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Abstract 

Almost all of the major applications in the specific Fields of Communication used a well-

known device called Linear Feedback Shift Register. Usually LFSR functions in a Galois Field 

GF(2
n
), meaning that all the operations are done with arithmetic modulo n degree Irreducible  and 

especially  Primitive Polynomials. Storing data in Galois Fields allows effective and manageable 

manipulation, mainly in computer cryptographic applications. The analysis of functioning for 

Primitive Polynomials of 16th degree shows that almost all the obtained results are in the same time 

distribution. 

Keywords: Cryptosystem, Irreducible polynomials, Pseudo-Random Sequence, Primitive 

Polynomials, Shift Registers.  

 

1. Introduction  

A code-breaking machine appeared as one of the first forms of shift register early in the 40’s, 

in Colossus. It was a five-stage device built of vacuum tubes and thyratrons. Many different 

implementation forms were developed along the years. The LFSR (Linear Feedback Shift Register) 

is the basis of the stream ciphers and it is the most often used one in hardware designs. A string of 

memory cells that stored a string of bits and a clock pulse can advance the bits with one position in 

that string. For each clock pulse the new bit in the string is produced using the XOR of certain 

positions. The basis of every LFSR is developed with a polynomial, which can be irreducible or 

primitive (Angheloiu et al., 1986; Schneier, 1996). A primitive polynomial satisfies some additional 

mathematical conditions and determines for the LFSR to have its maximum possible period, 

meaning (2n-1), where n is the number of cells of the shift register or the length. 

LFSR can be built based on XOR (exclusive OR) circuits or XNOR (exclusive denied OR). 

The difference of status is, of course, that the equivalent status will be 1, where it was 0. For an n 

bits LFSR, all the registers will be configured as shift registers, but only the last significant register 

will determine the feedback. An n bits register will always have n + 1 signals. 

Every LFSR works by taking the XOR of the selected bits in its internal state and any LFSR 

containing all zero bits will never move to any other state, so one possible state must be excluded 

from any cycle. A LFSR is composed of memory cells connected together as a shift register with 

linear feedback. In digital circuits a shift register is formed by flip-flops and EXOR gates chained 

together with a synchronous clock. Shift registers are a form of sequential logic like counters. 

Always the shift registers produce a discrete delay of a digital signal or waveform. Considering that 

a shift register has n stages, the waveform is delayed by n discrete clock times. Usually the naming 

of the shift register follows a type of convention shown normally in digital logic, with the least 

significant bit on the left. According to the communication protocol, the signals will be addressed, 

not the registers. There are n+1 signals for each n-bit register. Always the next state of an LFSR is 

uniquely determined from the previous one by the feedback network. Any LFSR will generate a 

sequence of different states starting with the initial one, called seed. 

A feedback shift register is composed of: 

- a shift register 

- a feedback function. 
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Figure 1. Basis scheme for a Feedback Shift Register 

 

A LFSR can be represented as a polynomial of variable x referred to as the generator 

polynomial or the characteristic polynomial. The input bit is given from a linear function of the 

initial status for a special shift register called Linear Feedback Shift Register (LFSR). The initial 

value of the register is called seed and the produced sequence is completely determined by the 

initial status. Because the register has a finite number of possible statuses, after a period the 

sequence will be repeated. If the feedback function is very well chosen, the produced sequence will 

be random and the cycle will be very long, called by Golomb (1967) maximum lengths shift register 

sequences. 

Goresky and Klapper (2004) show two possibilities to implement a LFSR: 

• Fibonacci Form  

• Galois. 

 

Figure 2. Fibonacci implementation 

 

In Fibonacci form the weight for any status is 0, when there is not any connection and 1 for 

sending back. Exceptions make the first and the last one, both connected, so always on 1. 

 

 

 

 

 

Figure 3. Galois implementation 

In Galois implementation there is a Shift Register, whose content is modified each step at a 

binary value sent to the output. In Galois configuration the single shifted out bit is XOR ed with 

several bits in the shift register and in conventional configuration each new bit input to the shift 

register is the XOR of several bits in the register. 

