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Abstract 
Hidden Markov Model (HMM) is a statistical network used in knowledge representation in 

many applications. In the same system/application, we could have several HMMs that might have 
similar or different visible and invisible attributes. In this paper, a theoretical framework proposal 
based on Probabilistic Neural Network (PNN) concept to represent all HMMs in a given system in 
one structure is presented. This representation framework will help in making the system provides 
results for cases that are not well formulated or provided in any of the given set of HMMs. The 
general idea of PNN has been adopted in this research to represent HMMs as patterns but the 
computation and representation are different. Our PNN will have at least two layers. The first layer 
is input layer, the second is the pattern and output layer, but we might have more than one pattern 
and output layer and the third layer is the sum and output layer. The proposed approach has been 
applied on three cases, one HMM, hierarchical HMM and independent related HMMs.  

Keywords: Hidden Markov Model, Probabilistic Neural Networks, Prediction  

1. Introduction  
In this work, we are going to present a theoretical framework for representing Hidden 

Markov Model (HMM) based on Probabilistic Neural Networks (PNN).  Many systems that use 
HMM might have several HMMs, or one or more Hierarchical Hidden Markov Models (HHMM), It 
would be very useful if we could represent all the used HMM in one structure that can help the user 
to give results for any combinations of inputs within the HMMs. Because the number of HMMs in 
such systems is usually limited and not big, we propose PNN to be as a tool to represent the HMM 
so that PNN can produce results for non-given input cases through the provided HMMs.   

1.1. Hidden Markov Model 
HMM is a well known statistical network that can be used in many applications such as 

natural language processing, speech and hand recognition, cryptanalysis, finance, virus detection, 
landmine detection, genomics, hand gesture, facial expressions bioinformatics and gene 
prediction (Bhusari & Pati, 2011), (Gales & Young, 2008), (Hamdi & Frigui, 2015), (Hewahi, 
2010), (Naghizadeh, Rezaeitabar, Pezeshk, & Matthews, 2012), (Sherlock, Xifara, Telfer, & 
Begon, 2013). HMM has set of finite number of states, the state can be either visible or non-
visible. Visible states are usually connected to each other with solid arrows whereas the visible 
states are connected to invisible states with dashed arrows. In top of arrows is the probability 
value of a certain state given the other state as evidence is presented. The summation of 
probabilities emerging from one visible state to all other visible states should be 1 and the 
summation of probabilities emerging from a visible state to all other invisible states should be 1. 
The invisible states do not have any connecting arrows to other invisible states. An example for 
HMM is given in Figure 1. 
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Figure 1. HMM to describe a relation between the states “Safe” and “Unsafe” with the observations 
(invisible states) “Calm” and “Chaos”. 

 
From Figure 1 we present HMM as 

 
a. The relation of visible states with visible states  

 
P(Safe|Safe)= 0.8, P(Unsafe|  Safe) = 0.2, P (Unsafe| Unsafe) = 0.6, P(Safe|  Unsafe) = 0.4 
 

b. The relation of visible states with non-visible states 
 
P (Calm | Safe) = 0.9, P(Choas | Safe)=0.1, P(Calm| Unsafe)=0.3, P(Chaos| Unsafe)=0.7  
 

Some of the applications where the HMM is used are stated here. In (Bhusari & Pati, 2011) 
authors used HMM for detection of credit card fraud. In (Gales & Young, 2008) authors used HMM 
as speech recognition tool. Landmine detection using HMM was presented in (Hamdi & Frigui, 
2015). Hewahi (2010) proposed a method to use HMM in network management. In (Naghizadeh 

et.al, 2012) researchers proposed a modified HMM to be used in Protein Secondary Structure 
Prediction. In (Sherlock, et al., 2013) coupled HMM for disease interactions were developed. 
Application of HMM for classifying metamorphic virus was presented in (ShivaPrasad & 
RaghuKisore, 2015). A PhD thesis that is concerned with estimation of HMM  and their 
applications in finance is prepared by Tenyakov (Tenyakov, 2014). 

