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Abstract 
This paper proposes context based approach for frequent events mining (FEM) in Electronic 

Health Records (EHR). The majority of FEM methods do not take in consideration the context 
information of the analyzed dada. EHRs contain rich context information like demographic data, 
encounters, vital parameters, diagnoses, lab tests values, and prescribed therapy. Such information is 
crucial for proper interpretation of the complex temporal clinical events. Some applications in 
comorbidity identification, risk factors analysis and patients phenotyping are presented to illustrate 
the proposed method. Experiments were run on large collections of pseudoanonimized 
reimbursement requests submitted to the Bulgarian National Health Insurance Fund in 2010-2016 
for more than 5 million citizens yearly. Effective explication of comorbidities and characterization 
of risk factors can fill knowledge gaps and assist informed clinical decision-making. 

 
Keywords: Frequent Patterns Mining; Data Mining, Knowledge Discovery; Health 
Informatics. 

 
1. Introduction 
Investigation of events in healthcare requires development of complex models. One of the 

most explored problems is frequent events discovering in Electronic Health Records (EHR). Some 
approaches investigate the temporal nature of the events (Huang et al, 2013), i.e. frequent sequences 
mining (FSM). Other approaches consider the cumulative result of all events over the patient status. 
Such studies focus on frequent patterns identification (Shknevsky et al, 2017). The first type of 
research is focused on cause-effect relation and is suitable for applications like disease progress and 
treatment effect studies. Thus, some prediction methods can be defined on its bases. The frequent 
patterns mining (FPM) approaches take into account the collective effect of all complex factors for 
disease development. The FPM approaches are better for risk factors analysis, phenotyping and 
comorbidities identification. Temporal events relations analysis of EHR has higher importance for 
proving healthcare hypothesis: treatment effect assessment, disease complications monitoring, risk 
factors analysis. Currently such analyses are also used in epidemiology for identifying complex 
relations between different unrelated diseases – so called comorbidity and for research of rare 
diseases. 

Majority of FSM and FPM approaches extract general templates only and do not take in 
consideration contextual information about extracted patterns. EHRs contain rich context 
information like demographic data (age, gender, and demographic region), encounters (clinic visits 
and hospitalizations), vitals (BMI, blood pressure), diagnoses, lab test data, and prescriptions. Such 
information is crucial for proper interpretation of the complex temporal clinical events, because 
some patterns can be valid only in certain context. 

FPM and association rules generation are on primary interest in our study. This paper 
presents a context-based approach for FPM in EHRs.  

The paper is structured as follows: Section 2 briefly overviews the research in the area; 
Section 3 describes the data collections of EHRs used in the study; Section 4 presents the theoretical 
background and formal presentation of the problem; Section 5 describes in details the proposed 
method for semantically enhance frequent patterns mining; Section 6 shows experimental results 
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and discusses the method application for searching of comorbidities and risk factors in big 
repository of EHRs; Section 7 contains the conclusion and sketches some plans for future work. 
 

2. Related Work 
Knowledge discovery in repositories of patient records is in focus of the clinical research 

(Yadav et al, 2018). Context information is organized as attributes of itemsets and tidsets. Attributes 
may have different organization - structured or unstructured. There are several methods of context 
information processing from the semantically enhanced FPM algorithms:  

 Initially to extract general templates using classical FPM algorithms and then to add the 
context knowledge interpretation (Rabatel et al, 2013). The main disadvantage of this 
approach is that for large number of heterogeneous attributes with high variety of possible 
domain values, the number of combinations of attribute-value pairs that need to be explored 
exponentially grows. 

 From small data collection to generate context models that are later summarized in more 
general models (Ziembiński, 2011).The main disadvantage of this approach is that for big 
collections it is hard to select representative small collection of data. Especially for 
collection of EHRs that is characterized by huge diversity of attribute-value pairs. 

