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Synthesis, structure and electrical properties 
of Mg-, Ni-codoped bismuth niobates

Mg-, Ni-codoped bismuth niobates Bi1.6Mg0.8–xNixNb1.6O7–δ (x = 0; 0.2; 0.4; 
0.6; 0.8) were obtained by conventional solid-state reaction method. It was 
shown that the Mg atoms are distributed at the Nb sites while the Ni atoms are 
distributed over the Bi- and the Nb-sites, according to the results of compari-
son of pycnometric and X-ray density of the Bi1.6Mg0.4Ni0.4Nb1.6O7–δ pyrochlore. 
In this case, about 15–20% of the vacancies are formed at the Bi sites. The 
obtained compounds are stable up to their melting point based on the DSC 
analysis data. Real dielectric permittivity ε' of the Bi1.6Mg0.8–xNixNb1.6O7–δ sam-
ples decreases from 80 to 65 with the temperature decrease from 25 to 700 °C 
and practically does not depend on frequency in the range of 1–1000 kHz. Oxi- 
des Bi1.6Mg0.8–xNixNb1.6O7–δ behave like insulators up to 280 °C, their conductivi- 
ty increases with temperature (Ea,dc ≈ 1.3 eV, dc) and with the Ni content at 
a given temperature.
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Introduction
Ceramics in the Bi2O3-MxOy-

Nb2O5 ternary system are interesting from 
the perspective of their dielectric proper-
ties. The most attention has been paid to 
the Zn-, Mg-containing bismuth niobates, 
which possess high dielectric constant 
(170–180) and low dielectric loss (~10-4) 
at 1 MHz (at room temperature) [1–9]. To 
search for the same properties Fe- [10], 
Mn- [11–12], Co- [13], Ni- [12, 14–15], 
Cu- [12] and the mixed Zn-M (M – Sr 
[16], Ca [16–17], Mn [16, 18], Ti [19–22], 
Sn [19, 22], Zr [19, 21–22], Ce [19,22], 
Gd [21], Ta [23], La [24]), Mg-M (M – Sr 
[25], Nd [26], Cu [27]) bismuth niobates 

and other ones were synthesized. The im-
proved permittivity was achieved by Ti 
doping of the Nb sites in the pyrochlore 
structure [21–22] and by Cu doping in 
Bi1.5CuxMg1-xNb1.5O7 (x = 0.075) [27]. In 
most cases, doping leads to the permit-
tivity decrease and to the tangent loss in-
crease. However, electrical properties of 
several systems were investigated in the 
high temperature range (up to 700  °C) 
only in order to determine their conduc-
tivity mechanism [3, 9, 19–20, 27]. In our 
previous work [28–29] we have deter-
mined that the dielectric constant of the 
Bi1.6CuxMg0.8-xNb1.6O7-δ pyrochlores behave 
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unusually passing through a maximum 
(250–350 °C) with temperature increas-
ing. The value of the dielectric constant at 
the maximum is very high: ~106 (100 Hz). 
Second-type phase transition was found at 
200 °C. To establish the reasons for such 
behavior, the distribution of doped me- 
tals in the cation (A–, B–sites) positions 
in the pyrochlore structure (A2B2O6O’, the 
space group Fd3m (No 227)) was studied 
by X-ray diffraction pattern refinement 
(Rietveld analysis), and by comparison of 
pycnometric density with the calculated 
one. It has been determined that the elec-

tronegativity plays the crucial factor for 
the distribution of the Mg atoms in the Nb 
sites and the Cu atoms – in the Bi and the 
Nb sites in equal ratios. In any case, there 
are 10–15% of vacancies in the Bi sites. In 
accordance with the other systems’ investi-
gations, the vacancy concentration always 
remains at about 5–10% in the Bi sites in 
the pyrochlore structure [4, 10–11, 14, 
30]. In this work we have a goal to deter-
mine a distribution of Ni and Mg dopants 
in the pyrochlore structure and investigate 
the temperature dependence of electrical 
properties of the Bi1.6Mg0.8-xNixNb1.6O7-δ.

