An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling
Salesman Problem

Majid Yousefikhoshbakht

Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran,
Tel. +98 81 38380595
khoshbakht@basu.ac.ir

Azam Dolatnejad
Young Researchers & Elite Club, Tehran North Branch,
Islamic Azad University, Tehran, Iran

Abstract

The traveling salesman problem (TSP) is one of the most important NP-hard Problems and
probably the most famous and extensively studied problem in the field of combinatorial
optimization. In this problem, a salesman is required to visit each of n given nodes once and only
once, starting from any node and returning to the original place of departure. This paper presents an
efficient evolutionary optimization algorithm developed through combining imperialist competitive
algorithm and lin-kernighan algorithm called (MICALK) in order to solve the TSP. The MICALK
is tested on 44 TSP instances involving from 24 to 1655 nodes from the literature so that 26 best
known solutions of the benchmark problem are also found by our algorithm. Furthermore, the
performance of MICALK is compared with several metaheuristic algorithms, including GA, BA,
IBA, ICA, GSAP, ABO, PSO and BCO on 32 instances from TSPLIB. The results indicate that the
MICALK performs well and is quite competitive with the above algorithms.

Keywords: Imperialist Competitive Algorithm; NP-hard Problems; Lin-Kernighan
Algorithm; Traveling Salesman Problem.

1. Introduction

There are a lot of research studies in the field of logistics, ranging from the assignment
problems to complex dynamic routing problems. Among the prominent problems in the field of
distribution and logistics, the traveling salesman problem (TSP) has arguably been one of the most
widely investigated problems of combinatorial optimization in recent years and there have been
many research studies to provide a better solution for this problem (Lawler et al., 1985). A large
number of problems like the TSP with pickup and delivery, time windows TSP, multi-depot TSP,
multiple TSP, vehicle routing problem and so on have arisen from this problem
(YousefiKhoshbakht, Didehvar, & Rahmati, 2014). Besides, it has many applications in dealing
with other problems, including the Print press scheduling (Rathinam & Sengupta, 2006), School bus
routing problem (Svestka & Huckfeldt, 1973), Interview scheduling (Angel et al., 1972), Hot rolling
scheduling (Brummit & Stentz, 1998), Design of global navigation satellite system surveying
networks (Tang et al., 2000), etc.

The TSP can be represented by a complete graph G= (N, 4) where N is the set of nodes, and
A 1s the set of arcs fully connecting the nodes. Let ¢, be the length of the arc (i,j), which is the

distance between nodes i and j. The TSP is the problem of finding a minimal length Hamiltonian
circuit, where a Hamiltonian circuit of a graph G is a closed tour visiting once and only once all n =
|V | nodes of G, and its length is the sum of the lengths of all the arcs of which it is composed.
There have been important advances in developing exact and heuristic algorithms for
solving the TSP. There are several exact algorithms of the TSP such as Cutting Planes algorithm
(Laporte & Nobert, 1980), branch-and-cut method (Cordeau, Dell’Amico, & Ilori, 2010) and
lagrangean relaxation and branch-and-bound algorithm (Mak & Boland, 2007). Since the TSP
belongs to the class of NP-complete problems, its solution grows exponentially with the increase in
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distribution points. Thus, exact algorithms are not capable of solving problems with large
dimensions. On the other hand, heuristics are thought to be more efficient for a complex TSP and
have become very popular with researchers. A lot of algorithms have been performed on the TSP
including heuristic approaches such as the k-opt approach (Potvin, Lapalme, & Rousseau, 1989),
minimum spanning tree (Malik, Rathinam, & Darbha, 2007), self-organizing NN approach
(Vakhutinsky & Golden, 1994) and the partitioning approach (Karp, 1977).