Comparing the two schemes of representation, it is shown that the weight order in Galois is 

opposite to the one in Fibonacci. From the hardware point of view, because of the reduced number 

of XOR gates in feedback, Galois implementation is faster than Fibonacci and so it is much more 

used. Some other names used for these two implementations are Simple Shift Register Generator 

(SSRG) for Fibonacci implementation and Multiple-Return Shift Register Generator (MRSRG) for 

Galois.  

From the utilization point of view there are two kinds of LFSR: the well-known LFSR, that 

is an “in-tapping” LFSR and the “out-tapping” LFSR. The “in-tapping” LFSR is usually called a 
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MISR (Multiple Input Shift Register). Cycle codes belong to algebraically codes for errors 

detecting. This experiment develops an analysis of a Linear Feedback Shift Register and a Multiple 

Input – output Shift Register. 

By using a primitive polynomial in the polynomials modulo 2 as modular polynomial in the 

polynomial multiplication, can be created a Galois Field of order 2n with a polynomial beginning 

with xn. The most popular and widely used application of Galois Field is in Cryptography. Because 

all the data are represented as a vector in a finite field, encryption and decryption became easily to 

manipulate and straightforward by using mathematical arithmetic. Such kind of field can be denoted 

as GF(2n) or GF(n) and one of the famous applications for that is in the Rijndael Algorithm (AES), 

where n=8. Beginning with 2000, Rijndael cryptosystem is officially the Advanced Encryption 

System (AES) (Daemen & Rijmen, 2002). The old DES (Data Encryption Standard) was broken 

from Electronic Frontier Foundation in three days (Matsui, 1994 ). The two authors, Joan Daemen 

and Vincent Rijmen from Holland, chose to use a Galois Field GF (28) with the following generator 

polynomial. 

 

P(x)=x8+x4+x3+x+1 

 

or ‘11B’ in hexadecimal representation. 

All arithmetical operations are developed in a Galois group. The Shift Register 

Cryptosystems variant has been developed from the evolution of the encrypting techniques 

(Schneier, 1996). Such a cryptosystem is based upon generating a sequence in a finite field, and for 

obtaining it a Feedback Shift Register is used. 

There are some methods for using LFSR to build secure ciphers. For increasing the strength 

of the output from an LFSR it is often used another LFSR for controlling how often it is stepped. 

Another technique uses three LFSRs with different periods and it is known as the Geffe generator. It 

is usually necessary to combine the methods for obtaining more elaborate constructions. Almost all 

the shift registers applications representing generator polynomials need to be developed in a finite 

field.  

Evariste Galois demonstrated that a field is an algebra with both addition and multiplication 

forming a group. Some ground information from Algebra demonstrated the importance of working 

with irreducible polynomials and primitive polynomials. Also the importance of using shift registers 

in cryptosystems based on irreducible polynomials is demonstrated in increasing the obtained 

security. 

Applications for using The Linear Feedback Shift Registers are in a variety of Fields: 

• Testing (Abramovici  et al., 1990; Tsui, 1987); 

• Pattern Generators; 

• Optimized counters (Alfke, 1996); 

• Checksums;  

• Data Integrity; 

• Data Encryption/ Decryption; 

• Built-in Self-Test (BIST); 

• Digital Signal Processing; 

• Pseudo-random Number Generation (PN); 

• Scrambler and/Descrambler; 

• Signature Analyzer (Alvarez et al., 2008); 

• Error Detection and  Correction; 

• Wireless communications. 
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2. Mathematical background  

This finite field (FF) or Galois Field (GF) in abstract algebra is a field that contains only 

finitely many elements. Finite fields are important in algebraic theory, number theory, Galois 

theory, cryptography and coding theory (Berlekamp, 1968; Van Lint, 1992). It is possible to classify 

the finite fields by size. So, for each prime p and positive integer k there is exactly one finite field 

up to isomorphism of size pk. Each finite field of size q is the splitting field of the polynomial xq – 

x. A cyclic group is similarly the multiplicative group of the field. Finite fields have applications in 

many areas of mathematics and computer science, including coding theory   and others. 

