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Abstract—The structures of the cyclic DNA codes
of odd length over the finite rings R = Z, + wZ,,
w? =2 and S = Zy + wZy + vZ4 + woZy, w? =
2,v? = v, wv = vw are studied. The links between
the elements of the rings R, S and 16 and 256
codons are established, respectively. The cyclic codes
of odd length over the finite ring R satisfy reverse
complement constraint and the cyclic codes of odd
length over the finite ring S satisfy reverse constraint
and reverse complement constraint are studied. The
binary images of the cyclic DNA codes over the finite
rings R and S are determined. Moreover, a family
of DNA skew cyclic codes over R is constructed, its
property of being reverse complement is studied.

Keywords-DNA codes; cyclic codes; skew cyclic
codes.

I. INTRODUCTION

DNA is formed by the strands and each strand
is sequence consists of four nucleotides ; Adenine
(A), Guanine (G), Thymine (T) and Cytosine (C).
Two strands of DNA are linked with Watson-Crick

Complement. Thisisas A =T, T = A, G = C,
C = G. For example if ¢ = (ATCCG) then its
complement is ¢ = (TAGGC).

A code is called a DNA code if it satisfies some
or all of the following conditions:

1) The Hamming contraint, for any two different
codewords c1,co € C, H(c1,c2) > d

ii) The reverse constraint, for any two different

codewords c1,c2 € C, H(c1,¢5) > d

The reverse complement constraint, for any

two different codewords cij,co € C,

H(cy,c5¢) >d

iv) The fixed GC content constraint, for any
codeword ¢ € C contains the some number
of G and C element.

The purpose of the 1i)-iii) constraints is to
avoid undesirable hybridization between different
strands.

DNA computing were started by Leonhard
Adleman in 1994, in [3]. The special error correct-
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ing codes over some finite fields and finite rings
with 4" elements where n € N were used for
DNA computing applications.

In [12], the reversible codes over finite fields
were studied, firstly. It was shown that C' = (f(x))
is reversible if and only if f(z) is a self reciprocal
polynomial. In [1], they developed the theory for
constructing linear and additive cyclic codes of
odd length over GF'(4). In [13], they introduced
a new family of polynomials which generates
reversible codes over a finite field GF'(16).

In [2], the reversible cyclic codes of any length
n over the ring Z, were studied. A set of genera-
tors for cyclic codes over Z4 with no restrictions
on the length n was found. In [17], the cyclic
DNA codes over the ring R = {0,1,u,1 + u}
where u? = 1 based on a similarity measure
were constructed. In [9], the codes over the ring
Fy 4+ uFy,u?> = 0 were constructed for using in

DNA computing applications.

I. Siap et al. considered the cyclic DNA codes
over the finite ring F[u]/ (u? — 1) in [18]. In
[10], Liang and Wang considered the cyclic DNA
codes over Fy+uFy, u? = 0. Yildiz and Siap stud-
ied the cyclic DNA codes over Fh[u]/ (u* —1)
in [20]. Bayram et al. considered codes over the
finite ring Fy + UF4,U2 = v in [3]. Zhu and
Chan studied the cyclic DNA codes over the
non-chain ring Fslu,v]/ <u2,112 — v, UV — vu> in
[21]. In [6], Bennenni at al. studied the cyclic
DNA codes over Fylu]/ (u®). Pattanayak et al.
considered the cyclic DNA codes over the ring
Flu,v]/ < u? — 1,03 — v,uv — vu > in [15].
Pattanayak and Singh studied the cyclic DNA
codes over the ring Zy + uZy,u? = 0 in [14].

J. Gao et al. studied the construction of the
cyclic DNA codes by cyclic codes over the finite
ring Fy[u]/ (u?® + 1), in [11]. Also, the construc-
tion of DNA the cyclic codes has been discussed
by several authors in [7,8,16].

We study families of DNA cyclic codes of the
finite rings Z4 + w2y, w? = 2 and Zy + wZy +
vZy + wuZy,w? = 2,v% = v,wv = vw. The rest
of the paper is organized as follows. In section 2,
details about algebraic structure of the finite ring
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Z4 + wZy, w? = 2 are given. We define a Gray
map from R to Z,4. In section 3, the cyclic codes of
odd length over R satisfy the reverse complement
constraint are determined. In section 4, the cyclic
codes of odd length over S satisfy the reverse
complement constraint and the reverse contraint
are examined. A linear code over S is represented
by means of two linear codes over R. In section
5, the binary image of cyclic DNA code over R
is determined. In section 6, the binary image of
cyclic DNA code over S is determined. In section
7, by using a non trivial automorphism, the DNA
skew cyclic codes are introduced. In section 8, the
design of linear DNA code is presented.