Although heuristic methods solve NP-complete problems, they become trapped in local
optima and cannot obtain optimum solution. As a result a new kind of algorithm called
metaheuristics has been proposed in recent years (Ahmadvand, YousefiKhoshbakht, & Mahmoodi
Darani, 2012). These algorithms try to seek high quality solutions while attempting to reduce the
computational time. Furthermore, in comparison with heuristic algorithms, because metaheuristics
use the randomization concept in search for a solution, this group is more effective in escaping from
local optimum and can produce solutions of higher quality. Some of the well-known metaheuristics
are the particle swarm optimization (Anantathanavit & Munlin, 2015), neural network (Tarkov,
2015), ant colony optimization (Sedighpour et al., 2013), simulated annealing (Jeong, Kim, & Lee,
2009), neural networks (Jolai & Ghanbari, 2010) and Genetic Reactive Bone Route Algorithm whit
Ant Colony System (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016).

The ICA is a global search strategy which uses the socio-political competition among
empires as a source of inspiration. Like many evolutionary algorithms, the primary ICA may fall
into local minimum trap during the search process and it might get far from the global optimum. For
this reason, we try to propose an effective two-phase ICA called MICALK by adopting a behavior
between rigid regularity and randomness based on pure chance. At the first stage, the TSP is solved
by a modified ICA, and at the second stage, Since the Lin-Kernighan algorithm is one of the most
effective local search algorithms for solving the TSP, this algorithm is used for improving solutions.
In more details, to enhance the global exploration capability, the 2-opt local search with a high
probability of & and 0-1 and 1-1 exchanges with low probability f and u respectively are used.
This probability of movement has changed during the search process. The main contributions of the
paper are as follows:

ICA to enhance the ability of escaping from a local optimum

(i) Presenting an effective ICA algorithm for discrete problems

(i) Combining the ICA algorithm with a Lin-Kernighan algorithm called MICALK

(ii1) Presenting a new algorithm which is equipped with diversification and
intensification mechanisms for solving the TSP.

The rest of this paper is organized as follows: in Section 2 we present the basic principle of
ICA, Lin-Kernighan (LK) algorithm and then explain the details of the process of the proposed
algorithm. In Section 3, the proposed algorithm will be compared with some of the other algorithms
on standard problems which are included in the TSP library. The conclusions and the future works
are presented in section 4.

2. Solution Method

In this section at first, the classic ICA and LK are explained and then the hybrid of ICA and
LK as the proposed algorithm is explained in more detail. Finally, because the MICALK is
metaheuristic, parameter setting is presented.

2.1. The basic principle of ICA

During the last three decades, evolutionary optimization methods inspired by natural
processes have shown good performance in solving combinatorial optimization problems. These
algorithms have become increasingly popular through the development and utilization of intelligent
paradigms in the design of advanced information systems. When the task is optimized within
complex domains of data or information, nature-inspired approaches such as swarm or flocking
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intelligence (bird flocks or fish schools inspired particle swarm optimization), artificial immune
systems which mimic the biological ones, ant colonies (ants’ foraging behaviors gave rise to ant
colony optimization), or optimized performance of bees and so on are widely used to solve
engineering optimization problems.

ICA, which proved to be capable of obtaining acceptable performance of some of benchmark
cost functions is one of the newest algorithms created in the recent decades. This new optimization
algorithm was first used by Atashpaz Gargari et al to solve the combinational optimization
problems in 2007 (Atashpaz Gargari & Lucas, 2007). In recent years, the ICA has been successfully
applied to several NP-hard combinatorial optimization problems, namely, TSP (YousefiKhoshbakht
& Sedighpour, 2013), recommender systems (Sepehri Rad & Lucas, 2008), designing skeletal
structures (Kaveh & Talatahari, 2010), and many other optimization problems such as the
characterization of elasto-plastic properties of materials, designing optimal layout for factories,
adaptive antenna arrays, intelligent recommender systems, and optimal controller for industrial and
chemical processes (Shokrollahpour, Zandieh, & Dorri, 2010). This evolutionary optimization
strategy has shown great performance in both convergence rate and better global optimum
achievement. Furthermore, the proposed evolutionary optimization algorithms are generally
inspired by modeling the natural processes and other aspects of species evolution, especially human
evolution, which have not been considered up to now. The method proposed in this work uses
socio-political evolution of human as a source of inspiration for developing a powerful optimization
strategy. What is more important, the ICA considers the imperialism as a level of human social
evolution and by mathematically modeling this complicated political and historical process
harnesses it as a tool for evolutionary optimization.