Further, some researchers worked to improve systems that use HMM for their 
representation. In (Hewahi, 2015) an approach to generate new HMMs using particle swarm 
optimization was presented. A neuroevolution approach was presented in (Hewahi, 2011a) to 
generate new HMMs where in (Hewahi, 2011b) a new approach using only genetic algorithm to 
generate new HMMs was proposed. In (Hewahi, 2011c) new methods to convert HMM to censored 
production rules which are used in real time system have been presented.     
 

1.2. Hierarchical Hidden Markov Model 
Fine and others (Fine, Singer & Tishby, 1998) proposed a Hierarchical Hidden Markov 

Model (HHMM) that combines more than HMM to represent related states in more than one HMM. 
Figure 2 presents HHMM.  
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Figure 2. HHMM  with four levels. q is a state name, the upper value is the level of HMM and the lower 

value is the index of  the state. The dashed line is the forced return to the root (Fine, et al., 1998). 
 

In (Fine, et al., 1998) authors show how HHMM can be used in building multilevel for 
English text, and unsupervised identification of repeated strokes in cursive handwriting. 
 

4. Probability Neural Network 
Probability Neural Network (PNN) is feed forward network based on supervised learning. 

The network has four layers, the first layer is the input layer, the second layer is the pattern layer, 
the third layer is summation layer and the fourth layer is the output layer. The first layer contains 
nodes for all the input attributes, the second layer contains a node for every instance in the data set, 
nodes produce the same output are arranged to be neighbors. The third layer contains neurons based 
on the number of different values for the class label. The fourth layer has one node that will produce 
the output of the neural networks. This method is also defined as an implementation of statistical 
algorithm called kernel discriminate analysis (Specht, 1992), (Specht, 1998). PNN has many 
advantages such that it does not need training, no local minimum issues, no further training is 
needed if new instances to be added to the dataset and finally the more examples are provided, the 
more opportunity to get the optimum solution. The main disadvantage of PNN is the need for large 
memory and it is specific for certain cases and domains. PNN is presented in Figure 3. 
 

 
 

Figure 3. PNN structure 
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Figure 3 shows n X input attributes with two class labels ZA and ZB, number of instances in 
the dataset that produces ZA has j examples where number of instances that produces ZB is k. The 
value for each node in the pattern layer is computed using a function called probability distribution 
function. The third layer has two nodes fA and fB, each represents one of the possible outputs A or 
B. This is the obtained by using a formula called Gaussian formula which is the average of the 
corresponding inputs from the pattern layer.  The output layer has one node which represents the 
winner among the two nodes in the summation layer, usually the output Y is the maximum value of 
fA and fB. The PNN algorithm can be summarized as below (Specht, 1992) (Specht, 1998).: 
 

a. Input neurons are represented using n attributes related to the given dataset. This represents 
the input layer. 

b. For every instance in the dataset, create a node and arrange nodes with similar output (class 
label) to be neighbors. This represents the patterns layer. For every neuron in the patterns 
layer, probability distribution function formula is used to compute its value as shown below: 
 

   𝑌12 =  𝑒
(𝑋−𝑋12)

2

𝜎2
                                                  (1) 

 
Where Yij is the probability distribution value for the ith output for the jth example, 𝜎 is a 
smoothing parameter and X is the unknown input which we need  to know its output 

 
c. For every node  in the summation layer use the Gaussian formula which is the average of all 

the probability distributions for the patterns having the same output as represented below: 
 

     gi(X) = 
ଵ


 ∑ 𝑒

(ି) మ

ఙଶ


ୀଵ                          (2) 

 
ni is the number of instances having the same output (the ith output).  Xik is the kth example 
having the ith output. 

 
d. Obtain the output for the given input X by getting the maximum of all the Gaussian values 

obtained in the previous step. The used formula is  
                  MAX(g1,g2,…,gi)                                                     (3) 
 

Several applications of PNN in many areas are existing. In (Araghi, Khaloozade,  & 
Arvan, 2009) authors used PNN to identify ships. El Emary and Ramakrishnan (El Emary & 
Ramakrishnan, 2008) presented various applications of pattern classifications using PNN. In 
(Georgiou, Pavlidis, Parsopoulos, Alevizos,  & Vrahatis, 2004) the performance of PNN in 
bioinformatics task has been optimized. In (Grim, Somol, & Pudil, 2005) PNN is used in Tic-Tac-
Toe game.  