 To merge both the data (transaction itemsets) and the context as selected features and to 
apply data mining over the more complex data vectors (Stańczyk et al, 2017). The main 
disadvantage of this approach is that very long vectors need to be generated for each 
transaction, which is hard to be processed efficiently. 
Some FPM methods are based on domain ontologies. In (Huang et al, 2013) are presented 

two semantics-driven FPM algorithms for EHR knowledge discovery for adverse drug effects 
prevention and prediction. The first algorithm is based on EHR domain ontologies and semantic 
data annotation with metadata. The second algorithm uses semantic hypergraph-based k-itemset 
generation. In (Rabatel et al, 2013) is proposed an approach in marketing domain, which takes into 
account not only the transactions that have been made but also various attributes associated with 
customers, like age, gender and etc. Attributes have a hierarchical structure and explore patterns at 
different levels of attributes abstraction. Rabatel et al designed algorithm Gespan and made 
experiments with about 100,000 product descriptions from amazon.com. In (Adda et al, 2005) is 
proposed Apriori-like FPM method enhanced with ontology and in addition with a pair of 
descriptive languages ─ for individuals data and for generic patterns, a generality relation between 
patterns. Unfortunately, such ontologies are domain and language specific and are not available for 
low resource languages. 

Shknevsky et al address the issue of generation of contradictory symbolic time intervals 
patterns, caused by processing of vitals and lab test data, where many patients in the support set can 
have “very low” or “very high” value for some attribute. They propose an approach for time-interval 
relations patterns discovery using Semantic Adjacency Criterion (Shknevsky et al, 2017), which 
prevents the existence of potentially contradictory symbolic time intervals. This allows significant 
reduction (up to 97%) of the frequent patterns set that repeat with contradictory parts. Similar 
problem is also investigated in (Batal et al, 2013). They propose Minimal Predictive Temporal 
Patterns framework to generate a small set of predictive and non-spurious patterns. One of the early 
attempts in this direction was the algorithm PASCAL described in (Bastide et al, 2000). They 
propose optimization is based on pattern counting inference that relies on the concept of key 
patterns. 

The major problem with EHRs repositories is that they can be incomplete and the data also 
can be noisy due to the technical errors. The timestamps of the events are uncertain, because the 
physicians do not know the exact occurrence time of some events. There can be a significant gap 
between the onset of some diseases and the first record for diagnosis in EHR made by the physician. 
Thus, a FPM method for dealing with temporal uncertainty was presented in (Ge et al, 2017).  
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Some new direction in frequent patterns mining in event sequences is trajectories analysis. 
In (Campagna & Pagh, 2010) is presented application of trajectories analyses to dataset of 2 million 
RFID (Radio-frequency identification) readings from baggage trolleys at Copenhagen Airport in 
order to identify the frequent passenger movement patterns. Influences of this idea reflect in the 
clinical trajectories model. In (Dabek & Caban, 2016) is used the following definition “A clinical 
trajectory can be defined as the path followed by patients between an initial heath state 𝑆 such as 
being healthy to another state 𝑆 such as being diagnosed with a specific clinical condition.“ Dabek 
and Caban propose a k-reversable approach for clinical trajectories modeling and present its 
application over a dataset of patients that have experienced mild traumatic brain injuries (Dabek & 
Caban, 2016). The results of experiments show that the method is effective in clustering and 
identifying common long-term effects associated with this injury. Jensen et al describe a 
methodology that allows disease trajectories of the cancer patients to be estimated from free text in 
EHRs (Jensen et al, 2017). The results of experiments show that about 80% of patient events can be 
predicted ahead in time. 

Many other methods for frequent patterns discovery task solution were applied (Wang et al, 
2012), like one-sided convolutional nonnegative matrix factorization, symbolic aggregate 
approximation, temporal abstraction approach for medical temporal patterns discovery.  