 

The finite fields can be classified in the following rows: 

a. The order or the number of elements of a finite field is of the form pn, where n is a 

positive integer and p is a prime number called the characteristics of the field,  

b. For every prime number p and positive integer n there exists a finite field with pn 

elements, 

c. Two finite fields with the same number of elements are isomorphic. It means that under 

the same remaining of the elements of one of these, both its addition and multiplication 

tables become identical to the corresponding table of the other one. 

 

The use of a naming scheme for finite fields that specifies only the order of the field is 

justified by this classification. 

Notations for a finite field can be: Fp
n
   and GF (p

n
). 

Arithmetic in a finite field is different from the standard integer arithmetic (Shannon, 1948). 

In the finite field there is a limited number of elements and the result of any operation performed is 

an element within that field. Each finite field is not infinite, but despite this there are infinitely many 

different finite fields, and their cardinal (number of elements) is necessarily of the form pn where p 

is a prime number and n is a positive integer. Two finite fields of the same size are isomorphic. The 

prime p is called the characteristic of the field and the positive integer n is called the dimension of 

this field over its prime field. Finite fields are used in a variety of applications as in the classical 

coding theory in linear block codes such as BCH (Bose Chaudhuri Hocquenghem) and RS (Reed 

Solomon) and in cryptography algorithms such as DES (Data Encryption Standard) and Rijndael 

encryption algorithm (AES). 

A binary polynomial f(x) of degree n has the form: 

f(x) =  xn  + an-1x
n-1+ … +a1x  + a0 

where ai  are binary coefficients. 

 

Binary polynomials are added and multiplied in the normal manner of adding and 

multiplying polynomials, except that the resulting coefficients are reduced modulo two. A binary 

polynomial f(x) divides polynomial h(x) provided one can find a binary polynomial g(x) such that 

f(x)g(X)=h(x). A binary polynomial f(x) is Irreducible if its only divisors are 1 and f(x). An 

irreducible binomial polynomial on degree n is primitive if f(x) is not a divisor of xr+1 for any r less 

than   

         2n-1.  

 The binary vector and power representations are two other methods of denoting GF(2n). As 

before let f(x) be a primitive binomial polynomial of degree n. Considering z be a number such as 

f(z) = 0. 

 

a. Binary Vector Representation 

For each element h(z) = a0 + a1z + ... + an-1z
n-1

 in GF(2
n)

 one can define a binary n-tuple by 

identifying: 

 h(z)={a0, a1, ..., an-1}
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b. Power Representation  

It can be shown that since f(x) is a divisor of x2n-1 + 1 and not a divisor of xr + 1 for t less 

than 2n-1 then z2n-1 = 1 and that zi ≠ zj for i≤j≤2n-1. Using the exponential notation z0 = 1, GF(2n) 

can be defined in terms of  zi  as: 

GF(2n) = { z0, z1, z3, .., z2n-2} U {0} 

 

This is defined to be the power representation of GF(2n). Since every non-zero element in 

GF(2n) can be expressed as a power of  z, this element is a Generator of GF(2n). For most 

applications of GF(2n) to cryptography, the value of n is large and it is impossible to construct a 

complete look-up table for the field. In transmission of data the binary n-tuple representation (a0, 

a1, ..., an-1) is used. The discrete log problem is that when the binary n-tuple representation of an 

element in GF(2n) is given and it will find its power representation. For security reasons it was 

demonstrated that the maximum number of pseudo-random sequences is obtained by using 

irreducible polynomials (Udar & Kagaris, 2007).  

3. Experimental Results and Mathematical Calculus  

The main subject of analysis for the functioning of linear feedback shift register (LFSR) and 

multiple input output shift register (MISR) has the irreducible or primitive polynomials for degree 4, 

8 and 16 (Mioc, 2008). All the analysis is based on the three possible implementations for LFSR 

(VlăduŃiu & Crişan, 1989). First of all, there were developed programs for simulating the 

functioning of the three different types of implementations for comparing the obtained results for 

4th degree irreducible polynomials (Mioc, 2009). Mioc (2008) shows a complete analysis and 

presentation of the functioning of LFSR for the 8th degree of irreducible polynomials. Basic 

information concerning the comparative analysis of a LFSR and MISR has been specified in Mioc 

(2005). 
 

