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Despite the widely acknowledged importance of collaboration among participants in 
governance networks, a limited number of studies have attempted to statistically model the pro-
cesses by which those networks form. In this article, we explore a range of network features and 
processes and measure their influence on network formation. We examine the case of Hurricane 
Katrina and employ exponential random graph models to identify the drivers of network for-
mation in extreme events. We find that both the attributes of individual organizations and en-
dogenous network processes affect organizational collaboration. Understanding these factors is 
important because the structure of the response network influences information flow, resource 
exchange, and performance.
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1. Introduction

Disasters, whether natural or man-made, require multiple organizations to work to-
gether. Members of disaster response networks mobilize to protect life and property as 
well as provide citizens with necessary goods and services (Comfort, Boin, & Demchak, 
2010; Kapucu, 2006). While some collaborative action among participants is planned, 
many of the activities in these networks develop based on rapid decisions made by par-
ticipants under conditions of stress and uncertainty (Comfort, 1999; Drabek & McEntire, 
2002). While necessity brings together these organizations (Weber & Khademian, 2008), 
coordination and collaboration are not necessarily ensured, and the lack of coordination 
can lead to suboptimal results (Comfort, 1999; Kapucu, 2006; Tierney, Lindell, & Perry, 
2001).

Collective action problems have long been a focus of public administration research 
(Frederickson, 1999). Considerable attention has been given to the factors that influence 
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collaboration in stable operating conditions. Research suggests that shared goals, the 
establishment of trust between organizations, and specific management skills facilitate 
interaction (Bardach, 1999; Bryson, Crosby, & Stone, 2006; Feiock, 2007). Scholars 
have also examined how and why agencies interact during extreme events (Comfort, 
1999, 2007; Kapucu, 2006; Waugh & Streib, 2006). Given the condensed time frame for 
interaction during emergencies, a greater importance is placed on an organization’s capac-
ity to quickly develop and communicate strategies to coordinate action (Comfort, 2007; 
Kapucu, 2006).

While there is a large body of research on the importance of collaboration among 
participants in governance networks (Agranoff, 2007; Provan & Milward, 1995), a lim-
ited number of studies have attempted to statistically model the processes by which those 
networks form. According to Snijders (2011), the dependency among the ties in a network 
have hindered the development of suitable statistical network models. Consequently, pre-
vious work has often relied on qualitative case studies (see Agranoff, 2007), or traditional 
linear methods which assume that the decision maker contemplating collaboration oper-
ates in isolation (see Feiock, 2004). Even when network analysis has been used to study 
governance networks, the techniques employed tended to offer only descriptive measures 
of network properties rather than methods that capture generative processes (Kapucu,  
Hu, & Khosa, 2014).

In this study, we use exponential random graph models (ERGMs) to examine several 
network generating processes simultaneously while also appropriately handling the struc-
tural dependencies present in the data (Lusher, Koskinen, & Robins, 2013). We begin with 
a review of factors identified in previous research as important determinants of network 
structure. We then incorporate those factors into a statistical model to examine the inter-
agency governance network that formed in Louisiana in response to Hurricane Katrina in 
2005. We pay careful attention to model construction and interpretation in order to provide 
a clear application of ERGMs for other researchers who may be interested in applying the 
methodology. 

2.	 Interorganizational Network Formation

It is critical to understand the factors that influence collective action and network 
formation in public administration research (Bardach, 1998; Frederickson, 1999). Two 
streams of research in public administration are particularly relevant for their insights on 
the factors that shape and constrain interagency relationships: (i) Institutional Collect Ac-
tion (ICA) (Feiock, 2004, 2013) and (ii) network management studies (Agranoff, 2007; 
Agranoff & McGuire, 2003), particularly those concerned with disasters (Comfort, 1999; 
Kapucu, 2006).

Work on ICA suggests that organizations engaged in collaborative arrangements ac-
crue transaction costs in gathering information, negotiating agreements, coordinating joint 
efforts, and monitoring the performance of various partners (Feiock, 2004, 2007). The 
key task, therefore, is to mitigate these costs by establishing shared values and mutual 
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trust (Carr, LeRoux, & Shrestha, 2009; Romzek, LeRoux, & Blackmar, 2012). In stable 
operating environments, interorganizational networks develop over time as organizations 
assess the credibility and reliability of potential partners (Gulati & Gargiulo, 1999). Un-
like practitioners operating under stable conditions, organizations involved in emergency 
response have very limited time to contemplate decisions regarding interagency collabo-
ration (Comfort, 1999; Kapucu, 2006). Under conditions of uncertainty, individuals and 
organizations may be forced to rely on organizational attributes, such as sector or level of 
government, to make assessments of prospective partners. Attribute similarity can poten-
tially reduce transaction costs (Feiock & Scholz, 2010) because it facilitates the establish-
ment of trust and mutual expectations (Brass, 1995). The tendency for ties to form among 
actors with similar attributes or traits is known as homophily (Lazarsfeld & Merton, 1954). 
While recent research on governance and policy networks in stable operating environ-
ments have produced mixed results with regard to the importance of homophily (Henry, 
Lubell, & McCoy, 2011; Lee, Lee, & Feiock, 2012), the speed with which collaborations 
must form during crises suggests homophilous tendencies will be more pronounced in 
disaster response systems.