The ICA is a novel global search strategy which uses imperialism and imperialistic
competition process as a source of inspiration. This algorithm is based on the fact that in a real
world, countries try to extend their power over other countries in order to use their resources and
bolster their own government. The first step in ICA is to generate an initial population like other
evolutionary algorithms. The population set includes a number of feasible solutions called a
‘country’, which corresponds to the term ‘chromosome’ in the GA method. These countries are of
two types: colonies and imperialists that altogether form some empires. As it is shown in Figure 1
(Atashpaz Gargari & Lucas, 2007), bigger and stronger empires have more colonies than smaller
and weaker ones.
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Figure 1. The Initial Empires
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After initial empires are formed, their colonies start moving toward their relevant imperialist
country. This movement is a simple model of assimilation policy which was pursued by some of the
imperialist states. If one of the colonies possesses more power than its relevant imperialist after this
movement, they will exchange their positions. To begin the competition between empires, the total
objective function of each empire should be calculated. It depends on the objective function of both
an imperialist and its colonies. Imperialistic competition among these empires forms the basis of the
proposed evolutionary algorithm. During this competition, weak empires collapse and powerful
ones take the possession of their colonies - Figure 2 (Atashpaz Gargari & Lucas, 2007). The empire,
which has lost all its colonies, will collapse. At last, the most powerful empire will take the
possession of other empires and will win the competition. In other words, imperialistic competition
hopefully converges to a state in which there exists only one empire and its colonies are in the same
position and have the same cost as the imperialist. Figure 3 shows the flowchart of the basic ICA.'
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Figure 2. Eliminate the weakest colony of the weakest empire
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Figure 3. Flowchart of the ICA
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2.2. Lin-Kernighan Algorithm

The enormous literature on meta-heuristics indicates that a promising approach for obtaining
high-quality solutions is to couple a local search algorithm with a mechanism to generate initial
solutions. A simple example of this type of algorithm is the 2-opt algorithm. This algorithm starts
with a feasible tour and continues by omitting two arcs of the tour, which are not adjacent and then
connects them again by another method in such a way that the new tour length is shorter. It can be
noted that there are several routes for connecting nodes and producing the tour again, but a state that
satisfies the problem’s constraints is acceptable. Omitting and reconnecting two arcs are repeated
until no improving 2-opt is found. Besides, the 2-opt algorithm is a unique case of the w-opt
algorithm, where in each step  links of the current tour are replaced by  links in such a way that a
shorter tour is achieved. The number of operations to test all w-exchanges increases quickly as the
number of nodes increases. The time complexity of testing m—exchange is equal to O(n®) in which
there is no nontrivial upper bound of the number of w—exchanges.

However, since there are weaknesses, the value of m and what o to use to achieve the best
compromise between running time and quality of the solution must be specified in advance. The
Lin-Kernighan algorithm is a generalization of this simple principle form and is one the most
effective algorithms for solving the TSP. This algorithm removed this disadvantage by introducing
a powerful variable w-opt algorithm in which the value of ® is changed during its execution. At
each iteration the algorithm considers a growing set of potential exchanges which start with r = 2.
These exchanges are chosen in such a way that a feasible tour may be formed at any stage of the
process. Then, the problem is examined for ascending values of ® and the algorithm decides what
the value of ® should be. If an interchange of ® links succeeds in finding a new shorter tour, then
the actual tour is replaced with the new tour. This continues until some stopping conditions are
satisfied.

2.3. Our approach

In order to apply the proposed algorithm on the TSP, at the first stage, feasible solutions or
primitive countries should be introduced in a way which is compatible with the construction of the
mentioned problem. Therefore, a bisection array shown in Figure 4 is used. In this array, the visited
nodes are ordered from left to right in the first section and the value of the objective function is
shown in the second section.