In (Georgiou, et al., 2004) authors tried to improve the performance of PNN by 
incorporating a fuzzy class membership function for the weighting of its pattern layer neurons. In 
(Hewahi, 2011c), a proposal for representation of rule based system using PNN has been presented. 
The main concept is that in many systems based on rule based system, there are many rules that can 
be related and represented using PNN structure. This is being done to enable the system answer 
questions related to a set of inputs. Similarly, our proposed approach in this research is to present 
the existing set of HMMs in a system to be able to give answers for unknown situations.   
 

2. The Proposed Approach 
Our main goal in this paper is to represent HMMs in a form of PNNs so that the system will 

be able to give answers for unrepresented cases. PNNs is selected as a representation tool for HMM 
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because in most of the systems that use HMMs, they use few HMMs that can be represented easily 
in PNNs. As discussed before PNNs does not have weights on the links like the feed forward 
network based on backpropgation algorithm. In our approach, we are going to use the probability 
value between the states as weights for the links. This can be done among the visible states, and 
between the visible states and invisible states. It is to be noticed that there will be no links among 
invisible states. The similarity between our approach and PNN approach is only the general idea but 
not the computation, number of layers and the representation style. The adopted idea is to represent 
all used HMMs in the system in one neural network as examples. The assumption is that the given 
HMMs are accurate, complete and do not have inconsistency. In the proposed approach, there will 
be two layers or more. The used layers are one input layer, one or more pattern and output layers 
and one sum and output layer. We might have more than one layer related to pattern and output in 
case we have HHMMs. Below is the proposed approach. The points presented here are not a 
sequence but a general approach to be followed. 

 
a. The input layer. This layer contains only visible states as input neurons. The intermediated 

or final visible states in HMMs will not be included in this layer. If we have more than one 
HMM, all input visible states in all HMMs will be as input nodes. In case where there are 
common states among the HMMs, only one state from each will be used as input.  

b. The pattern and output layer. This layer contains neurons for visible and invisible states. The 
node might represent an output for a certain state or it could be only a representation for a 
pattern that needs to be connected to the sum and output layer. Only existing edges between 
the nodes in HMM will have links between the nodes in PNN. This means the network is not 
fully connected. The probability values between the states will act as weights of the links 
connecting the states in the PNN. In this layer similar nodes of the same state related to 
various HMMs are arranged as neighbors and given different index such as Safe1, Safe2 and 
Safe3. Actually we might have more than one pattern and output layer specially in case of 
having hierarchical HMM. 

c. The sum and output layer. This layer contains neurons that represent states that need to have 
summations of some of the neurons/states in the pattern and output layer (those nodes which 
are not output nodes in the pattern and output layer). For example there is a need in this 
layer to compute one value for Safe state obtained from Safe1, Safe2 and Safe3 represented in 
the pattern and output layer. 

d. In this approach, no need to have a separate output layer as PNN because in PNN we usually 
need one output which is the maximum of all obtained possible outputs. In our approach, all 
the obtained results are needed as output because each one of them represents the output of a 
certain state.  

e. At each node in pattern and output layer, the average of the summation of multiplication of 
inputs with their corresponding link weighs to the node is computed. 
 
                   Ai = Sumi/n                                  (4) 
Where n is the number of links coming to the node that having input values other than 0. 
                                   n 
                    Sumi =      Ʃ Wki . Iki                     (5)  

                                         K=1 

The idea of ignoring the input with value 0 from the computation is to maintain the 
original values of other states. This will be clarified in the examples explained later.  

 
f. Sometimes a state X might have a value obtained/computed from a previous layer and this 

state has a link to another state Y in the next layer with a probability value as weight of the 
link between this node/state and other state in the next layer. The state Y might have inputs 
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from one or more states as X from the previous layer, to compute the value for state Y we 
use the following formula 
                                                  m 
                          Temp-Sumi =      Ʃ Wki . Xki      (6) 

                                                       K=1 

 

                                Yi = Temp-Sumi / m                     (7) 
 

where m is the number of inputs going to node Y and Xki is the obtained value for the kth node X 
connected to ith Y node.  
 

The assumption is that the visible state in any HMM can't be as invisible state in any other 
HMM and also any invisible state in any HMM can't be a visible state in any other HMM. This 
assumption is commonly true with most of the domains. 

