sol-

vents, 1 ml each (see Table 1). After that, the solution mix-

ture was hermetically sealed with a lid with a rubber sep-

tum in a 4 ml vial to exclude the interaction with the exter-

nal environment and create excess pressure in the vial. The 

solution mixture was heated up to 80 °C and kept for 48 h, 

after which the reaction mixture was cooled down to room 

temperature. The formed powder was separated from the 

mother liquid by filtration, and then it was repeatedly 

washed 5 times with the same mixture of solvents as the 

one used for its synthesis (see Table 1). The washed powder 

was dried in the air. 

3. Results and Discussion 

The synthesis of MOFs was performed under solvothermal 

reaction conditions (Scheme 1). 

Along with the study of the synthesis conditions effect 

on ZnBTC structure, we analyzed the solvent composition 
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(polarity of the mixed aqueous-organic solvent) and the 

counterion in the Zn salt composition. 

The MOF synthesis process can be affected by the reac-

tion medium due to the polarity of the solvent used. To ex-

plore this aspect, several ZnBTC were prepared by sol-

vothermal reactions of the Zn2+ ion with the H3BTC ligand 

in various solvent systems DMF/H2O/Dioxane, 

DMF/H2O/EtOH, DMF/H2O/Toluene, DMF/H2O/PhCl, 

DMF/H2O/DMSO, respectively (Table 1). 

It is known that the medium polarity (the solvent nature) 

has a great influence on the course of a chemical reaction. 

The polarity of the medium during the synthesis of ZnBTC-1–

15 was calculated according to the literature data. The sol-

vent mixture of DMSO/DMF/H2O had the highest polarity 

(corresponds to samples ZnBTC-5, ZnBTC-10,  

ZnBTC-15), whilst the solvents mixture of Toluene/DMF/H2O 

(corresponds to samples ZnBTC-3, ZnBTC-8, ZnBTC-13) was 

the least polar of the solvent mixtures presented in Table 2. 

In the SEM images (Figure 1a–e), all obtained compounds 

of ZnBTC-1–5 are mainly needle-shaped agglomerates of 

crystals in the form of "blowball". This form of ZnBTC crys-

tals was obtained for the first time. According to the litera-

ture, ZnBTC is usually characterized by a single rectangular 

crystal [55–58]. However, SEM failed to detect a fragment 

with a rectangular topology. Compounds of ZnBTC-3 and 

ZnBTC-4 (Figure 1c and d), synthesized in the solvent mix-

tures DMF/H2O/Tol and DMF/H2O/PhCl, respectively, did not 

assemble into a whole "blowball". 

Such small differences in the crystalline form of the 

compounds at the same temperature, synthesis time and 

type of salt could be explained by use of the different types 

of synthesis medium. The qualitative and quantitative com-

position of the compounds was analyzed by energy disper-

sive X-ray (EDX) spectroscopy (Figure 2a–e). 

The SEM images of compounds ZnBTC-6–10 can also be 

described as needle-shaped crystals (Figure 3a–e),  

 

but their «blowball» shape is less pronounced than that of 

substances ZnBTC-1–5. The morphologies of ZnBTC-1 and 

ZnBTC-6 are different. The synthesis parameters differed 

only in the type of salt (Zn(NO3)2·2H2O and ZnSO4·7H2O), 

and the solvent medium was the same (Diox-

ane/DMF/H2O). Therefore, it can be assumed that the type 

of salt (counterion) affects the growth of crystals. This as-

sumption is confirmed by the third ZnBTC-MOF series. 

ZnBTC-11–15, obtained by the interaction of H3BTC and 

Zn(CH3COO2)2·2H2O, did not form the "blowball" crystal-

line agglomerates (Figure 4a–e). All compounds ZnBTC-

11–15 are crystalline powders. 

The nature of the crystalline phase was studied using 

PXRD analysis [64]. All diffraction patterns of ZnBTC-1–15 

(Figure 1f, 3f and 4f) show an intense diffraction peak at 

2θ = 10°, which corresponds to the literature data [65], 

confirming the formation of ZnBTC. The diffraction pat-

terns show no background noise over the entire 2θ range. 

This confirms the presence of a crystalline phase in the 

studied compositions. 

 
Scheme 1 General synthesis of ZnBTC. 

Table 2 Polarity of solvents mixture. 

Solvent mixture Polarity 

Dioxane/DMF/H2O 21.4 

EtOH/DMF/H2O 21.8 

Toluene/DMF/H2O 19 

PhCl/DMF/H2O 19.3 

DMSO/DMF/H2O 23.8 

 

Table 1 Optimization of the synthesis of ZnBTC (Ligand: H3BTC). 