Experimental
Mixed bismuth niobates 

Bi1.6Mg0.8-xNixNb1.6O7-δ (x = 0; 0.2; 0.4; 
0.6; 0.8) were prepared by a conventional 
solid state reaction method [31–32] from 
the oxides with high degree of purity 
(>99.9%): Bi2O3, NiO, MgO, Nb2O5. The 
oxides were weighted in an appropriate 
ratio (Bi2O3:MgO:NiO:Nb2O5 = 0.8:(0.8-
x):x:0.8), grinded, pressed into pellets 
and calcined at 650 °С (8 h), 850 °C (6 h), 
900 °C (6 h), 950 °C (12 h), 1000 °C (6 h), 
1050  °C (12 h), 1070 (6 h), and 1100 °C 
(11 h) consequently in corundum cruci-
bles. The annealing at 650 °C was carried 
out in order to avoid significant bismuth 
weight loss and the melting stage of Вi2О3 
at 824  °C. As the temperature and dura-
tion of the calcination increased, the im-
purity phase content decreased. After each 
firing step, the pellets were regrinded for 
30 min and repressed. The pellets’ diame-
ter and thickness varied from 12 to 14 mm 
and from 2.2 to 2.7 mm, respectively.

The phase composition of the samples 
was examined by powder X-ray diffrac-
tion method on a SHIMADZU XRD-6000 
diffractometer using Cu Kα emission 
within the angle range 10–80° (the step – 

0.05°). Distribution of nickel and magne-
sium atoms in the Bi1.6Mg0.4Ni0.4Nb1.6O7-δ 
pyrochlore was determined by Rietveld 
analysis (FullProf software package [33]). 
Scanning electron microscopy (SEM) was 
carried out on a TESCAN VEGA 3 SBU 
microscope. The local composition of the 
samples was studied on polished pellets 
by energy dispersion spectroscopy (EDS). 
Differential scanning calorimetry (DSC) 
and thermogravimetric analysis (TG) of 
Bi1.6Mg0.4Ni0.4Nb1.6O7-δ powder were car-
ried out in the air in platinum crucibles 
with heating up to 1300 °C and a heating 
rate of 5 °C/min (NETZSCH STA 409 PC/
PG). The electrical measurements were 
performed on the pellets, both sides of 
which were coated uniformly with a  sil-
ver paste. Capacitance and dielectric 
loss tangent were measured by MT–4090 
LCR meter in different gases (air, p(O2) = 
0.21 atm and oxygen, p(O2) = 0.99 atm) at 
four frequencies (1, 10, 100, 200 kHz) in 
the temperature range of 25–750 °C. The 
impedance plots were measured by im-
mittance meter E7-28 at 0.5 V in the tem-
perature and frequency ranges 25–700 °C 
and 24 Hz – 10 MHz, respectively. The 
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electrical data were collected after 10 min 
after the thermal equilibrium was reached. 
The thermoelectric effect – Seebeck coeffi-

cient – was determined in the temperature 
range 130–330 °C in a temperature gradi-
ent of 30–40 °C across the material.

Results and discussion
Synthesis and Characterization
The XRD patterns of 

Bi1.6Mg0.8-xNixNb1.6O7-δ (0 ≤ x ≤ 0.8) are 
shown in Fig. 1. The pyrochlore structure is 
formed for the Bi1.6Mg0.4Ni0.4Nb1.6O7-δ com-
position only. The small amounts of second 
phases, identified as MgNb2O6 (Pbcn space 
group) and as NiNb2O6 (Pbcn space group), 
were found in the samples with x = 0; 0.2 
and with x = 0.6; 0.8, respectively.

The surfaces of the 
Bi1.6Mg0.8-xNixNb1.6O7-δ (0 ≤ x ≤ 0.6) pol-
ished pellets after the last calcination are 
shown in the SEM images (Fig. 2a–2c). 
According to the EDS data, the presence 
of additional phases such as MgNb2O6 
(at x = 0) or as mixed Mg-Ni contain-
ing niobates (at x = 0.2; 0.6) can be seen. 
The amount of impurities is around 5%. 
The local compositions of the main and 
second phases are presented in the cap-
tion to Fig. 2. The composition of the 
Bi1.6Mg0.4Ni0.4Nb1.6O7-δ ceramic deter-
mined by EDS is Bi1.60Mg0.38Ni0.45Nb1.6O7-δ, 
which is close to the desired composition. 

The porosity of the pellets was around 35–
40%, as estimated from SEM micrographs. 

DSC and TG curves of the 
Bi1.6Mg0.4Ni0.4Nb1.6O7-δ powder are shown 
in Fig. 3. The endothermal effect was 
found on the DSC curve at 1261 °C. This 
effect may be associated with the melting 
of the sample. The reason for the weight 
rise during the heating process has not 
been established yet. It may be related to 
the partial oxidation of Ni+2 to Ni+3.