 
Figure 4 represented the proposed structure with one pattern and output layer.  

 
 

Figure 4. PNN representation of HMM with 6 input attributes, 11 neurons in the pattern and output layer, 8 
neurons in the sum and output layer 

In Figure 4 dots mean similar procedure of connection between the input layer and pattern 
and output layer is followed. It is to be noticed that only states having relation with other states in 
the pattern and output layer are having links. We have 6 input attributes; all these attributes are 
related to visible states in all HMMs existing in the system to be represented. In the pattern and 
output layer, visible and invisible states in all HMMs are represented as neurons but according to 
their hierarchy level. The more levels we have in HHMM, the more pattern and output layers we 
have. In some cases the same state say "Cloudy" can be computed through various HMMs, let us 
say "Cloudy-1", "Cloudy-2" and "Cloudy-3" are obtained from HMM1, HMM2 and HMM3 
respectively, each one of these "Cloudy" will be represented in a different neuron and should be 
arranged in the layer as neighbors. In the sum and output layer, there are neurons to represent sum 
and outputs. This sum or output can be related to visible or non-visible state in all the existing 
HMMs in the system. The difference between the sum and output layer and pattern layer is that for 
example for "Cloudy" state we have one neuron to represent all "Cloudy" in all HMMs. As example 
the "Cloudy" neuron will have "Cloudy-1", "Cloudy-2" and "Cloudy-3" as its inputs to get one 
value for "Cloudy". 
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To make our approach clear, we apply it on three cases, the first case is on one HMM, the 
second case is using two HMMs and the third example is on a hierarchical HMMs.  

2.1 Case of One HMM  
In this section, we present two examples for representing one HMM as PNN, the first 

example is simple where the second is more complex. In the first example only two visible states 
and two invisible states are considered whereas in the second example there are three visible states 
and three invisible states.  

 
2.1.1 Example 1 
Let us consider HMM presented in Figure 1, as can be seen we have two visible states Safe 

and Unsafe and two invisible states Claim and Chaos. Figure 5 shows the representation of this 
HMM.  

 

Figure 5. PNN representation of  HMM presented in Figure 1 
 

In this example we have only two layers, input layer and the pattern and out layer. In this 
case the pattern and output layer is going to work as pattern layer and output layer because the 
values computed do not need any further computation and will be the as outputs for the states. 

Let us assume that the values for Safe and Unsafe as 1 and 0 respectively. It is to be noted 
that in this case of input the relation is exclusive or relation which means one of inputs should be 1 
and the other is 0.  

According to formula (4), the outputs will be as below: 

Safe =  0.8/1 =0.8, Unsafe = 0.2/1 = 0.2, Calm = 0.9/1=0.9, Chaos = 0.1/1 = 0.1 

As noticed from the obtained results if 0 input is considered in the computation, the obtained 
values will not really represent the states. For example, if  0 input is considered, the results will be 

Safe=(0.8+0)/2=0.4, Unsafe=(0.2+0)/2=0.1, Calm=(0.9+0)/2=0.45, Chaos=(0.1+0)/2= 0.05 

As noticed, all the above obtained values are not correct concerning with the original HMM 
given in Figure 1, and that is why we ignore any input with value 0 and exclude it from the 
computation. 
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2.1.2 Example 2 
Let us consider Figure 6, the figure has three visible states Humidity, Cloudy and Windy; 

and three invisible states Cold, Hot and Nice. 

 

Figure 6. HMM with three visible states and three invisible states                                                   
 

The probability values given in Figure 6 are as below: 
P(Humidity | Humidity)=0.8,  P(Humidity |  Cloudy)= 0.6, P(Cloudy |  Cloudy)= 0.4, P(Cloudy |  
Humidity)= 0.2, P(Cloudy |  Windy)= 0.7, P(Windy |  Windy) = 0.3,  P(Windy |  Cloudy)= 0.6,  
P(Cold |    Humidity)=0.2,  P(Cold |  Cloudy) = 0.7, P(Cold | Windy)= 0.7, P(Hot  | Humidity)= 0.7, 
P(Hot |  Windy)= 0.3, P(Nice |  Humidity)= 0.1, P(Nice  |  Cloudy)=0.3  

 