Hypothesis 1: Within the response network, organizations are more likely to form homophilous 
relationships.

Another means of reducing transaction costs is to rely on common partners to bro-
ker new relationships (Kwon, Feiock, & Bae, 2014; Thurmaier & Wood, 2002). Certain 
individuals and organizations play key roles in network formation by linking otherwise 
disparate organizations. Studies have identified key actors in response networks that both 
attract collaborative partners and connect others due to their roles in disaster response plans  
or their access to information and resources (Comfort & Haase, 2006; Kapucu, 2006; 
Kapucu & Demiroz, 2011).

When two organizations rely on a common partner to broker interaction, a network 
structure known as a transitive triad emerges where all three organizations collaborate 
with each other. Transitivity captures the common adage that a friend of a friend is a friend 
(Wasserman & Faust, 1994). Transitivity has been empirically observed in several stud-
ies on policy and governance networks (Henry et al., 2011; Lee et al., 2012). In a disaster 
scenario, agencies may rely on existing partners for referrals to connect with prospective 
partners. These referrals may help to promote trust and diminish the perceived transaction 
costs associated with quickly forming an ad hoc partnership.

Hypothesis 2: Within the response networks, organizations that share partners are more likely to 
interact with each other (i.e., form transitive relations).

While research using the ICA framework sheds light on the context and decision 
space confronted by public managers, studies on network management offer insight on 
the specific skills demonstrated by successful network participants (Agranoff, 2007). Net-
work management scholars have identified the abilities to span jurisdictional boundaries 
and recruit potential members as valuable skillsets (Agranoff, 2007; Agranoff & McGuire, 
2001; Goldsmith & Eggers, 2004). In many governance networks, organizations will take 
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lead responsibility for various administrative and operational tasks, and as a result these 
organizations assume central roles (Provan & Kenis, 2008). In disaster response networks, 
central agencies generally possess significant resources or direct access to resources and 
information (Comfort & Haase, 2006; Robinson, Eller, Gall, & Gerber, 2013). Research 
has found that the Federal Emergency Management Agency, state-level agencies charged 
with response duties, and local public safety departments are often at the core of disaster-
response networks (Comfort & Haase, 2006; Kapucu, 2006; Kapucu & Demiroz, 2011).

With respect to social network analysis, the degree of an actor is a simple measure 
of activity or centrality. It is calculated by summing the number of ties that an actor has 
formed with other members of the network. Under a completely random process, the dis-
tribution of those ties across all actors, or the degree distribution, follows a normal curve. 
However, in most social and organizational networks, degree distributions follow a power 
law distribution (Barabási, 2002; Barabási & Albert, 1999). These networks are often cen-
tralized, as a few nodes are highly connected while the majority of nodes have only a few 
connections. 

Hypothesis 3: Within a disaster response network, a handful of key organizations will be dis-
proportionately connected throughout the system (i.e., the network will tend to be centralized).

Another factor influencing organizational interaction is the concept of propinquity, 
which captures the physical distance separating two actors. There exists a strong tendency 
to interact with those in a shared physical space (Axelrod & Cohen, 1999). Some studies 
suggest that as the distance between two individuals increases, the probability of interac-
tion drops exponentially (Allen, 1984; Krackhardt, 1994). As with individuals, organiza-
tions operating within close geographic proximity may also be more likely to collaborate 
due to the increased ability to share resources or services (Post, 2004) and the reductions 
in the transportation costs of goods (Owen-Smith & Powell, 2004).

Hypothesis 4: Within the response network, organizations with headquarters located in close 
geographic proximity will be more likely to collaborate.

Taken individually, the extant literature on homophily, transitivity, degree distribu-
tions, and propinquity is fairly well established. However, much less is known about how 
these network properties and processes operate simultaneously. For example, how ho-
mophily and propinquity function together in generating network connections has not 
been adequately studied (Reagans, 2011). Also, transitivity in a network can arise via 
triadic closure through reliance on shared partners or it can result from homophilious 
tendencies to seek out partners with similar attributes (Robins, Pattison, Kalish, & Lusher, 
2007; Zaccarin & Rivellini, 2010). Thus, when transitivity is observed in a network, it is 
not possible to disentangle the effects of triadic closure from homophily. In order to do so, 
one needs to use a statistical model, like an exponential random graph model, capable of 
modeling multiple processes simultaneously (Lusher et al., 2013; Robins, 2011; Robins et 
al., 2007). This approach has not been widely used to study governance networks. In their 
review on the state of network research, Kapucu et al. (2014) found only 7 articles across 
thirty-nine public administration journals over a fifteen year time span that used ERGMs.
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3.	 Methods

Exponential random graph models allow for multiple network generating processes 
to be tested together (Robins, Snijders, Wang, Handcock, & Pattison, 2007; Snijders, Pat-
tison, Robins, & Handcock, 2006). With these methods, researchers can propose and test 
micro-level processes that may be at work in generating the observed network (Goodreau, 
2007). The observed network is simply the network for which the researcher has collected 
data and is interested in modeling (Robins et al., 2007).