The Rietveld refinement of the XRD 
pattern of Bi1.6Mg0.4Ni0.4Nb1.6O7-δ was car-
ried out. The occupations of atom sites 
were fixed in accordance with the quan-
titative composition of the compound. 
The possibility of displacement of the 
bismuth atoms (from 16c sites to 96h or 
96g sites) and the oxygen atoms O′ as-
sociated with bismuth (from 8a sites to 
32e sites) were considered, like in [Bi0.833
Mg0.11□0.04]2[Mg0.24Nb0.76]2O7 and in [Bi0.833
Ni0.125□0.04]2[Ni0.25Nb0.75]2O7 pyrochlores 
[14]. Various models were studied to de-
termine the distribution of doped atoms 
in the cation (Bi, Nb) sites of the pyro-
chlore structure. Among the alternative 
models that were considered there are 
[Bi1.56Ni0.34□0.10][Ni0.05Mg0.39Nb1.56]O7.02 and 
[Bi1.56Mg0.34□0.10][Mg0.05Ni0.39Nb1.56]O7.02. 
In these models 5% of vacancies remain 
at the Bi sites. The distribution of dopant 
atoms in equal ratio among two different 
cation sites causes formation of about 2.5% 
vacant sites both in the Bi and Nb sublat-
tices. It is not typical for the pyrochlore 
structure. The best agreement between 
theoretical and observed X-ray patterns 
was obtained for the model designated as 

Fig. 1. X-ray diffraction patterns  
of Bi1.6Mg0.8-xNixNb1.6O7-δ (0 ≤ x ≤ 0.8)
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[Bi1.56Ni0.34□0.10][Ni0.05Mg0.39Nb1.56]O7.02. In 
this model, all Mg atoms are distributed 
over the Nb sites. Several models were 
considered with different vacancy concen-
trations (10–25%) in the Bi sites and Mg 
atoms occupying the Nb sites. 

The best values of Rwp (%), Rp (%), χ2 
factors can be obtained for the models 

with 15–20% vacancies in the Bi sites. The 
refined crystallographic parameters of 
the [Bi1.46Ni0.18□0.36][Ni0.18Mg0.36Nb1.46]O6.52 
model are presented in Table 1. This mo- 
del corresponds to the equal distribution 
of Ni atoms in the Bi and the Nb sites, 
whereas 18% of vacancies remain in the Bi 
sites. Displacement of Bi and Ni atoms (16c 

 Fig. 2. SEM images of Bi1.6Mg0.8-xNixNb1.6O7-δ samples: a – x = 0 (1 – Bi1.72Mg0.78Nb1.6O7-δ,  
2 – MgNb2O6); b – x = 0.2 (1 – Bi1.60Mg0.44Ni0.18Nb1.6O7-δ, 2 – Mg0.85Ni0.11Nb2O6); c – x = 0.4 
(Bi1.60Mg0.38Ni0.45Nb1.6O7-δ); d – x = 0.6 (1 – Bi1.68Mg0.16Ni0.56Nb1.6O7-δ, 2 – Mg0.35Ni0.55Nb2O6)

a b

c d
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to 96h sites) is observed. The observed, 
calculated and difference X-ray diffrac-
tion profiles for the model are shown in 
Fig. 4. To our mind, the distribution of do-
pant atoms in the cation sites is governed 
by the electronegativity values, apart from 
the ionic radii influence. So, Mg2+ and Ni2+ 
ionic radii are close (0.72 Å and 0.70 Å, 
respectively) [34]. The electronegativity 
of Mg (1.23) by Allred-Rochow [35] is 
equal to that of Nb (1.23), and the elec-
tronegativity of Ni (1.75) is close to that 
of Bi (1.67). Obviously, the electronegativ-
ity values impact on the dopant distribu-
tion in the pyrochlore structure, like in 
the Cu–Mg substituted bismuth niobates 
[28–29].

The pycnometric density of the 
Bi1.6Mg0.4Ni0.4Nb1.6O7-δ powder is 
6.50±0.24 g/cm3. The calculated density for 
the [Bi1.56M0.34□0.10][M0.44Nb1.56]O7.02 model 
where M – the dopant metals (5% of va-
cancies in the Bi sites) is 7.02 g/cm3. The 
calculated density for the model with 18% 
vacancies in the Bi sites ([Bi1.46M0.18□0.36]
[M0.54Nb1.46]O6.52) is 6.53 g/cm3 and is in 
agreement with the pycnometric density 
value. Thus assumed amount of about 15–
20% vacant sites in Bi sublattice seems to be 
in agreement with the experimental results 
obtained in the present study.