Healthcare is considered as data-intensive domain and as such faces the challenges of big 
data processing problems. Chen and Zhang presents some directions, opportunities and challenges 
for big data analytics in commerce and business, society administration and scientific research 
(Chen & Zhang, 2014). On the other hand, medical data are quite sensitive, because they contain 
personal information. There are a lot of regulations and restrictions for their secondary usage for 
research. That is why cannot be used for cloud and distributed computing, which are considered 
recently as main technologies for big data analytics. Development of new scalable methods for 
pattern recognition in big healthcare data are required. Krumholz discusses the potential and 
importance of harnessing big data in healthcare for prediction, prevention and improvement of 
healthcare decision-making (Krumholz, 2014).  

In this research, we attempt further development and combination of the ideas of data mining 
approaches like context based FPM and trajectories analysis. The experimental repository contains 
large collection of EHR, thus some modifications concerning scalability and efficiency are needed. 
 

3. Materials 
We use a data repository of about 262 million pseudonymised EHRs (outpatient records) 

submitted to the Bulgarian National Health Insurance Fund (NHIF) in period 2010-2016 for more 
than 5 million citizens yearly. The NHIF collects for reimbursement purpose all EHRs produced by 
General Practitioners and the Specialists from Ambulatory Care for every patient clinical visit.  

The repository contains of EHRs ─ semi-structured files with predefined XML-format. Most 
data needed for health management are structured using standard nomenclatures, such as ICD1 for 
diagnoses. Unfortunately still the majority of the important information concerning patient status 
and case history is provided like free text. EHRs contain paragraphs of unstructured text provided as 
separate XML tags (see table 1): “Anamnesis”, “Status”, “Clinical tests”, “Prescribed treatment”. 

 
Table 1. Fields with free text in EHRs that supply input data to text mining components 

# XML field Content 
1 Anamnesis Case history, previous treatments. Family history, risk factors 
2 Status Patient state, height, weight, BMI, blood pressure etc. 
3 Clinical tests Values of clinical examinations and lab data listed in arbitrary order 
4 Prescribed treatment Codes of drugs reimbursed by NHIF, free text descriptions of other drugs 

 

                                                           
1 International Classification of Diseases and Related Health Problems 10th Revision. 
http://apps.who.int/classifications/icd10/browse/2015/en 
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The structured information contains date and time of the visit; pseudonymised personal data, 
pseudonymised visit-related information, demographic data (age, gender, and demographic region). 
All diagnoses are presented by ICD-10 codes and the name according the nomenclature. Each HER 
can contain a main diagnose and up to four additional diagnosis. The structured data can contain 
also a code if the patient needs special monitoring; a code concerning the need for hospitalization; 
several codes for planned consultations. In case the prescribed treatment is reimbursed by NHIF the 
medication information is also presented in structured format by NHIF drug codes, otherwise the 
recommended treatment description is presented as free text.  

We are using raw data provided by NHIF, without of any preprocessing due to the lack of 
resources and annotated corpora. The text style for unstructured information is telegraphic. Usually 
with no punctuation and a lot of noise (some words are concatenated; there are many typos, syntax 
errors, etc.).  

For information extraction from free text we are using text mining tools for medications 
(Boytcheva, 2011), vitals (BMI, blood pressure), and lab test data (Boytcheva et al, 2015).  

From each EHRs is generated a patient event (see fig. 1) that contain structured information 
both from XML tags and extracted by Natural Language Processing (NLP) tools from free text. 
Each category of structured information in the patient event contains a set of attribute-value pairs. 

 

 
 

Figure 1. Patient event generated in structured form from OR of a patient single clinic visit 
 
4. Theoretical Framework 
In the classical FPM task is defined for transaction database (Aggarwal & Han, 2014) for 

customer transaction analysis in e-commerce. For purposes to emphasize the terminology in 
healthcare we will define the formal representation of the task for FPM for database of patient 
events. 

Definition 4.1. Lets consider each patient clinic visits as a single event. The extracted set of 
all different patient identifiers 𝑃 = {𝑝ଵ, 𝑝ଶ, … , 𝑝ே} from the collection S of EHRs is called pids 
(patient identifiers).  