According to Robins et al. (2007), “the network is conceptualized as a self-organizing 
system of relational ties. Substantively, the claim is that there are local social processes that 
generate dyadic relations, and that these social processes may depend on the surrounding 
social environment (i.e., on existing relations)” (p. 177). Even though the observed net-
work may only be a snapshot of an evolving system, due to the stability and constancy of 
the micro-level processes driving actor interaction, particular patterns of tie formation will 
emerge from the observed data (Robins, 2011). “These patterns of network ties are indeed 
the structural signature of the network and provide evidence from which we may infer 
something of the social processes that build the network” (Robins, 2011, p. 484).

Based on the notation and terminology of Robins et al. (2007), exponential random 
graph models have the following general form:
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where (i) y is a particular realization of the network; (ii) gA(y) are the network statis-
tics corresponding to the network terms or configurations, A, included in the model (i.e., 
transitivity, homophily, etc.); (iii) hA is the coefficient for a given network statistic; and  
(iv) k is a normalizing constant to ensure a proper probability distribution. We estimate 
these models using the ergm package of the statnet suite (Handcock, Hunter, Butts, 
Goodreau, & Morris, 2008) in the R programming environment (R Core Team, 2013). In 
applying ERGMs to the network that emerged in response to Hurricane Katrina, we illu-
minate potential factors influencing network formation in extreme events. 

4.	 Case Selection and Data 

In August 2005, Hurricane Katrina made landfall across the Gulf Coast, destroy-
ing infrastructure and overwhelming communities from Florida to Louisiana. More than 
1,800 people lost their lives in one of the most deadly and, up to that point, the most 
costly natural disaster in United States history (Gall & Cutter, 2012). Louisiana bore the 
brunt of the storm as the subsequent flooding of New Orleans decimated infrastructure 
and created a major humanitarian crisis. Researchers in public administration and other 
disciplines paid considerable attention to the case (Cigler, 2007; Comfort, 2005; Comfort 
& Haase, 2006; Farazmand, 2007; Kapucu, Augustin, & Garayev, 2009; Kapucu & Ga-
rayev, 2011; Kiefer & Montjoy, 2006; Waugh, 2007; Waugh & Streib, 2006). Explanations 
for the failure of initiative that characterized the government response (U.S. House of 

55976-14-10.indd   27 18/08/15   5:31 PM



28	 M. D. Siciliano and C. Wukich / Network Features and Processes as Determinants	

Representatives, 2006) tended to emphasize either individual or system wide failures. The 
mass media tended to focus on certain individual actors and their failings (e.g., President 
George W. Bush’s perceived disengagement, the inefficacy of FEMA leadership, Gover-
nor Kathleen Blanco’s lack of precision, and Mayor Ray Nagin’s failure to organize an 
effective evacuation). Academic research examined what systemic factors contributed to 
poor outcomes (Birkland & Waterman, 2008; Cigler, 2007; Comfort, 2006; Waugh, 2007). 
This included work on the effectiveness of mutual aid agreements (Kapucu & Garayev, 
2011; Waugh, 2007) as well as the constraints imposed on network formation related to 
federalism (Birkland & Waterman, 2008).

Comfort, Kapucu, and their colleagues, illustrated the features of the response system in 
terms of the actors involved, their interactions, and the flow of information and other resources 
(Comfort & Haase, 2006; Comfort, Oh, & Ertan, 2009; Kapucu et al., 2009). Findings dem-
onstrated that while certain actors, such as FEMA, were central in the network, asymmetries 
existed in which many communities and organizations were not incorporated into the larger 
response system (Comfort & Haase, 2006).

Thus, while previous studies were able to describe the relevant characteristics and 
important properties of the response network as a whole, they did not allow for inferences 
regarding the processes that may have influenced the formation of the network. In this 
article, we complement prior studies by focusing on the interconnections among the orga-
nizations in the response system rather than on individual actors or whole network proper-
ties. We attempt to advance previous research by employing ERGMs to statistically model 
the interactions among the agencies responding to Hurricane Katrina. 

Our data extends an existing dataset previously used by researchers to understand 
the structure and composition of the Katrina response system (Comfort & Haase, 2006; 
Comfort et al., 2009). The original data were derived from a content analysis of daily news 
reports (230 articles) published in The New Orleans Times Picayune and characterizes the 
response network that formed just prior to, during, and after hurricane Katrina (a period of 
24 days). For additional information on the data, please see Comfort and Haase (2006) and 
Comfort et al. (2009). In total, 528 organizations1 were identified along with 673 interac-
tions. The network was then symmetrized to create an undirected network. Table 1 provides 

1 This number is slightly less than the number originally reported by Comfort, Oh, and Ertan (2009). The dif-
ference was due to our merging of several organizations. For example, we combined the Louisiana State Uni-
versity Manship School for Mass Communications with the Louisiana State University School of Journalism 
as these are the same entity. Likewise, we also combined West Jefferson General Hospital with West Jefferson 
Medical Center as these names are referring to the same organization with the same physical address.