Electrical properties
Complex impedance plots of the 

Bi1.6Mg0.8-xNixNb1.6O7-δ ceramics were 
drawn from impedance spectroscopy data. 
The data were obtained during cooling 
from 700 to 160 °C to exclude proton con-
ductivity. Perfect semicircles are traced in 

Fig. 4. Observed, calculated and difference 
X-ray diffraction profiles for  

[Bi1.46Ni0.18□0.36][Ni0.18Mg0.36Nb1.46]O6.52

Fig. 3. DSC and TG curves of 
Bi1.6Mg0.4Ni0.4Nb1.6O7-δ
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Table 1
Refined crystallographic parameters for Bi1.6Mg0.4Ni0.4Nb1.6O7-δ (space group Fd3m)

Atom type Site x y z Biso, Å
2 Occupation

[Bi1.46Ni0.18□0.36][Ni0.18Mg0.36Nb1.46]O6.52

Bi/Ni 96h 0 0.015 0.985 0.708 0.725/0.09
Nb/Ni 16d 1/2 1/2 1/2 0.003 0.725/0.09
Nb/Mg 16d 1/2 1/2 1/2 0.003 0.725/0.18
O 48f 1/8 1/8 0.428 0.010 1
O’ 8a 1/8 1/8 1/2 0.010 0.52
a = 10.5204 Å; Rp = 4.51%, Rwp = 5.86%, χ2 = 2.22.
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the temperature range 320–700 °C. At the 
temperature less than 320 °C half semicir-
cles may be observed. In Fig. 5 impedance 
plots for the Bi1.6Mg0.8-xNixNb1.6O7-δ (x = 
0.4; 0.6) ceramics are presented. The plots 
are well fitted by a single parallel RC ele-
ment (inset of Fig. 5) where R and C be-
long to bulk resistance and capacitance, 
respectively [36–38]. The measured pa-
rameters are listed in Table 2.

Permittivity recalculated from the ca-
pacitance values for the samples with Ni 
content x = 0.20, 0.40, and 0.60 is (70–81), 

(70–81), and (65–76), respectively, for the 
temperature range of 700–280 °C. Cal-
culated permittivity does not depend on 
the frequency in the range of 1–1000 kHz 
and is close to the dc permittivity values. 
At room temperature, the permittivity 
is around 80 in the frequency range of 
1–1000 kHz. All ceramics under inves-
tigation behave like a dielectric (tan  δ ≈ 
0.002) up to 280 °С.

Calculated from Arrhenius direct con-
ductivity plots activation energy values 
are close to 1.2 eV (the third column in 
Table 3). These values are almost equal to 
ones at 1 kHz (the second column in Ta-
ble 3). The corresponding Arrhenius con-

Fig. 5. Complex impedance plots at 500, 600 and 700 °C 
for the Bi1.6Mg0.8–xNixNb1.6O7–δ ceramics with x = 0.4; 0.6
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Table 2
Rb and Cb parameters of the RC elements in the temperature range 280–700 °C 

for the Bi1.6Mg0.8–xNixNb1.6O7–δ ceramics

T, °C

x = 0.20 
(h = 0.265 cm; 
d = 1.280 cm)

x = 0.40 
(h = 0.235 cm;
 d = 1.300 cm)

x = 0.60
(h = 0.220 cm; 
d = 1.325 cm)

R, kΩ C, pF R, kΩ C, pF R, kΩ C, pF
280 (79±3)·104 34.77±0.08 (50±3)·104 40.61±0.18 (111.7±2.7)·103 42.03±0.26
320 (157.8±2.5)·103 34.32±0.11 – – (173±3)·102 41.4±0.3
360 (373±4)·102 33.99±0.15 (310±4)·102 39.77±0.20 2860±30 40.8±0.3
400 9420±60 33.57±0.14 7560±40 39.18±0.12 606.8±2.4 39.97±0.15
500 558.5±2.3 32.41±0.14 164.4±0.5 37.87±0.12 49.61±0.08 38.66±0.09
600 62.8±0.4 31.08±0.28 21.52±0.04 36.57±0.13 8.460±0.014 37.36±0.14
700 8.972±0.026 29.88±0.19 4.032±0.010 35.22±0.24 1.913±0.004 35.8±0.3
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ductivity plots at 1 kHz for all ceramics are 
shown in Fig. 6a. The activation energy 
values, which are greater than  1 eV, may 
be associated with ionic conduction. The 
same activation energy values (~1.27 eV) 
are known for the (Bi1.5Zn0.5)(Nb0.5M1.5)O7 
(M – Ti, Sn, Zr, and Ce) ceramics [19] at 
T > 350 °C with the ionic type of conduc-
tivity.