Definition 4.2. Let ℰ be the set of all possible patient events and 𝒯 be the set of all possible 
timestamps. For each patient 𝑝 ∈ 𝑃 an event sequence of tuples 〈𝑒𝑣𝑒𝑛𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝〉 is called 
patient history: 𝐸(𝑝) = ൫〈𝑒ଵ, 𝑡ଵ〉, 〈𝑒ଶ, 𝑡ଶ〉, … , 〈𝑒

, 𝑡
〉൯,   𝑖 = 1, 𝑁തതതതത, 𝑒 ∈  ℰ 𝑎𝑛𝑑 𝑡 ∈ 𝒯   𝑗 = 1, 𝑘ప

തതതതതത, .  

Definition 4.3. Let 𝒞 = ൛𝑐ଵ, 𝑐ଶ, … , 𝑐ൟ be the set of all chronic diseases2, we call them items. 
Each subset of 𝑋 ⊆ 𝒞 is called an itemset.  

We define a projection function (1): 
 

𝜋: (ℰ × 𝒯)ே → 𝒞ே: 𝜋൫𝐸(𝑝)൯ =  𝐶(𝑝) =  ൫𝑐ଵ୧, 𝑐ଶ୧, … , 𝑐
൯       (1) 

 
such that for each patient 𝑝 ∈ 𝑃  the projected time sequence contains only the first 

occurrence (onset) of each chronic disorder recorded in 𝐸(𝑝).  
                                                           
2 Chronic diseases, WHO, http://www.who.int/topics/chronic_diseases/en/ 
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Definition 4.4 Let 𝐷 ⊆ 𝑃 × 𝒞 be the set of all itemsets in our collection after projection 𝜋 in 
the format 〈𝑝𝑖𝑑, 𝑖𝑡𝑒𝑚𝑠𝑒𝑡〉. We will call 𝐷 database.  

Definition 4.5. Let 𝐷 is a database and 𝑋 ⊆ 𝒞 is an itemset. We call support of 𝑋 in 𝐷 the 
following set (2):  

 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = {𝑝|𝑝 ∈ 𝑃, 〈𝑝, 𝑌〉 ∈  𝐷  𝑎𝑛𝑑 𝑋 ⊆ 𝑌}  (2) 

 
Definition 4.6. Let ℱ denote the set of all frequent itemsets, i.e. 

ℱ = {𝑋| 𝑋 ⊆ 𝒞 𝑎𝑛𝑑 sup (𝑋) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝}. A frequent itemset 𝑋 ∈ ℱ is called maximal if it has no 
frequent supersets. Let ℳ denote the set of all maximal frequent itemsets, i.e. ℳ = {𝑋| 𝑋 ∈
ℱ 𝑎𝑛𝑑 ∄ 𝑌 ∈ ℱ, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑋 ⊂ 𝑌}.  

Let 2 denote the power set (set of all subsets) of itemset 𝑋. Then each subset of 𝑋 ∈ ℱ is 
also frequent itemset, i.e. ∀ 𝑌 ∈  2 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑌 ∈ ℱ .  

Definition 4.7. For each item 𝑐 ∈ 𝒞 we define the set called pidset: 𝑝(c) = {𝑝| 〈𝑝, 𝐶(𝑝)〉 ∈
𝐷 𝑎𝑛𝑑 c ∈ 𝐶(𝑝)}.  

We preprocess the database 𝐷 by generating pidsets and transform it to vertical database 𝐷: 
𝐷 = {〈c, 𝑝(𝑐)〉|𝑐 ∈ 𝒞 }.  