[1]o]2]10]3]11]5]12]4]13]6]14] 7] 8]26]

Figure 4. A Country in ICA

Therefore, a defined number of primitive solutions () must be randomly generated and the
values of the objective function f, for each i=1,...,r must be obtained. Then, these solutions and

their values are imported to matrix D in which every row shows a primitive solution and its value of
the objective function. It should be noted that using a random construction at this level leads to
obtaining solutions which have an irregular construction in feasible space. Then, m countries which
have better objective function are selected and are called empire countries. Furthermore, the
number of colonies devoted to each empire j is calculated by the formula (1).

k, =int[(1- {:’ )x (r—m)] )

i=17i

This formula leads that more colonies are allocated to empires with fewer objective
functions and as a result a bigger empire is formed. The Int function used in the formula is the floor
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function which causes the allocation of an integer number of colonies to each empire. It should be
noted that allocating colonies to empires is conducted randomly and if some countries might not
belong to any empire due to the property of the Int function, these countries are allocated to the
most powerful empire. After the empires are formed, each empire increases its quality, using the
imperialist countries which play local optima role. What is worthy of note is the fact that since a lot
of possible points are combined with local optima, we must use an absorption function which
includes a randomization concept so that the results of combinations will not yield a very similar
response. To achieve this goal, we have utilized a novel and innovative method. As an example,
first, two possible responses [S29483 16 7]and [927 65 3 1 8 4] are considered as imperialist
and colony respectively. Then, a random number between 2 and n-1 is selected (n is the number
nodes of instance and is 9 here). After that, some nodes equal to the selected number are chosen
from the colonies and are arranged according to the order of the imperialist countries. If the selected
random number between 1 and 8 is 4, then 4 nodes are randomly chosen from the colonies like 2, 6,
5, and 3. Then, their order in imperialist country which is 5, 2, 3, and 6 in the example is found.
Therefore, the new result for the colony will be [9 57 2 3 6 1 8 4]. The absorption function is
performed for all colonies in comparison to imperialist countries and the results and the values are
replaced with the best results and the values obtained in the current iteration provided that the new
results are better.

At the next stage, p percent of countries experience a revolution. This causes variations in
colonies in each empire and if possible their quality increases at each stage. The proposed methods
for this stage are the 0—1 Exchange move. In this move, a candidate node is removed from its
original route and is inserted in the best position. The replacement is done if the new results are
better than the previous ones.

Most successful meta-heuristic methods have paid attention to global search and search in
the whole solution space as far as possible. As the algorithm proceeds, it moves to better solutions
and the global search switches to a local search. We have factored in this issue too, and have
represented the probability of 0-1, 1-1- and 2-opt move with «,Band i respectively so that
a+pf+u=1. In the 1-1-Exchange, two nodes are randomly selected and exchanged with each
other. Finally, in the 2-Opt move, two non-adjacent edges are replaced by two other edges. It should
be noted that there are several routes for connecting nodes and producing the tour again, but a state
which satisfies the problem’s constraints is acceptable. Note that although 2-opt local search as a
powerful global search algorithm is more used at the beginning of algorithm for global search, 0-1
and 1-1 exchanges are more applied at the end of the algorithm because these algorithms might lead
to premature convergence to suboptimal regions. In other words, before the algorithm finishes a
complete global search, it tends to adopt a local search and consequently relatively weak results are
attained. Therefore, whenever the algorithm continues the probability of « decreases and the
probability of £ and u increases. Adding this behavior to the imperialist algorithm revolution

policy leads to creating the proper conditions for the algorithm to escape from local peaks. Thus, as
mentioned before, the probability of using the 2-opt, 0-1 and 1-1 exchanges at the first step of the
proposed algorithm is considered 0.50, 0.25 and 0.25 and then during the other steps of the
proposed algorithm, they are gradually converted to 0.20, 0.40 and 0.40.