Figure 7. PNN representation of  HMM presented in Figure 5 

Figure 7 shows the representation of HMM given in Figure 6. Assuming that the input values for 
the states are Humidity: 1, Cloudy: 1 and Windy: 0, the following would be the output: 

Humidity = (1 x 0.8 + 1x0.6)/2 = 0.7        using formula (4) 

Cloudy = (1 x 0.2 + 1 x0.4)/2 = 0.3          using formula (4) 

Windy = 0 

Cold = (1x0.2 + 1x0.7) /2 = 0.45              using formula (4) 
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Hot = (0.7 x 1)/1 = 0.7                            using formula (4) 

Nice = (1 x 0.1 + 1 x 0.3)/2 = 0.2             using formula (4) 

2.2.  Case of HHMM 
In this example we are going to have a HHMM with three levels, level 1 is having two 

visible states, Safe and Unsafe, level 2 is having four Sates, two visible states and two invisible 
states, the two visible states are Crowded and Uncrowded and the two invisible states are Calm and 
Chaos. Level 3 is also having four states, two visible and two invisible. The two visible states are 
Frustration and Optimistic and the two invisible state are Late and On time. Figure 8 depicts the 
HHMM that shows the relation between the states. 

 

Figure 8. Level 1: Safe and Unsafe, level 2: Crowded and Uncrowded, level 3 Frustration, Optimistic, Late 
and On time. The dashed lines are connecting the visible states with invisible states. The probability values 
between states are Safe Safe: 0.8, Safe Unsafe: 0.2, Safe Crowded: 0.8, Safe Uncrowded: 0.2, Safe Calm: 
0.9, Safe Chaos: 0.1, Unsafe Safe 0.3, Unsafe Unsafe: 0.7, Unsafe Crowded: 0.2, Unsafe Uncrowded: 0.8,  
Unsafe Calm: 0.2, Unsafe Chaos: 0.8, Crowded Frustration:0.8, Crowded Optimistic: 0.2, Crowded Late: 
0.7, Crowded On time:0.3, Uncrowded Frustration:0.6, Uncrowded Optimistic 0.4, Uncrowded Late: 0.3, 

Uncrowded On time: 0.7 

 
Figure 8 can be represented in the form of PNN as shown in Figure 9. 

 
Figure 9. PNN representation for the Hierarchal HMM shown in Figure 7. The first layer is the input layer, 
the second layer is the pattern and output layer and the third layer is the sum and output layer. Based on the 
top down nodes, the input layer is Safe and Unsafe, the pattern and output layer is Safe, Unsafe, Crowded, 
uncrowded, Calm and Chaos,  and the sum and output layer is Late, On time, Frustration and Optimistic. 

The dashed links are used to connect visible states with invisible states 

In this example we have three layers, the first layer is the input layer, the second layer is the 
pattern and output layer and the third layer is the sum and output layer. In the  pattern and output 
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layer there are patterns which represent outputs such as Safe, Unsafe, Calm and Chaos. The other 
two states in this layer Crowded and Uncrowded are nodes used as a bridge to get the rest of the 
outputs in the sum and output layer, these outputs are Late, On time, Frustration and Optimistic. 

The values for the states will be as follows if the input values for the given attributes are 
Safe: 1 and UnSafe: 0 

Safe= 0.8/1 = 0.8                                          using formula (4) 

Unsafe=0.2/1=0.2                                          using formula (4) 

Crowded = 0.8/1 = 0.8                                  using formula (4) 

Uncrowded = 0.2/1 = 0.2                               using formula (4) 

Calm = 0.9/1=0.9                                           using formula (4) 

Chaos= 0.1/1 =0.1                                          using formula (4) 

Frustration= (0.8 x 0.8 + 0.2*0.6)/2= 0.38      using formula (7) 

Optimistic = (0.8 x 0.2 + 0.2 x 0.4)/2 = 0.12      using formula (7) 

Late = (0.8 x 0.7 + 0.2 x 0.3)/2 = 0.31                using formula (7) 

On time= (0.8 x 0.3 + 0.2 x 0.7)/2= 0.19            using formula (7) 

It is to be noted that the Crowded and Uncrowded might not be produced as output but used 
as intermediate states. 