Definition 4.8. An implication in the form 𝐼 ⟹  𝐽 is called association rule, where 𝐼 ⊂ 𝒞,  
𝐽 ⊂ 𝒞, 𝐼 ∩ 𝐽 = ∅. 𝐼 is called antecedent and 𝐽 is called consequent. The support of a rule is the 
number of pids in  𝐷 that contain 𝐼 ∪  𝐽, i.e. this is the probability 

 
𝑠𝑢𝑝(𝐼 ⟹  𝐽 ) =  𝑠𝑢𝑝(𝐼 ∪  𝐽) =  𝑃(𝐼 ∪  𝐽)   (3) 

 
Definition 4.9. If  𝐶% of patient documents in 𝑆 that contain 𝐼, contain also 𝐽, then we say 

that the association rule 𝐼 ⟹  𝐽 holds with confidence 𝐶 in 𝑆, i.e., this is the conditional probability  
 

𝑐𝑜𝑛𝑓(𝐼 ⟹  𝐽) =  𝑃(𝐽|𝐼) =
௦௨(ூ⟹  )

௦௨(ூ)
    (4) 

 
In FPM task we are looking for itemsets 𝑋 ⊆ 𝒞 with frequency (sup(𝑋) = |support(X)|) 

above given minimal support 𝑚𝑖𝑛𝑠𝑢𝑝. In Association Rules (ARs) mining task in 𝑆 is to generate 
all ARs with confidence above the user-defined confidence 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 and support above the user-
defined support 𝑚𝑖𝑛𝑠𝑢𝑝. Rules that satisfy both the 𝑚𝑖𝑛𝑠𝑢𝑝 and the 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 conditions are called 
strong. 

Even for reasonable pairs of values of  𝑚𝑖𝑛𝑠𝑢𝑝 and 𝑚𝑖𝑛𝑐𝑜𝑛𝑓, big datasets yield huge 
amounts of strong ARs and some additional filtering is needed.  

Definition 4.10. The ratio of the confidence of the rule and the confidence of its consequents 
called lift that is defined as: 

 

𝑙𝑖𝑓𝑡(𝐼 ⟹  𝐽) =
 (ூ∪ )

(ூ)()
    (5) 

 
The lift represents the strength of the relation between the consequent and its antecedent. Lift 

value less than 1 indicates independence between them. Lift value greater than 1 means that the 
antecedent and consequent appear together more often than expected, i.e., are correlated. Such rules 
are potentially useful for predicting the consequent in new sets. 

 
5. Semantically Enhanced Frequent Patterns Mining 
The collection processing is performed in three phases: preprocessing, data analysis and 

prediction & prevention models generation (Figure 2). After the preprocessing phase is applied data 
analysis over the collection of patient events in structured form. The diagnoses are considered as 
patient event data in focus. We use the master template approach to which context information is 
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subsequently added. The FPM and AR generation algorithms are applied for itemsets of ICD-10 
codes of diagnoses. For ARs generation, we use algorithms for mining all association rules with the 
lift measure in a transaction database (Agrawal & Srikant, 1994) with implementation at SPMF3. 
For experiments, we used an algorithm for All Association Rules with FPGrowth with lift (Han et 
al, 2004). The generated frequent patterns itemsets (FPI) represents so called comorbidities. We 
need to study the nature of comorbidities and the context in which they are valid. 

 

 

Figure 2. System Architecture 
 

To cope with high heterogeneity of the attributes and the complexity of the hyperspace some 
methods like selection of focus attributes, aggregation and discretization are applied over the 
context data. 

We define an ordered set of attributes of interest (focus attributes) 𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎}. The 
attributes are listed in decreasing order of their weight. In order to decrease the number of possible 
values of attributes we apply some discretization of data, i.e. using categorical values instead of 
numeric values. Such values in numeric ranges are mapped over categories. For instance, age value 
is categorized according to the World Health Organization (WHO) standard age groups. Data for 
body mass index (BMI) are also categorized according to the WHO4 standard classification - 
underweight, normal weight, overweight, obesity. For some data concerning demographic 
information, like region ID we have large number of distinct values. We use aggregation on 
different levels, concerning background information for the region – e.g. whether it is south, north, 
west, east, central, northwest etc., and mountain, river, sea, thermal spring, urban region etc. 