After the results and the values are calculated for all colonies, these countries might have a
better objective value compared to their respective imperialists. Therefore, a colony with the best
value in each empire is chosen and if it possesses a better objective value, it replaces an imperialist
country. If there are a few colonies with the same objective value, one of them is chosen randomly
and is compared with an imperialist country in the empire. From this stage up to the end of the
algorithm, there will not be any change in objective functions of feasible values. Therefore, the best
results and values of the objective function must be saved. For this purpose, two variables are
chosen in order to save the best results and values until the current iteration. In each iteration, after
the imperialist countries are replaced, the best results and values for the imperialist countries are
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chosen as the best current results. If the new attained value is better than the value of the previous
iteration, local search is conducted and the previous results and values are replaced with the new
results and values. Up to this stage in the algorithm, the purpose is conducting a general search to
locate important areas for algorithm convergence. Now, important areas must be identified and the
population must be converged toward them. After this stage, part of the initial population moves
toward these areas. The power of empires is assessed at this stage. In imperialist competitions, more
powerful empires must expand their territory through occupying other countries. In order to achieve
this goal, the power of the empire is calculated using formula 2.

h,=f;+(s;) j=1..,m 2)

In this formula’,,s,, and A represent empire’s total power, the average objective function

of the colonies in each empire, and the [0 1] impact coefficient, which determines the relative power
of a colony compared to an empire, respectively. A weaker empire loses its power by losing its
weakest colony to the strongest empire. At this stage, the final condition is checked and if it is met,
the algorithm ends. Otherwise, the algorithm is iterated by returning to the absorption function step.
To end the proposed algorithm, one of the two conditions must be met: the iteration of algorithm n
times or the survival of just one empire. These conditions are checked at the end of each algorithm
iteration. If any one of the conditions is met, the algorithm ends and the obtained results and values
up to now are considered as the best values and results of the algorithm.

Moreover, in order to prevent the ICA from getting trapped in stagnation, we used a local
searching algorithm when the algorithm attained a better solution compared to previous iterations.
In fact, the probability of finding better solutions near a good solution is relatively high. There exist
many algorithms for the local search and they have of course their pros and cons. Since Lin-
Kernighan algorithm is simple and it is one of the most successful methods for generating optimal
or near optimal solutions for the TSP, we have used it in this study. The main steps of MICALK are
summarized in the pseudo-code given in Figure 5.

Step 1: Generate » random solutions of the TSP and initialize the empires.
Step 2: Move the colonies toward their relevant imperialist by the proposed absorption function.
Step 3: Change p percent of colonies as revolution by the 0-1 Exchange move.

Step 4: If there is a colony in an empire which has better cost than the imperialist, exchange the
positions of that colony and the imperialist.

Step 5: Compute the total cost of all empires by formula (2).

Step 6: Pick the weakest colony from the weakest empires and give it to the best empire
(Imperialistic competition).

Step 7: Eliminate the powerless empires.

Step 8: If the quality of the best solution is increased in this iteration, apply lin-kernighan
algorithm to s and save the best so far solution.

Step 9: If the iteration of algorithm reaches to # times or the just one empire is reminded, stop, if
not go to 2.

Figure 5. The process of MICALK for solving the TSP
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2.4 Parameter settings

The proposed MICALK algorithm contains several parameters like other metaheuristics for
solving the optimization problems. The quality solutions produced by the MICALK have been
dependent on the different values of the user-controlled parameters of the algorithm. In this
algorithm, three important parameters exist and their values directly or indirectly affect the
performance of the algorithm. For each of the benchmark instances, ten different runs with the
selected parameters were performed after the selection of the final parameters. In general, it is not
easy to obtain the best combination of algorithm parameters, but a parameter setting procedure is
necessary to reach the best balance between the quality of the obtained solutions. These parameters
are selected in this paper after thorough testing. All of the parameter values have been determined
on the Eill01by the numerical experiments so that several alternative values for each parameter
were tested while all the other values were held constant. It should be noted that only parameters
which gave the best computational results concerning the quality of the solution were selected. The
details regarding the settings of the parameters and their values are explained in Table 1.