Table I. The 16
th

 degree Primitive Polynomials 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

No Octal Binary 

1 219913 10001000000001011 

2 234313 10011100011001011 

3 233303 10011011011000011 

4 307107 11000111001000111 

5 201735 10000001111011101 

6 272201 10111010010000001 

7 242413 10100010100001011 

8 270155 10111000001101101 

9 305667 11000101110110111 

10 236107 10011110001000111 

11 307527 11000111101010111 

12 306357 11000110011101111 

13 302157 11000010001101111 

14 210205 10001000010000101 



BRAIN. Broad Research in Artificial Intelligence and Neuroscience 

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print) 

 

 36

Table II. Some common 16th Degree Polynomials 

 

  (X^16+X^5+X^3+X^2+1) ; 

  (X^16+X^14+X^13+X^11+1 ; 

  (X^16+X^5+X^4+X^3+1) ; 

  (X^16+X^13+X^12+X^11+1) ; 

  (X^16+X^5+X^4+X^3+X^2+X+1) ; 

  (X^16+X^15+X^14+X^13+X^12+X^11+1) ; 

  (X^16+X^6+X^4+X+1) ; 

  (X^16+X^15+X^12+X^10+1) ; 

  (X^16+X^7+X^5+X^4+X^3+X^2+1) ; 

  (X^16+X^14+X^13+X^12+X^11+X^9+1) ; 

  (X^16+X^7+X^6+X^4+X^2+X+1) ; 

  (X^16+X^15+X^14+X^12+X^10+X^9+1) ; 

  (X^16+X^8+X^5+X^3+X^2+X+1 ; 

  (X^16+X^15+X^14+X^13+X^11+X^8+1) ; 

  (X^16+X^8+X^5+X^4+X^3+X^2+1) ; 

  (X^16+X^14+X^13+X^12+X^11+X^8+1; 

  (X^16+X^8+X^6+X^3+X^2+X+1) ; 

  (X^16+X^15+X^14+X^13+X^10+X^8+1) ; 

  (X^16+X^8+X^6+X^4+X^3+X^2+1) ; 

  (X^16+X^14+X^13+X^12+X^10+X^8+1) ; 

  (X^16+X^8+X^7+X^4+X^2+X+1; 

  (X^16+X^15+X^14+X^12+X^9+X^8+1; 

  (X^16+X^8+X^7+X^5+1) ; 

  (X^16+X^11+X^9+X^8+1) ; 

  (X^16+X^8+X^7+X^5+X^3+X^2+1) ; 

  (X^16+X^14+X^13+X^11+X^9+X^8+1) ; 

  (X^16+X^8+X^7+X^5+X^4+X^3+X^2+X+1) ; 

   

A simulation program for the functioning on LFSR of the 16th degree for the Galois 

implementation was developed. In the following example an analysis for the 14 selected primitive 

polynomials will be presented. A list with the positions which will influence the future state is called 

tap sequence. For example, for the next scheme this is [16, 14, 13, 11]. 

 

 
 

Figure 4. Scheme for the polynomial with [16, 14, 13, 11] tap sequence 

 

This sequence can be represented by a polynomial mod 2, only with coefficients 1 and 0, 

called Feedback Polynomial or Characteristic Polynomial. 

For the above scheme this polynomial is: 

 

             P(X)= X^16+X^14+X^13+X^11+1 ; 
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Figure 5. Galois Implementation for the Polynomial X^16+X^12+X^3+X+1 

 

 

 
 

Figure 6. Fibonacci Implementation for the Polynomial X^16+X^12+X^3+X+1 
 

                   

 
 

Figure 7. Ring Implementation for the Polynomial X6+X^12+X^3+X+1 

 

VlăduŃiu and Crişan (1989) show three types of schemes for a 4th degree polynomial. 