Table 1
Level of Jurisdiction and Sector for the Organizations Operating in the Katrina Response System 

City/County State National International Total

Private   23   39   74   6 142
Non-Profit   30   26   23   3   82
Public 136   87   70 11 304
Total 189 152 167 20 528
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Figure 1. Geographic Locations of Organizations Operating in the Katrina Response System.

a summary of the level of jurisdiction and sector for the organizations operating in the 
Katrina response. We extended the data by calculating the physical distance between each 
organization as a dyad level or edge attribute. Figure 1 displays a map of the locations of 
these organizations.

5.	 Variables and Measurement

We test our hypotheses by first operationalizing the following network features and 
processes: homophily, transitivity, degree distribution, and propinquity. Our data contain 
information on each organization’s jurisdiction and sector. We assume that due to homoph-
ily organizations may be more likely to interact with others who operate within the same 
sector or on the same jurisdictional level (Lee et al., 2012; Robinson et al., 2013). To ex-
amine the role of homophily in generating ties, we constructed two different variables. The 
first one was jurisdictional homophily, which indicates whether or not two organizations 
operate on the same geographic scale (e.g., local, state, national, international). The second 
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one was, sectoral homophily, which indicates whether or not two organizations operate 
within the same sector (e.g., public, nonprofit, private). Rather than capturing an overall 
homophily effect for each attribute, we assumed that different homophilious tendencies 
were likely to exist across the categories of a given attribute. This assumption, known as 
differential homophily, allows the influence of organizational similarity to be estimated 
for each jurisdiction type and each sector independently. 

Closed triads and clustering are common features in real networks. Early ERGMs 
often used a triangle statistic, which was simply a count of the number of closed triads, 
to account for transitivity. However, the use of a triangle term often led to degenerate 
network models where the observed network structure could not be recreated from the 
statistical model (Handcock, 2003; Snijders, 2002). To help avoid degenerate models, we 
used a geometrically weighted edgewise shared partner (GWESP) statistic, instead of a 
simple triangle term to account for transitivity. GWESP is one of several geometrically 
weighted terms developed by Snijders et al. (2006) and extended by Hunter and Handcock 
(2006) and Hunter (2007) to deal with problems of degeneracy that can arise in ERGMs. 

Using the notation of Hunter (2007), the GWESP statistic is defined as:

	
5 ∑θ − −θ θ−

=

−

v y e e EP y( : ) {1 (1 ) } ( )i

i

n

i
1

2

where, y is the network, q is the decay parameter, and EPi (y) is the number of edges in the 
network that have i shared partners. 

Many observed networks, including the Katrina response, appear to follow a power 
law degree distribution. In order to investigate the network that emerged in response to 
Hurricane Katrina, a geometrically weighted degree (GWD) statistic can be used to help 
account for degree differentials and is preferred over k-star parameters. GWD is defined 
by Hunter (2007) as:
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and as with the GWESP statistic, y is the network, q is the decay parameter, and Di(y) is 
the number of nodes in the network with degree i. For a more detailed discussion on the 
development and use of geometrically weighted dependency terms in ERGMs see Hunter 
and Handcock (2006) and Hunter (2007).

Organizational attributes may also play a role in determining which organizations 
are most active in the response system. For example, public organizations may be engaged 
in more collaborative relationships when compared to private organizations. These differ-
ences are often referred to as main effects and entered into the model as a set of dummy 
variables for the organization’s jurisdiction and sector. 

Propinquity is measured by calculating the geographic distance between the organiza-
tions in the response system. We assigned longitude and latitude coordinates for each orga-
nization. Using geospatial analysis, the locations for the organizations responding to Katrina 
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were geocoded using Esri’s composite U.S. geocoder. These values were then geoprocessed 
to produce a table of distances between every organization. The distances were stored in a 
matrix and enter into the model as an edge covariate. Thus, it measures the likelihood of a tie 
forming between two organizations based on the physical distance between them.

6.	 Analyses and Results

Our analyses involve three different types of network models. We begin with a null or 
random graph model and then move through dyadic independent and finally to dyadic de-
pendent models. This analytic strategy identifies how coefficients change when new terms 
are added to the model. For instance, homophilous effects that were significant in a dyadic 
independent model may no longer be present when controlling for transitivity. While we 
explore multiple models, it is important to note that only the final, combined model, offers 
an unbiased estimate of the coefficients. We used the final combined model to assess model 
adequacy, overall importance of network processes, and goodness of fit statistics. 