Table 1: Parameter setting for the MICALK

Parameter Description Candidate Value Best
Value

p Number of primitive countries 100, 200, 300, 400, 500 400
m Number of Imperialist countries Int [1/2, /3, 1/4. 1/5, 1/6] Int [r/4]

The impact coefficient, which determines the
A relative power of a colony compared to an 0.1,0.2,0.3,0.4, 0.5 0.2
empire

3. Computational experiments
In this section, first, the algorithms tested on 33 classic benchmark problems for the TSP are
presented and then some numerical results of the comparison between the proposed algorithm and
some metaheuristic algorithms are given. These algorithms are applied and tested on several
Euclidean sample instances of TSPLIB with sizes ranging from 24 to 318 nodes. Because the
proposed approach is a metaheuristic algorithm, the results are reported for ten independent runs in
which the algorithm was executed until the best solution was iterated 10 times.
The algorithms are coded by Matlab language and implemented on a Pentium 4 PC at 3GHZ
(1GB RAM). The parameters of the proposed algorithm are selected after thorough testing. A
number of different alternative values were tested and the ones selected are those which yielded the
best computational results concerning both the quality of the solution and the computational time
needed to achieve this solution. Thus, the selected parameters are:
e Number of countries equal to p
e Number of empires equal to N/5
e 1 isequal to 0.3.

Table 2 shows the results of the proposed algorithm for the TSP benchmark problem
instances. In this table, columns 2-6 show the problem size n, the best value result of MICALK
(BVR), the worst value result of MICALK (WVR), the average value of MICALK (AV) over the
ten runs for each problem, and the best known solutions (BKS), respectively. The seventh column
contains the CPU time for each problem (Opt), and the eighth for the relative deviation (RD) where
the relative deviation is calculated as (MICALK— Opt)/Opt x100%, where MICALK denotes the
cost of the optimum found by the proposed algorithm, and Opt is the cost of the optimal solution.
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Table 2. Results of MICALK for the TSP
Instance | N | BVR | WVR | AV | BKS |..FY | RrD
Time (min)
Eil51 51 426 456 432 426 1.45 0
Berlin52 | 52 | 7542 7589 7565 7542 1.43 0
Eil76 76 538 567 543 538 2.22
Pr76 76 | 108363 | 108925 | 108553 | 108159 2.34 0.19
Rat99 99 1211 1308 1262 1211 3.45 0
KroA100 | 100 | 21282 | 21451 | 21378 | 21282 3.57 0
KroB100 | 100 | 22141 | 22468 | 22326 | 22141 3.52 0
KroC100 | 100 | 20749 | 20989 | 20890 | 20749 3.75 0
KroD100 | 100 | 21389 | 21654 | 21540 | 21294 3.78 0.47
KroE100 | 100 | 22068 | 22245 | 22164 | 22068 3.23 0
Rd100 | 100 | 7910 7998 7976 7910 3.02 0
Eil101 | 101 629 712 699 629 3.52 0
Linl05 | 105 | 14379 | 14599 | 14556 | 14379 4.12 0
Pr107 | 107 | 44303 | 44467 | 44398 | 44303 4.54 0
Pr124 | 124 | 59124 | 59567 | 59213 | 59030 4.67 0.16
Bier127 | 127 | 118589 | 118857 | 118736 | 118282 4.62 0.26
Ch130 | 130| 6110 6245 6186 6110 4.75 0
Pr136 | 136 | 96772 | 97546 | 97290 | 96772 4.72 0
Pr144 | 144 | 58537 | 58987 | 58812 | 58537 4.85 0
Ch150 | 150 | 6528 6654 6595 6528 4.61 0
KroA150 | 150 | 26524 | 26989 | 26734 | 26524 4.85 0
Pr152 | 152 | 73710 | 73923 | 73859 | 73682 5.01 0.04
Ratl95 | 195 | 2325 2485 2417 2323 7.72 0.09
D198 198 | 15785 | 16758 | 16331 | 15780 7.95 0.03
KroA200 | 200 | 29368 | 29983 | 29694 | 29368 8.32 0.05
KroB200 | 200 | 29437 | 29876 | 29645 | 29437 8.94 0
Ts225 | 225 | 126940 | 127435 | 127293 | 126643 10.63 0.23
Pr226 | 226 | 80745 | 82879 | 81598 | 80369 10.99 0.47
Gil262 | 262 | 2393 2578 2467 2378 11.25 0.63
Pr264 | 264 | 49842 | 50156 | 49989 | 49135 11.73 1.42
A280 | 280 | 2601 2895 2797 2579 12.63 0.85
Pr299 | 299 | 48349 | 48980 | 48739 | 48191 13.56 0.33
Rd400 | 400 | 15521 | 16870 | 16324 | 15281 32.84 1.57

This table shows that the MICALK can be used to solve the TSP effectively. As table 2
indicates, the maximum relative error and average relative error for 33 test problems are 1.57% and
0.21%, respectively.