Sample No. Zn salt Mixture of solvents (1 ml each) Ligand/Salt quantities (mmol) 

1 Zn(NO3)2·6H2O Dioxane/DMF/H2O 0.067/0.036 

2 Zn(NO3)2·6H2O EtOH/DMF/H2O 0.067/0.036 

3 Zn(NO3)2·6H2O 

 

Toluene/DMF/H2O 0.067/0.036 

 4 Zn(NO3)2·6H2O 
 

PhCl/DMF/H2O 0.067/0.036 
 5 Zn(NO3)2·6H2O 

 

DMSO/DMF/H2O 0.067/0.036 

 6 ZnSO4·7H2O 
 

Dioxane/DMF/H2O 0.070/0.035 
 7 ZnSO4·7H2O 

 

EtOH/DMF/H2O 0.070/0.035 

 8 ZnSO4·7H2O 
ZnSO4·7H2O 

 

Toluene/DMF/H2O 0.070/0.035 
 9 ZnSO4·7H2O 

ZnSO4·7H2O 

 

PhCl/DMF/H2O 0.070/0.035 

 10 ZnSO4·7H2O 

ZnSO4·7H2O 

 

DMSO/DMF/H2O 0.070/0.035 

 11 Zn(CH3CO2)2·2H2O 

 

Dioxane/DMF/H2O 0.091/0.046 

 12 Zn(CH3CO2)2·2H2O 
 

EtOH/DMF/H2O 0.091/0.046 
 13 Zn(CH3CO2)2·2H2O 

 

Toluene/DMF/H2O 0.091/0.046 

 14 Zn(CH3CO2)2·2H2O 
 

PhCl/DMF/H2O 0.091/0.046 
 15 Zn(CH3CO2)2·2H2O 

 

DMSO/DMF/H2O 0.091/0.046 
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Figure 1 SEM images of ZnBTC-1–5 (a–e, respectively), compara-

tive diffraction pattern of samples ZnBTC-1–5 (f). 

 
Figure 2 EDX of ZnBTC-1–15 (a–0, respectively). 

The appearance of sharp reflections in PXRD patterns 

indicates a good degree of crystallinity of the synthesized 

products. The presence of reflections in the region of small 

angles confirms that the synthesized samples are MOFs. 

The positions of the main diffraction peaks of all substances 

ZnBTC-1–15, namely, 10°, 15–20°, 25–30° and 35–40° 2θ 

(Theta) are identical, which indicates that they possess the 

same crystal structure. 

 
Figure 3 SEM images of ZnBTC-6–10 (a–e, respectively), compar-

ative diffraction pattern of samples ZnBTC-6–10 (f). 

 
Figure 4 SEM images of ZnBTC-11–15 (a–e, respectively), compar-

ative diffraction pattern of samples ZnBTC-11–15 (f). 

But compounds ZnBTC-1–5 also have a diffraction peak at 

52° 2θ (Theta) in their PXRD patterns and, in addition, the 

intensities of the main diffraction peaks of samples ZnBTC-

1–5 are greater than those of the other samples. It can be as-

sumed that this is due to the increased crystallinity of the 

samples ZnBTC-1–5 and the effect of Zn(NO3)2·6H2O on the 

f) 

https://doi.org/10.15826/chimtech.2023.10.1.05
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crystal growth during synthesis. The diffraction patterns of 

samples ZnBTC-5 and ZnBTC-10 synthesized in DMSO have 

additional reflections. It can be assumed that ZnBTC-5 is 

characterized by a crystal structure different from that of the 

other ZnBTC. 

Comparative analysis of powder diffraction patterns of 

ZnBTC-1–15 showed that the replacement of the counterion 

in the composition of the precursor does not affect the ele-

mental composition of MOF and is not included in the struc-

ture of the final MOF (Figure 1–4), but the crystallinity and 

morphology of obtained structures are strongly dependent 

on the type of salt (Zn(NO3)2·6H2O facilitates the formation 

of more crystalline materials, while Zn(CH3CO2)2·2H2O – of 

more amorphous, and zinc acetate does not form into 

"blowball" during the solvothermal synthesis). The reason 

for this could be that Zn(NO3)2·6H2O and ZnSO4·7H2O are 

more acidic (pH<7) than Zn(CH3CO2)2·2H2O (pH = 7).  

Polarity of the solvent also affects the crystallinity and 

structure of the obtained compounds. The mixture of 

DMSO/DMF/H2O solvents that has the highest polarity 

among the other ones (Table 2) yields an additional diffrac-

tion peak in the region of 10–15° 2θ (Theta) in the PXRD 

pattern of the synthesized ZnBTC. 

4. Limitations 

We obtained a new morphology of ZnBTC; therefore, we 

needed to confirm its structure by single-crystal X-ray crys-

tallography. However, the particles of ZnBTC were agglom-

erates. The possible solution of this challenge is a recrystal-

lization of a synthesized compound to obtain a single crystal.   

5. Conclusions 

The results of the study show that the type of solvent and 

salt does not affect the elemental composition and crystal-

linity of a ZnBTC-based MOF. However, these critical pa-

rameters affect the morphology of the MOF. According to 

the SEM images, ZnBTC crystals in the form of "blowball" 

were obtained for the first time. Such sample surface can 

potentially be used for the sorption of organic molecules. 
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