Definition 5.1. Context Q for some patient 𝑝 ∈ 𝑃 is defined as the set of attribute-value 
pairs 〈𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒〉 from patient history:  𝐸(𝑝) = ൫〈𝑒ଵ, 𝑡ଵ〉, 〈𝑒ଶ, 𝑡ଶ〉, … , 〈𝑒

, 𝑡
〉൯, 𝑖 =

1, 𝑁തതതതത,  and focus attributes set 𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎}. For each attribute is taken the value for the latest 
occurrence in the event sequence. 

 
𝑄(𝑝) = {〈𝑎ଵ, 𝑞ଵ〉, 〈𝑎ଶ, 𝑞ଶ〉, … , 〈𝑎, 𝑞〉} (6) 

 
We propose new cascade method ContextFPM for generating the context of FPI: 
(1) Initially generate the set ℳ of FPI for diagnosis and their support.  
(2) Initialize 𝐵 ← ∅ 
(3) Select the first attribute 𝑎 ∈ 𝐴, and remove it from 𝐴.  
(4) The collection S is clustered for all possible values 𝑣 in the domain 𝐷(𝑎) of the 

attribute 𝑎. Foreach 𝑣 ∈ 𝐷(𝑎) find  𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎, 𝑣)  =  {𝑝| 𝑝 ∈ 𝑃, 〈𝑎, 𝑣〉 ∈ 𝑄(𝑝)} . 
(5) Apply reduction 𝐷′(𝑎) of 𝐷(𝑎) for those values 𝑣 of the attribute 𝑎 for which 

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎, 𝑣)| < 𝑚𝑖𝑛𝑠𝑢𝑝. 
(6) Foreach 〈𝑚, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑚)〉 ∈ ℳ  

                                                           
3 http://www.philippe-fournier-viger.com/spmf/index.php?link=algorithms.php  
4 WHO, BMI Classification  http://apps.who.int/bmi/index.jsp?introPage=intro_3.html 
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Foreach 𝑣 ∈ 𝐷′(𝑎)   
find ℱ = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑚) ∩ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎, 𝑣) 
if |ℱ| ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 then  
  if ∃ 𝑟 = 〈𝑚, ℱᇱ, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡〉  ∈ 𝐵  

then 𝐵 ← 𝐵 ∪ 〈𝑚, ℱ, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∪ {〈𝑎, 𝑣〉}〉 𝑎𝑛𝑑 ℳ′ ← 〈𝑚, ℱ〉 
else  𝐵 ← 𝐵 ∪ 〈𝑚, ℱ, {〈𝑎, 𝑣〉}〉 𝑎𝑛𝑑 ℳ′ ← 〈𝑚, ℱ〉 

(7) Replace ℳ ← ℳ′ 
(8) If 𝐴 = ∅ then return 𝐵 and stop  

else goto step (3). 
 

6. Experiments and Results 
In epidemiology, Type 2 Diabetes Mellitus (T2DM) is considered as one of the primary 

causes for mortality with rapidly increasing levels of prevalence each year (Zimmet et al, 2014). 
Thus, the study of its risk factors is with higher importance for prevention and healthcare policies 
improvement. In (Bellou et al, 2018) is shown the complexity of risk factors for T2DM, which 
include not only genetics, but lifestyle, dietary and environmental factors as well.  

For experiments, we apply retrospective analysis of patients in pre-diabetes condition to 
identify some risk factors for T2DM. Due to the short period of the EHRs available in the 
repository, we cannot apply analysis over 2-year period (2013-2014) for patient with onset of the 
T2DM in 2015. This allows validating the generated results for risk factors. 

The FPI are generated for 𝑚𝑖𝑛𝑠𝑢𝑝 = 0.1. For this experiment the itemsets contain all 
diagnosis (both for acute and chronic diseases) from patient history. The results of data analysis for 
are shown in table 2. 