The conductivity dependences on the 
temperature for the Bi1.6Mg0.4Ni0.4Nb1.6O7-δ 
ceramic (160–750 °C) in the air and in the 
oxygen atmosphere are shown in Fig. 6b. 
The conductivity of the ceramic does not 
dependent on the oxygen pressure, and 
the value of Seebeck coefficient is near 
0 mV/K in the temperature range of 200–

340 °C. These data indicate that there is no 
impurity-caused conductivity.

For all ceramics, an electrical modu-
lus (M") maximum is detected on the 
logarithmic scale of frequency (Fig. 7), 
indicating the presence of a polariza-
tion process. These relaxation effects are 
characterized by the full width at half 
maximum (FWHM) peaks of M"(f) be-
ing ~ 1.2 decades. This value is close to an 
ideal Debye response (1.14 decades) that 
characterizes the ceramics as electrically 
homogenous. At frequencies of the M" 
maximum value the relaxation time was 
calculated (Fig. 7). Frequency values at M" 
maxima were plotted vs temperature in 
an Arrhenius-type fashion. Obtained ac-
cordingly values of activation energy are 

a b

Fig. 6. Electrical conductivities as functions of reciprocal temperature at 1 kHz: 
a – Bi1.6Mg0.8-xNixNb1.6O7-δ; b – Bi1.6Mg0.4Ni0.4Nb1.6O7-δ

Table 3
Activation energies of (dc, ac) conductivity and relaxation process 

of the substituted bismuth niobate pyrochlores

Compound Ea (conductivity, 1 kHz), 
eV

Ea (conductivity, 
dc), eV

Ea (relaxation), eV

Bi1.6Mg0.8Nb1.6O7–δ 1.03±0.06 – –
Bi1.6Mg0.6Ni0.2Nb1.6O7–δ 1.09±0.03 1.25±0.03 1.38±0.03
Bi1.6Mg0.4Ni0.4Nb1.6O7–δ 1.14±0.03 1.20±0.03 1.38±0.03
Bi1.6Mg0.2Ni0.6Nb1.6O7–δ 1.10±0.03 1.20±0.04 1.23±0.04
Bi1.6Ni0.8Nb1.6O7–δ 1.17±0.08 – –
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close to the ones obtained from the Arrhe-
nius conductivity plots (Table 3). It points 
out that the hopping-type conductivity 
is typical for the Bi1.6Mg0.8–xNixNb1.6O7–δ 

ceramics, like for Bi1.5ZnNb1.5O7 [36, 38] 
and Bi3.55Mg1.78Ta2.67O13.78 [37] pyrochlo-
res with Ea (relaxation) are 0.94 eV and 
1.37 eV, respectively.

Conclusions
Mixed Mg–, Ni–containing bismuth 

niobates Bi1.6Mg0.8-xNixNb1.6O7-δ (0 ≤ x 
≤ 0.8) were synthesized by the conven-
tional solid-state reaction method. For 
all samples the main crystal phase is the 
pyrochlore. The Bi1.6Mg0.4Ni0.4Nb1.6O7-δ ce-
ramic is a single-phase compound and is 
stable up to its melting point (1261 ºC). 
Based on structural analysis and the com-
parison of pycnometric and calculated 
densities of the Bi1.6Mg0.4Ni0.4Nb1.6O7-δ, it 
was found that Mg atoms are distributed 

over the Nb sites, Ni atoms are distrib-
uted at the Bi and Nb sites almost in the 
equal ratio. In this case, there are about 
15–20% vacant sites in the Bi sublattice. 
The Bi1.6Mg0.8-xNixNb1.6O7-δ ceramics are 
characterized by the hopping type of con-
ductivity (Ea = 1.0–1.4 eV). It was deter-
mined that dielectric permittivity varies 
from 81 to 65 as the temperature increases 
from 280 to 700 °C, and practically does 
not depend on frequency in the range of 
1–1000 kHz.
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