The initial null or random graph model operates as a baseline. The model is built on 
the simple and unrealistic assumption that ties between organizations in the response sys-
tem form completely at random. The model includes only an edge term, which functions 
in the same manner as the intercept in a standard linear model. It is simply the best guess 

Table 2
Random and Dyadic Independent Models of the Katrina Response System

Dyadic Independent Models
Null Model Main Effects Homophily Propinquity

Structural Effects
  Edges −5.954 (0.053)*** −9.899 (0.776)*** −6.863 (0.108)*** −5.757 (0.068)***

Main Effects
  Sector - Nonprofit −0.034 (0.164)
  Sector - Public   0.929 (0.108)***

  Jurisdiction - City/County   1.252 (0.383)**

  Jurisdiction - National   1.549 (0.384)***

  Jurisdiction - State   1.340 (0.385)***

Homophily Effects
  Both Nonprofit   0.891 (0.317)**

  Both Private −0.141 (0.287)
  Both Public   1.299 (0.118)***

  Both City/County   0.423 (0.143)**

  Both National   0.976 (0.155)***

  Both State   0.750 (0.162)***

Propinquity
  Distance −0.020 (0.005)***

AIC   5010.141   4873.782   4838.192   4986.189
BIC   5019.984   4932.841   4907.094   5005.875
Log Likelihood −2504.070 −2430.891 −2412.096 −2491.094
***p < 0.001, **p < 0.01, *p < 0.05
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at the probability of a tie forming between any two organizations assuming nothing else 
about the organizations or network structure is known.

Building on the null model, we add dyadic independent terms one at a time. These 
terms are the homophily related effects, the main effects of nodal attributes, and edge 
covariates. These terms are considered dyadic independent because their effect on tie for-
mation is assumed to be exogenous of the network structure. Thus, the complicated depen-
dencies inherent in network data are ignored allowing dyadic independent models to be 
considered within a standard logistic regression framework (Goodreau, Kitts, & Morris, 
2009; Hunter, Handcock, Butts, Goodreau, & Morris, 2008). The results for the null and 
dyadic independent models are presented in Table 2.

The parameter estimates for the network statistics included in the models can be in-
terpreted as the log-odds (logit) of individual ties. The general form for ERGMs displayed 
previously can be rewritten to express the conditional logit of tie formation:2

	
∑η ϑ( )logit P Y n actors Y g y( 1 | , ) ( )ij ij

c
A A

A

5 5

where Yij
c denotes all dyads other than Yij, and ϑg y( )A  is the change in gA (y) when (Yij) 

is toggled from 0 to 1 (Goodreau et al., 2009). As Goodreau et al. (2009) note, the logit 
formulation clarifies the interpretation of the h vector: if forming a tie increases gA by 1, 
then all else being equal the logit of that tie forming increases by hA. Thus, relying on this 
interpretation, we can easily calculate the odds of a tie forming, exp (∑AhAϑgA (y)), as well 
as the probability of a tie forming,

	

∑
∑

η ϑ

η ϑ
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( )+
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( )

1 ( )

A AA
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In the simple random model, the probability is based solely on the edge term. The 
probability of tie formation is 0.0026, which we calculated using the following equation:

	

( )
( )

−
+ −
exp

exp
5.594

1 5.594
.

This probability is directly equal to the overall density of the undirected network. Again, 
such a model is rather uninformative and unable to capture the structural features of the 
observed network. 

Adding dyadic independent terms to the model can help explain some of the structural 
features. The main effects model indicates the differences in the activity level of different 
organizational types compared to the base category. The base category for jurisdiction was 

2 While we can use a logistic regression framework to aid in the interpretation of the parameter estimates, we 
cannot use logistic regression to establish the parameter estimates in dyadic dependent models.
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set to international and the base category for sector was set to private. The model suggests 
that public organizations are significantly more active compared to private organizations. 
For jurisdiction, the model suggests that city/county, national, and state level organiza-
tions are each significantly more active compared to international organizations. 

It is instructive to calculate the probability of a tie forming between two specific 
organizations. Using the results of the main effect model, the probability of a tie between 
a public national organization and a public state organization can be calculated. The logit 
value is found by multiplying the statistics gA(y) by their estimated coefficients in the 
model. Here, we need to include the fact that the dyad of interest concerns two public 
organizations, one of which is a national organization, and the other which is a state orga-
nization. Using the transformation from log odds to probability gives us:

	

( )
( )

− × + × + × + ×
+ − × + × + × + ×
exp 9.899 1 .929 2 1.549 1 1.340 1

1 exp 9.899 1 .929 2 1.549 1 1.340 1

The resulting probability of the tie, 0.006, can be compared with another dyad where 
the public national organization is switched to a public international organization (i.e., the 
base category for jurisdiction). By doing so we obtain a probability of 0.001. Holding other 
attributes of the dyad constant, switching one of the nodes from a national organization to 
an international organization makes a tie between those organizations less likely. 