Similar to it, there were developed the three different implementations for the Primitive Polynomial 

X^16+X^12+X^3+X+1. It can be specified that these schemes are according to the well-known 

Galois Form, Fibonacci representation and some other Forms that are rarely used, called Ring 

Implementation. All of these Implementations have the same function, because they describe a 

linear feedback shift register. In the experimental work there has been analyzed the behavior of 14 

Primitive Polynomial degrees, 16 randomly selected. For each of these polynomials there has been 

developed the simulation of the specific functioning with a program. Because the goal of this 

experimental work was to compare the different obtained results, a few rows of input data of a 

different length have been selected. 

First of all, in this analysis were verified the obtained times with the simulation program and 

they have been compared to each program. All the analyses submit the obtained results in the case 

of using Galois implementation. Times have been measured from 10 runs for the same string of 

input data and the average time has been calculated. For each Primitive Polynomial 6 different input 

data were used. In the following tables all the obtained results are shown by carrying out their time. 

So, for the 14 selected Polynomials and for the input data lengths of 20, 30, 40, 50, 100 and 1000 

the corresponding times are presented (display). The following tables contain the time measured in 

seconds. 

 



BRAIN. Broad Research in Artificial Intelligence and Neuroscience 

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print) 

 

 38

 

Table III.  Results of the main program 

  Time 20  Time 30 

  

Time 40 

Prel 1 0.00003471 0.00005425 0.00006220 

Prel  2 0.00003864 0.00005288 0.00007746 

Prel  3 0.00003761 0.00005422 0.00007319 

Prel  4 0.00003562 0.00005112 0.00006738 

Prel  5 0.00003662 0.00005137 0.00007063 

Prel  6 0.00003763 0.00005172 0.00007026 

Prel  7 0.00004377 0.00005093 0.00007052 

Prel  8 0.00003557 0.00005649 0.00006912 

Prel  9 0.000039022 0.000053175 0.00007273 

Prel 10 0.00003513 0.00005102 0.00007181 

Prel 11 0.00003442 0.00005404 0.00006725 

Prel 12 0.00004232 0.00005098 0.00006978 

Prel 13 0.00003514 0.00005345 0.00006794 

Prel 14 0.00003489 0.00006187 0.00007052 

 

Table IV. Results of the main program 

  Time 50  Time 100 

  

Time 1000 

Prel 1 0.00023055 0.00022300 0.00173524 

Prel  2 0.00010348 0.00022504 0.00215812 

Prel  3 0.00008803 0.00022427 0.00224510 

Prel  4 0.00008655 0.00022607 0.00242678 

Prel  5 0.00009081 0.00023949 0.00211611 

Prel  6 0.00008708 0.00022512 0.00226576 

Prel  7 0.00008897 0.00021033 0.00216120 

Prel  8 0.00008610 0.00021813 0.00209186 

Prel  9 0.0001895 0.00209705 0.00348371 

Prel 10 0.00008959 0.00028245 0.00209705 

Prel 11 0.00008359 0.00028720 0.00214601 

Prel 12 0.00008981 0.00023582 0.00203451 

Prel 13 0.00008942 0.00023207 0.00214814 

Prel 14 0.00008507 0.00021405 0.00236788 
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Table V. Coefficients number of the Generator Polynomials 

Generator Polynomial 

 

Coef no. 

 

X^16+X^12+X^3+X+1 5 

X^16+X^13+X^12+X^11+X^7+X^6+X^3+X+1 9 

X^16+X^13+X^12+X^10+X^9+X^7+X^6+X+1 9 

X^16+X^15+X^11+X^10+X^9+X^6+X^2+X+1 9 

X^16+X^9+X^8+X^7+X^6+X^4+X^3+X^2+1 9 

X^16+X^14+X^13+X^12+X^10+X^7+1 7 

X^16+X^14+X^10+X^8+X^3+X+1 7 

X^16+X^14+X^13+X^11+X^6+X^5+X^3+X^2+1 9 

X^16+X^15+X^11+X^9+X^8+X^7+X^5+X^4+ 

X^2+X+1 11 

X^16+X^13+X^12+X^11+X^10+X^6+X^2+X+1 9 

X^16+X^15+X^11+X^10+X^9+X^8+X^6+X^4+ 

X^2+X+1 11 

X^16+X^15+X^11+X^10+X^7+X^6+X^5+X^3+ 

X^2+X+1 11 

X^16+X^15+X^10+X^6+X^5+X^3+X^2+X+1 9 

X^16+X^12+X^7+X^2+1 5 

 

In the following example, all the steps that simulate operation using the first Primitive 

Polynomial and the selected input data are showed. The used operations are shifting and XOR.  