Figure 6 shows some of the best solutions searched by the proposed method. In this figure,
the horizontal axis represents the x-axis with increasing positive values to the right and the vertical
axis represents the y-axis with increasing positive values upward.
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Figure 6. Some best routes found by the proposed algorithm

Table 3 shows the results obtained for the second problem instances and presents the
comparison of the best results of our algorithm with other published research studies, including
genetic algorithm (GA) (Ray, Bandyopadhyay, & Pal, 2004), particle swarm optimization (PSO)
(Zhong, Zhang, & Chen, 2007), bee colony optimization (BCO) (Wong, Low, & Chong, 2008), african
buffalo optimization (ABO) (Odili & Mohmad Kahar, 2016), genetic simulated annealing ant colony
system with particle swarm optimization (GSAP) (Chen & Chien, 2011), ICA (YousefiKhoshbakht &
Sedighpour, 2013), bat algorithm (BA) (Osaba et al., 2016) and improved bat algorithm (IBA) (Osaba
et al., 2016) in terms of the optimal solution found. The results of this comparison show that the
proposed algorithm gains equal solutions with the GA in GR24, Bayg29 and GR48which are not
large scale problems and it gains better solutions than the GA in scale problems such as St70 and
KroA100. Furthermore, the results indicate that although the ICA provides a better solution and
equal solutions compared with MICALK for seventeen instances, this algorithm obtains worse
solutions than MICA for fourteen solutions.
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From the comparison between IBA and the proposed algorithm, it can be seen that IBA in
nine examples has been able to find the optimum and in eight examples can yield to find solutions
with gap of less than 1 percent. However, the proposed MICALK has found better solutions than
IBA for larger size of instances. The last powerful algorithm compared to the proposed is IBA. This
algorithm can obtain nine out of twenty best solutions, but the MICALK can yield better solutions
than IBA in the remaining 11 examples. It should be noted that three reminded algorithms have had
a weak performance in general and have not been able to produce the best solutions in most of the
examples. In more details, the computational experiments confirm that in general the proposed
algorithm provides better results compared to PSO, BA and BCO algorithms in terms of the quality
of the solutions and is able to find the best solutions for twenty three out of thirty two in this table.

The evolution of the best solution found by the proposed algorithm is plotted in Figure 7
during a typical execution when solving instance Eil51 and KroB100. In this figure, the horizontal
and vertical axes show the number of iterations and gained values of the proposed algorithm
respectively. Besides, there is a fast convergence toward the BKS at the beginning of the execution
while in the rest of the search the evolution of the BKS is not that fast.

540 ¥ 10
27
265
520}
2
0 255
25
480 1 =2as}
2af
am|
235
23t
4t
225
a0 . . . . . . . 22 , \ , h ! N ! ! !
0 5 10 15 20 25 a 35 | 0 {0 20 @ 4 & @ 70 &8 o 100

Figure 7. Execution plot, for instance Eil51 (left figure) and KroB100 (right figure)

4. Conclusion

In this paper, a hybrid algorithm called MICALK which combines ICA and Lin-
Kernighanalgorithm was proposed for solving the TSP. We have also done experiments using two
different data sets of TSP instances, including 44 problems with 24—-1655 nodes from the TSPLIB.
The experimental results indicate that the gap of the proposed algorithm stays on average below
1.6% of the execution time and the MICALK uniformly produces higher performance solutions
compared with other competing metaheuristics including GA, BA, IBA, GSAP, ABO, PSO, ICA
and BCO on the TSP. It seems that the combination of the proposed algorithm with ant colony
system or tabu search will yield better results for large problems of TSP. Applying this method in
other combinational optimization problems, including the multiple traveling salesmen problem,
vehicle routing problem, School bus routing problem and the sequencing of jobs is suggested for
future research studies.
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