The homophily model examines the role of organizational similarity in tie formation. 
The model allows us now to investigate the question: Are agencies more likely to interact 
with similar agencies or might they reach out to dissimilar agencies in search of novel 
information, skills, or other needed resources? In terms of sector based homophily, both 
nonprofits and public organizations showed tendencies to form ties with organizations in 
their own sector. For jurisdictional homophily, an increased likelihood in tie formation 
among organizations of the same jurisdictional scale was found for city/county, state, and 
national level organizations. Homophily for international organizations was not included 
in the model as there were no international to international ties in the data.

The last dyadic independent model, the propinquity model, uses the edge covariate 
of geographic distance between organizations as a predictor of tie formation. The model 
suggests that organizations which are separated by greater geographic distance are less 
likely to work with one another in the response system. Each of these dyadic indepen-
dent terms was combined together in a final model to assess their conditional effect when 
controlling for other organizational attributes and structural dependencies in the network. 

The dyadic dependent variables used to capture the structural dependencies are 
GWESP and GWD. The results of the models for these two terms along with the final 
combined model that includes all of the dyadic independent and dyadic dependent terms 
are presented in Table 3.

The transitivity model indicates that there is a strong tendency for triadic closure 
to occur in the Katrina response system. The positive and significant effect on GWESP 
indicates that a collaborative tie was more likely to form between two organizations who 
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shared a common partner. Thus, the positive coefficient for GWESP indicates a tendency 
toward transitivity in the network. In terms of the degree distribution, the negative and 
significant coefficient indicates that the degree distribution is not centralized but is rather 
spread more equally across the nodes in the network (Koskinen & Daraganova, 2013).

Moving to the final model, we found several significant changes in coefficient size 
and significance. The most noticeable one is the lack of significance for the main effects. 
This suggests that other factors in the model were driving the differences in organizational 
activity. For example, the main effect of city/county is no longer significant, and thus orga-
nizations operating at this level are not more active than the base category of international 
organizations controlling for the other effects. In the final model, city/county has a positive 
and significant homophily effect, and there is a general tendency to form ties with those 
nearby. These effects indicate that city/county organizations are unlikely to form ties in the 
response system unless those ties are with other city/county organizations and/or to other 
organizations operating within close geographic proximity. The homophilous tendencies 
of city/county organizations also help explain why coefficient on propinquity has cut in 
half in the final model.

Another notable difference between the single process models and the final com-
bined model is the decrease in the size of the coefficient on GWESP. As mentioned earlier, 

Table 3
Dyadic Dependent and Final Models of the Katrina Response System

Transitivity Degree Distribution Final Model

Structural Effects
  Edges −6.244 (0.061)*** −4.487 (0.031)*** −5.622 (0.761)***

  GWESP   1.639 (0.081)***   0.998 (0.089)***

  GWD −1.837 (0.049)*** −1.367 (0.111)***

Main Effects
  Sector – Nonprofit −0.371 (0.193)
  Sector - Public   0.025 (0.374)
  Jurisdiction - City/County −0.024 (0.339)
  Jurisdiction - National   0.378 (0.329)
  Jurisdiction - State −0.004 (0.338)
Homophily Effects
  Both Nonprofit   1.854 (0.485)***

  Both Private   0.101 (0.476)
  Both Public   0.592 (0.400)
  Both City/County   0.649 (0.241)**

  Both National   0.149 (0.263)
  Both State   0.845 (0.251)***

Propinquity
  Distance −0.010 (0.005)*

AIC   4790.540   4752.930   4530.250
BIC   4810.226   4772.616   4677.897
Log Likelihood −2393.270 −2374.465 −2250.125
***p < 0.001, **p < 0.01, *p < 0.05
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transitivity in networks can arise through homophily as well as through triadic closure. 
Given the drop in the size of the coefficient, it suggests that part of the impact of GWESP 
in the transitivity model was due to homophily. Once homophily was accounted for in 
the network, the tendency for triangles to form in the network is reduced, though still 
significant.

7.	 Model Fit 

Like other statistical models, ERGMs can be assessed for overall model fit. One of 
the primary problems resulting from the use of ERGMs is model degeneracy. When de-
generacy occurs, the model may either fail to converge or if it does converge, the simulated 
networks based off of the model parameters may produce structural features and patterns 
that are quite different from the observed data. Each of the models presented above suc-
cessfully converged. Within the ergm package in R, a set of diagnostic tools are available 
to assess the overall fit and adequacy of the model. Please see the appendix for a descrip-
tion of these tools and a discussion of model fit with regards to the Katrina dataset.

8.	 Discussion 

Our goal was to examine the tie formation in the Hurricane Katrina response system 
that emerged in Louisiana in 2005 and to test specific hypotheses regarding the network 
features and processes of homophily, transitivity, degree distributions, and propinquity. In 
doing so, we provide readers with a clear application of ERGMs. Previous studies have fo-
cused on individual actors and/or aggregate network properties, but less emphasis has been 
placed on the microprocesses and factors that may be at work in generating the system’s 
structure. The use of ERGMs allowed us to describe and test several potential processes 
and to explore their importance for establishing collaborative ties among organizations. 