 
Table 2. Collection S for patients in pre-diabetes condition in the period 2013-2014 

period 2013 2014 2013-2014 
EHRs 267,194 296,129 556,323 
Patients 27,082 27,902 29,205 
ICD-10 codes 4,701 4,834 5,503 
Frequent Itemsets 7,452 8,935 32,093 
Association Rules 58,299 78,052 381,012 

 
The main comorbidity classes before the context analysis are shown in fig. 4. The highest 

picks in fig. 4 correspond to cardiovascular diseases. It is well known that diseases of the circulatory 
system are primary risk factors for T2DM: Hypertensive diseases (ICD-10 codes I10-I15), 
Ischaemic heart diseases (ICD-10 codes I20-I25), Atrial fibrillation and flutter (ICD-10 codes I48). 
Other comorbidities include Diseases of the eye and adnexa (ICD-10 codes H00-H59) and Diseases 
of the musculoskeletal system and connective tissue (ICD-10 codes M00-M99). 

We consider as focus attributes age, sex, blood pressure, blood glucose levels and glycated 
hemoglobin (HbA1C) levels. The distribution of sex is 41% male and 59% female. These values 
have no significant deviation from the standard distribution of the population. Some age specific FPI 
that were identified concern different types of cancer.  

The onset of T2DM is usually at age after 45. The patients with age in range 0-14 these 
patients were excluded after context analysis due to the support below the 𝑚𝑖𝑛𝑠𝑢𝑝 (fig. 3). For 
patient with age in range 15-44 the main comorbidities considered as risk factors include Obesity 
and Hypertension. Some correlation between the patient distributions in different age categories 
according to WHO can be seen in fig. 3 for patients in prediabetes condition (left) and patients with 
T2DM (right). 
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Figure 3. Age of the patients in the collection S, grouped by WHO categories (left) and the age of patients 
with T2DM for the population in the same period and categories (right) 

 

 
 

Figure 4. Comorbidities for 2013-2014 collection of EHRs grouped by classes in ICD-10 
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Figure 5. Blood Pressure (systolic and diastolic) levels of the patients in the collection S  
 
For the attributes, concerning vitals we made experiments with data for blood pressure only 

that are available for majority of patients. The repository contains data from multiple clinic visits, 
but we process only data from the latest visit, that are more relevant to the event of T2DM 
diagnosis. For all patients data are presented for blood pressure (RR – Riva Roci) with (systolic and 
diastolic) levels. This allows their discretization in several categories were considered as attribute 
values: hypertension stage 1, hypertension stage 2, elevated blood pressure, hypotension, blood 
pressure in norm. The results (fig. 5) show that for more than 50% of patients have high blood 
pressure levels. 

For the attributes concerning lab test results, we lack of data (fig. 6 and fig 7) for majority of 
patients, because these clinical results are usually monitored for patients with diagnosis T2DM. The 
tests were done for some patients at the end of 2014 immediately before the period of T2DM 
diagnostization. Only for patients with high levels of glucose levels and glycated hemoglobin were 
discovered context-based FPI. The other categories were excluded due to the low support. 

 

 
 

Figure 6. Blood glucose levels of the patients in the collection S, grouped by categories 
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Figure 7. HbA1C levels of the patients in the collection S, grouped by categories 
 

7. Conclusion and Further Work 
In this paper, we present semantically enhanced approach ContextFPM for FPM of EHRs. 

The task is challenging, because we need apply automatic NLP in large scale for medical records for 
low resource language, which is novelty in this area. The secondary use of EHRs leads to 
knowledge discovery. New results were identified considering some types of cancer and diseases of 
the musculoskeletal system as risk factors for T2DM that need further investigation and explanation. 
We demonstrated that the context plays important role for comorbidities validation. In our previous 
research (Boytcheva et al, 2017) we also addressed the problem for context based FPM for EHRs. 
The proposed method uses support vector machines (SVM) and optimization based on block 
minimization method described in (Yu et al, 2012). The proposed method ContextFPM at is more 
flexible and allows partial interpretation of the context of FPI by iterative steps. 

Future work includes further elaboration of specific algorithms that take into consideration 
temporal sequences of events. Development of more efficient tools for filtering of the generated 
pool of association rules. Implementation of visualization interactive tools will provide to experts 
functionality to explore and investigate in more details FPI findings.  
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