 

11010101010101010101 

Checking input data: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  

 

Initial Status 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

Step 0 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

Step l  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

Step 2 0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  

Step 3 1  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  

Step 4 0  1  0  1  1  0  0  0  0  0  0  0  0  0  0  0  

Step 5 1  0  1  0  1  1  0  0  0  0  0  0  0  0  0  0  

Step 6 0  1  0  1  0  1  1  0  0  0  0  0  0  0  0  0  

Step 7 1  0  1  0  1  0  1  1  0  0  0  0  0  0  0  0  

Step 8 0  1  0  1  0  1  0  1  1  0  0  0  0  0  0  0  

Step 9 1  0  1  0  1  0  1  0  1  1  0  0  0  0  0  0  

Step 10 0  1  0  1  0  1  0  1  0  1  1  0  0  0  0  0  

Step 11 1  0  1  0  1  0  1  0  1  0  1  1  0  0  0  0  

Step 12 0  1  0  1  0  1  0  1  0  1  0  1  1  0  0  0  

Step 13 1  0  1  0  1  0  1  0  1  0  1  0  1  1  0  0  

Step 14 0  1  0  1  0  1  0  1  0  1  0  1  0  1  1  0  

Step 15 1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  1  

Step 16 1  0  0  0  0  1  0  1  0  1  0  1  1  1  0  1  

Step 17 0  0  0  1  0  0  1  0  1  0  1  0  0  1  1  0  

Step 18 0  0  0  0  1  0  0  1  0  1  0  1  0  0  1  1  

Step 19 0  1  0  1  0  1  0  0  1  0  1  0  0  0  0  1  

Runing Time: 0.00003421 seconds 
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The next two graphics show the obtained results from the execution of the main program for 

each of the 14 degrees, 16th primitive polynomials for three different situations depending on the 

lengths of the entrance data polynomial. 

The lengths of the input polynomials were 20. 30. 40, 50, 100 and 1000 bits. The maximum 

number of sequences is 216-1(Solomon, 1967). 

 

 

Figure 8. Graphic containing the results for 20 bits 

 

 

 
Figure 9. Graphic containing the results for 1000 bits 
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Figure 10. Graphic containing the results for 1000 bits 

 

The distribution obtained depending on the length of the input string shows that time 

depends on the input length, but for lengths even closer together, the times are also close  (this can 

be seen in Figure 8  for 20  bits inputs).  

Time does not change so much depending on which of the 14 different 16th degree primitive 

polynomials has been used. 

 

4. Conclusion  

The entire analysis of functioning for primitive polynomials of 16th degree proves that 

almost all the obtained results are in the same distribution of time. The security aspect was taken 

into consideration, so that the used polynomials are all irreducible or primitive polynomials. A shift 

register is a device whose function is to shift its contents into adjacent positions within the register 

or, for the end position, out of the register. The main practical uses for a shift register are the 

conversion between parallel and serial data and the delay of a serial bit stream. The total number of 

the generated random state depends on the polynomial feedback. 

LFSR based on the PN Sequence Generator is a technique used for different applications in 

Cryptography and also in the communication channel for designing encoder and decoder. This kind 

of analysis can be done from the hardware or software point of view. Panda et al.  (2012) show an 

interesting simulation problem for long bit LFSR on FPGA referring 8, 16 and 32 Bits. Some 

similar problems are presented and analyzed in this paper. This study focuses on a comparative 

study of different types of implementations for a Linear Feed-back Shift Register for 16th degree 
primitive or irreducible polynomials. The results of all these experiments were used for obtaining 

some graphics showing the time distribution. From all the presented graphics it can be concluded 

that for 1000 bits length the best polynomial is the first one, meaning the polynomial number P1, 

and the worst is polynomial P9. All this analysis was preceded by another similar one on the same 

aspects linked with the 8th degree primitive polynomials. 
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