The final combined model suggests that certain types of agencies sought to cluster 
with each other, as opposed to reaching out to more diverse organizations. Nonprofits were 
generally more likely to work with other nonprofits, which supports our first hypothesis. 
Nonprofits perhaps did not have access to state and federal resources in a timely and ef-
fective manner. Rather than a proxy for trust, nonprofit homophily might be explained 
based on the cooperative activities in which the organization engaged. Nonprofits make up 
a substantial portion of the United States’ emergency support function (ESF) #6, for ex-
ample, which includes mass care, housing, and human services. The American Red Cross, 
the Salvation Army, and many national faith-based organizations took part in this support 
function in Louisiana and actively coordinated efforts following Hurricane Katrina. Sig-
nificant homophily effects may therefore indicate potential information asymmetries or 
conscious groupings of agencies around support function activities. 

In addition, local agencies, those operating at the city or county level, were gener-
ally more likely to work with other local agencies. This finding along with the statistically 
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significant effect of propinquity provides evidence in support of our fourth hypothesis 
regarding the role played by geographic proximity. The interactions among local organi-
zations may have been influenced by their physical proximities, but may also have been 
a product of past relationships, familiarity between personnel, and established levels of 
trust, all of which are considered to be initial conditions for cooperation (Bryson et al., 
2006). The reliance of local organizations on other local organizations could also be due 
to the poor collaborative capacity demonstrated by state and federal agencies. The failure 
of initiative that characterized state and federal response efforts has been well documented 
(U.S. House of Representatives, 2006).

In support of our second hypothesis, the results suggest a strong tendency for respond-
ing organizations to form transitive structures. Because the model controls for homophily, 
this tendency toward transitivity exists over and above the clustering effects driven by 
organizational similarity. The importance of transitivity has been demonstrated in stable 
operating environments including regional planning networks (Henry et al., 2011), adult 
basic education policy networks (Park & Rethemeyer, 2014), and in networks related to 
economic development (Lee et al., 2012). Our study demonstrates that transitivity is also 
prevalent in the networks that emerge in response to extreme events. Coupled with the 
homophily effects, the results suggest that the organizations use bonding strategies - that 
is they work closely with multiple partners - to achieve desired outcomes (see Wukich & 
Robinson, 2013).

The coefficient on GWD, which captures the degree distribution of the network, was 
negative and significant. This result suggests that nodes with a high number of ties were 
unlikely and thus the network tended to be less centralized. This finding fails to support 
our third hypothesis. However, certain organizations, based on their sheer number of con-
nections, were more central in the network than others. For these nodes that did have a 
high degree in the response network, their positions were likely driven by other effects 
in the model, such as transitivity. As discussed by de la Haye, Robins, Mohr, and Wilson 
(2010), this indicates that organizations which formed numerous ties generally did so in 
the context of clusters of organizations.

9.	 Limitations and Future Research

While the Katrina dataset provided a detailed account of organizational interactions 
during the first three weeks of the response, some limitations of our study should be noted. 
Rather than viewing daily time slices of the network, the interactions are aggregated to 
form a picture of the overall response system that emerged immediately after the disaster. 
While such aggregation does not allow for dynamic network modeling it may help reduce 
errors in the data. Reductions in error are likely as collaboration between two organiza-
tions may only be reported by a newspaper on a particular day but the collaboration may 
have begun earlier and could endure longer than reported. This reality of using archival 
sources, suggests that aggregation at the appropriate time frame is needed to capture the 
response network. 
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While our data controlled for several attributes of the organizations engaged in the 
response, future research on disaster and governance networks should consider the inclu-
sion of additional covariates. Additional variables that could be explored include organi-
zational resources and capabilities (i.e., finances, equipment, personnel). Data on these 
attributes would provide researchers with the capacity to examine, among other things, the 
role of resource dependency in network formation. Future work can build on the network 
processes and models explored in this paper by adding specific managerial factors into the 
model that lead to collaboration (Agranoff, 2007; Agranoff & McGuire, 2001; Goldsmith 
& Eggers, 2004) as well as measures of trust or preexisting relationships. 

Statistical models of networks, like ERGMs, provide researchers with an improved 
ability to test theory and hypotheses compared to more descriptive network methods 
or case studies (Lubell, Scholz, Berardo, & Robins, 2012; Robins, Lewis, & Wang, 
2012). Consequently, one fruitful area of future research would be in the comparison 
of response systems within the same state or country before and after a major policy 
change or transition in leadership in key organizations. A comparative approach using 
statistical network models would allow scholars to identify if policy changes altered the 
importance of or type of factors affecting organizational interaction. The Post-Katrina 
Emergency Management Reform Act of 2006, for example, enables federal agencies to 
more proactively engage state and local governments during preparedness, response, 
and recovery periods. The extent to which a more active federal element might influence 
network formation and performance is a point of future research. Such dynamics could 
be included in an ERGM to explicitly test changes in the propensity for cross jurisdic-
tional ties to form. Once we understand some of the underlying processes predicting tie 
formation, and how those processes have changed in response to policy changes, disaster 
managers and policymakers can more effectively develop policies to govern the response 
to extreme events. Future research could greatly add to statistical modeling by engag-
ing in simultaneous and detailed qualitative interviews to better recognize the decision 
processes of organizational leaders as well as organizational capacity to identify where 
needed resources and expertise exist.