2.3. Case of Separate Related HMMs 
In many systems that use HMMs, we might have independent related HMMs that. In this 

example, a representation of two separate and related HMMs is given. In this example we shall have 
two HMMs one of them is the one shown in Figure 1 and the second one is presented in Figure 10.  

 

Figure 10. The second HMM to be used in multiple separated related HMM example 

To represent HMM presented in Figure 1 and HMM presented in Figure 10, input layer 
contains all input states in the two HMMs, these states are Safe, Unsafe and Crowded. States such 
as Safe, Unsafe, Calm and Chaos need to have  two nodes each in the pattern and output layer 
because each one of these states can be achieved through a different evidence of other states, for 
example Calm in HMM in Figure 1 can be reached through Safe and Unsafe states whereas Calm in 
Figure 10 can be reached through Safe and Crowded. This makes the pattern and output layer 
contains Calm 1 and Calm2. Similarly for other states.  It is also to be noted that we have in the two 
HMMs Safe states but their values are different. This means we should have also two nodes to 
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represent Safe (call them Safe1 and Safe2) in the pattern and output layer. The representation of 
these two HMMs in one PNN would be as the one presented in Figure 11. 

 

Figure 11. Representation of the two HMMS given in figures Figure 1 and Figure 10 using the 
proposed approach. The dashed lines connect visible states with invisible states whereas the solid 

lines connect visible states with visible states 

The probability values between the states are the weights of the links as explained before 
assuming the index 1 is to represent the state in HMM in Figure 1 and index 2 is to represent the 
state in HMM in Figure 10. In this example, in the sum and output layer, we need to compute one 
value for each of Safe, Calm and Chaos. Let us assume the input values are Safe: 1, Unsafe: 0 and 
Crowded: 1. In the pattern and output layer, the state values are computed as below: 

Safe1 =  0.8/1 = 0.8                     using formula (4) 

Safe2 = 0.7/1 = 0.7                      using formula (4) 

Unsafe1= 0.2 /1 =0.2                    using formula (4) 

Unsafe2 = 0                                 using formula (4) 

Crowded = 0.1/1=0.1                    using formula (4) 

Calm1 = 0.9/1=0.9                        using formula (4) 

Calm2 = (0.6 + 0.3)/2= 0.45          using formula (4) 
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Chaos1= 0.1/1=0.1                       using formula (4) 

Chaos2 = (0.4+0.7)/2=0.55           using formula (5) 

Cautious = 0  

Based on the values obtained in the pattern and output layer, the state values for sum and 
output layer are computed as below: 

Safe = (0.8+0.7)/2 = 0.75              using formula (7) 

Unsafe = (0.2+ 0) / 2 = 0.1            using formula (7) 

Calm = (0.9+0.45)/2 = 0.675         using formula (7) 

Chaos = (0.1+0.55)/2= 0.325         using formula (7) 

The values for Crowded and Cautious will be the same. 

3. Conclusions 
In this paper we presented a new approach to represent HMM using PNN. The work in this 

paper makes an attempt to utilize the advantages of HMM and PNN. The main advantages of HMM 
is its flexibility where it can be used in several applications, on the other hand, the main advantages 
of PNN is that it does not need any training and it is really good when we have small systems with 
accurate and complete data. The idea behind this representation is to be able to answer questions 
with given inputs when multiple HMMs are used and the question could not be related directly to 
the HMMs in the system. The proposed approach can be applied on single HMM, More the one 
related independent HMM or HHMM. The proposed approach uses ideas adopted from PNN where 
every HMM is represented in the neural network as every instance is represented in PNN. The 
proposed approach has at least two layers which are input layer, and pattern and output layer.  The 
proposed representation can have multiple pattern and output layers, and the last layer is called sum 
and output layer in case this layer is existing. To demonstrate how the representation is 
implemented, four examples within three cases were presented, the discussed cases are one HMM, 
multiple related independent HMMs and HHMM. Some of the future work could be using and 
implementing this representation structure in various domains. 

References 
Araghi, L., Khaloozade, H., & Arvan, M. (2009). Ship Identification Using Probabilistic Neural 

Networks (PNN), Proceedings of the International MultiConference of Engineers and 
Computer Scientists 2009, Vol III, MECS 2009, Hong Kong, March 18 - 20. 