10.	 Conclusions

Our study builds on previous findings by exploring the network processes that influ-
ence organizational collaboration and by illuminating the generative processes at work in 
building the overall response network. While previous studies identified individual character-
istics in isolation and described the network structure, we statistically modeled how homoph-
ily, transitivity, propinquity, and organizational attributes simultaneously shape the network. 

We found that both the attributes of individual actors and endogenous network pro-
cesses influence the structure of disaster response systems. Understanding these processes 
adds to our ability to evaluate complex systems. These processes may be prominent in 
emergency situations due to the level of uncertainty and speed by which organizations 
must make decisions and act. In these situations organizations may naturally rely on 
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existing partners or similar organizations to form new ties rather than seeking out other 
organizations that may be more suitable for solving problems. The inefficiencies that can 
result from this type of connection-making offer support to previous calls to improve com-
munication and coordination during response and to engage in additional networking and 
preparation beforehand (Comfort, 2006; Comfort & Haase, 2006; Kapucu, 2006).

Therefore, emergency managers must understand and exercise existing plans, but also 
identify possible partners in the event of catastrophe beyond current planning capabilities, 
the so-called black swan events (Taleb, 2010). This will allow for agencies to rely less on 
their current network partners and span boundaries to develop relationships or at least iden-
tify available resources and contacts prior to an extreme event. We suggest that managers not 
just count on existing written plans or relationships with their neighbors, but actually exer-
cise those plans, anticipate potential contingencies, and make contact with potential partners 
in an effort to better access necessary information and resources during an extreme event.
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Appendix: Assessing Goodness of Fit

As noted in the text, all of the models successfully converged. For the final model, 
we assessed the difference between the sample statistics based on simulated networks (i.e., 
those generated from the parameter estimates in the final model) to the actual values in the 
observed network. For each of the terms included in the model, no significant difference 
was found between the observed value and the sample statistic of that term produced from 
the simulated networks. 

Once we were satisfied with the final model’s convergence, we examined whether 
the model could reproduce “out-of-model statistics.” These out-of-model statistics are part 
of the goodness of fit heuristics described by Hunter, Goodreau, and Handcock (2008). 
The goodness of fit measures for statistical network models assess the ability of a fitted 
model to reproduce certain network properties that were not specifically modeled, thus the 
term “out-of-model” statistics. If the out-of-model or nonfitted statistics are well captured 
in the simulated distribution of graphs, then there is evidence to indicate that these features 
may have arisen from the processes included in the model (Koskinen & Snijders, 2013). 
The most common out-of-model statistics used to assess goodness of fit are shared part-
ners, degree, and average geodesic distance. The results are shown in Figure 2. 

In each of these plots, the thick black line represents the observed value of a given 
statistic in the Katrina response system. The boxplots are derived from the simulated net-
works. For the boxplots, 100 networks were simulated based on the parameter estimates 
in the final model. The relevant network statistic was then calculated for each simulated 
network, and the distribution of the statistic across the simulations is charted. The first 
goodness of fit plot reveals the proportion of edges with a given number of shared partners. 
The plot suggests that our model captured well the shared partner distribution observed in 
the Katrina dataset. While the GWESP term used in the model is assured of capturing the 
mean number of shared partners, it does not control for the full distribution of shared part-
ners (Goodreau et al., 2009). Thus, this global property in the network is being adequately 
captured by the terms included in our final model.

The second plot shows the degree distribution. As with GWESP, the GWD term and 
the main effect terms do not model the full degree distribution. The goodness of fit plot 
indicates one area where our model does not adequately represent the proportion of nodes 
with a given degree. Specifically, the model underestimates the proportion of nodes with 
a degree of 1. This indicates that there are more pendants in the observed network than 
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present in the simulated networks. While the overall shape of the distribution is captured 
by the model, instances of under- or over-estimation represent areas for future research 
(Goodreau et al., 2009) and can indicate the need to explore additional model terms. 

The final plot reveals the geodesic distances between organizations. These distances 
represent the number of links that exist between two organizations and is not directly 
related to any of the terms included in the final model. Due to the fragmentation of the 
network, the plot indicates that the largest proportion of dyads were not reachable (NR). 
For those that are reachable, the distribution is characterized by a small spike around geo-
desics of 4, 5, and 6. Overall, our final model captures the distribution of distances fairly 
well, as the observed line falls within each of the boxplots. Taken as a whole, we feel our 
model adequately captures the three out-of-model statistics, and thus provide evidence to 
indicate that these features could have potentially arisen from the processes included in the 
model (Koskinen & Snijders, 2013).

Figure 2. Goodness of Fit Plots for the Final Model.
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