Bhusari, V., & Pati, S. (2011). Application of Hidden Markov Model in Credit Card Fraud 
Detection, International Journal of Distributed and Parallel Systems, Vol.2, No.6, 203-2011. 

El Emary, I., & Ramakrishnan, S. (2008). On the Application of Various Probabilistic Neural 
Networks in Solving Different Pattern Classification Problems, World Applied Sciences 
Journal, 4 (6), 772-780. 

Fine, S., Singer, Y., & Tishby, N. (1998). The Hierarchical Hidden Markov Model: Analysis and 
Applications, in  D. Haussler (Eds.), Machine Learning, 32, 41–62. 

Gales, M., & Young, S. (2008). The Application of Hidden Markov Models in Speech 
Recognition, Foundations and Trends in Signal Processing, Vol. 1, No. 3,195-304. 

Georgiou, V., Pavlidis, N., Parsopoulos, K.,  Alevizos, P.,  & Vrahatis, M. (2004). Optimizing the 
Performance of Probabilistic Neural Networks in a Bionformatics 
Task, Proceedings of the EUNITE 2004, 34-40. 

Georgiou, V., Alevizos, P., & Vrahatis, M. (2008). Fuzzy Evolutionary Probabilistic Neural 
Networks, Artificial Neural Networks in Pattern Recognition, Lecture Notes in Computer 
Science, 2008, Vol. 5064, 113-124. 



BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018) 
ISSN 2067-3957 
 

62 

Grim, J., Somol, P., & Pudil, P. (2005). Probabilistic Neural Network Playing and Learning Tic-
Tac-Toe, Pattern Recognition Letters-Special issue: Artificial Neural Networks in Pattern 
Recognition, Vol. 26, issue 12,1866-1873. 

Hamdi, A.,  & Frigui, H. (2015). Ensemble Hidden Markov Models with Application to Landmine 
Detection, EURASIP Journal on Advances in Signal Processing. 

Hewahi, N. (2015). Particle Swarm Optimization For Hidden Markov Model, International Journal 
of Knowledge and Systems Science, Vol. 6, No. 2, 1-12. 

Hewahi, N. (2011a). Neuroevolution Mechanism for Hidden Markov Model, Broad Research in 
Artificial Intelligence and Neuroscience, Vol. 2, No. 4, 41-47.  

Hewahi, N. (2011b).  Genetic Algorithms Approach Towards Hidden Markov Model, Broad 
Research in Artificial Intelligence and Neuroscience, Vol. 2, issue 3,5-11. 

Hewahi, N. (2011c). Probabilistic Neural networks For Rule Based Systems, International Journal 
of Advanced Research in Computer Science, Vol. 2, No. 2, 21-26. 

Hewahi, N. (2009). Hidden Markov Model for Censored Production Rules, Proceedings of the 
International Conference of Information Technology, ICIT’09, Jordan, May 3-5. 

Hewahi, N. (2010). An Intelligent Approach For Network Management Based on Hidden Markov 
Model, Proceedings of the International Arab Conference for IT, ACIT’10, Libya, Dec.14-16. 

Naghizadeh, S., Rezaeitabar, V., Pezeshk, H., & Matthews, D. (2012). A Modified Hidden Markov 
Model and Its Application in Protein Secondary Structure Prediction, Journal of Proteomics & 
Bioinformatics, 24-30. 

Sherlock, A., Xifara, T., Telfer, S., & Begon, M. (2013). A Coupled Hidden Markov Model for 
Disease Interactions, Applied Statistics, Vol. 62, issue 4, 609–627, 2013. 

ShivaPrasad, T., & RaghuKisore, N. (2015). Application of Hidden Markov Model for classifying 
metamorphic virus,  Advance Computing Conference (IACC), IEEE, Banglore, India.. 

Specht, D. (1992). Enhancements to Probabilistic Neural Networks, International Joint Conference 
on Neural Networks, vol. I, 761-768. 

Specht, D. (1998). Probabilistic Neural Networks for Classification, Mapping, or Associative 
Memory, IEEE International Conference on Neural Networks, vol. I,  525-532. 

Tenyakov, A. (2014), Estimation of Hidden Markov Models and Their Applications in Finance, 
PhD Thesis, The University of Western Ontario. 