II. PRELIMINARIES

The algebraic structure of the finite ring R =
Z4 + wZy, w? = 2 is given in [4]. R is the
commutative, characteristic 4 ring Z4 + wZ4 =
{a+wb: a,bc Zs} with w? = 2. R can also be
thought of as the quotient ring Zs[w]/ (w? — 2).
R is a principal ideal ring with 16 elements and
finite chain ring. The units of the ring are

1,3, 14+w,3+w,1+2w,1+3w,3+ 3w, 3+ 2w,
and the non-units are

0,2, w,2w,3w,2 +w,2 + 2w, 2 + 3w.
R has 4 ideals:

{0},

(3) = (1+3w) = .. = R,

{0,2, w, 2w, 3w, 24w, 242w, 24+ 3w},
— (3w) = (2+w) = (24 3u),

T~
— O

= =
ol

(2w) = {0,2w},
(2) = (2+4+2w)=10,2,2w,2 + 2w}.
We have

(0) € (2w) € (2) C (w) C R.

Moreover R is a Frobenious ring.
We define ¢ : R — 72 as

¢ (a + wb) = (a,b) .
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The Gray map is extended component wise to

¢ : R*"—I7"

(a17a27”'7an)7 = (ala"'vanyblv'”abn)v

where o; = a; + byw with i = 1,2,...,n. ¢ is a
Z4 module isomorphism.

A linear code C of length n over R is an R-
submodule of R™. An element of C is called a
codeword. A code of length n is cyclic if the code
is invariant under the automorphism o which is

0 (o, C1y ey Cn—1) = (Cn—1, €0y -y Cn—2)

A cyclic code of length m» over R can be
identified with an ideal in the quotient ring
R[x]/ (™ — 1) via the R—-modul isomorphism

RTL

(Co, Cly.eeny Cn—l)

—  Rz]/ (=" - 1)
— cotcir+...tep_1a"
+ (2" — 1)

1

Theorem 1: Let C be a cyclic code in
R[z]/ (™ — 1) .Then there exists polynomials
g(z),a(x) such that a(x)|g(x)|z™ — 1 and C =
(9(2), wa())

The ring R[z]/ (™ — 1) is a principal ideal ring
when n is odd. So, if n is odd, then there exists
s(x) € R[z]/ (2™ — 1) such that C' = (s(x)), in
[4,19].

III. THE REVERSIBLE COMPLEMENT CODES
OVER R

In this section, we study the cyclic code of odd
length over R satisfies the reverse complement
constraint. Let {A, T, G, C'} represent the DNA al-
phabet. DNA occurs in sequences with represented
by sequences of the DNA alphabet. DNA code
of length n is defined as a set of the codewords
(xo, 1, ..., xn—1) Where x; € {A, T, G, C}. These
codewords must satisfy the four constraints which
are mentioned in [21].

Since the ring R is of cardinality 16, we define
the map ¢ which gives a one to one correspon-
dence between the elements of R and the 16
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codons over the alphabet {A, T, G, C'}? by using
the Gray map as follows

Elements Gray images DNA double pairs

0 (0,0) AA

1 (1,0) CA

2 (2,0) GA

3 (3,0) TA

w (0,1) AC
2w (0,2) AG
3w (0,3) AT
14w (1,1) cc
1+ 2w (1,2) CG
1+ 3w (1,3) cT
2+w (2,1) GC
24 2w (2,2) GG
2+ 3w (2,3) GT
3+w (3,1) TC
342w (3,2) TG
3+ 3w (3,3) TT

The codons satisfy the Watson-Crick Comple-
ment.

Definition 2: For © = (z9,21,...,2n—1) € R",
the vector (z,—1,2Zn—2,...,21,2o) is called the
reverse of x and is denoted by z". A linear code
C of length n over R is said to be reversible if
" € C for every x € C.

For = = (x9,%1,....,2n—1) € R", the vector
(Zo,Z1,...,Tn—1) is called the complement of x
and is denoted by z¢. A linear code C of length
n over R 1is said to be complement if ¢ € C for
every x € C.

For x = (zg,21,....,2n—1) € R", the vec-
tor (Tp—1,ZTpn—2,...,L1,Z0) is called the reversible
complement of x and is denoted by x"“. A linear
code C of length n over R is said to be reversible
complement if " € C for every x € C.

Definition 3: Let f(x) = ag+arz+...+axt €
Rlz] ( S[z] ) with a; # 0 be polynomial. The
reciprocal of f(x) is defined as f*(z) = 2'f(1).
It is easy to see that deg f*(z) < deg f(z) and if
ap # 0, then deg f*(x) = deg f(x). f(z) is called
a self reciprocal polynomial if there is a constant
m such that f*(x) = mf(x).

Lemma 4: Let f(x),g(z) be polynomials in
R]z]. Suppose deg f(x) — deg g(x) = m then,
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) (f(2)g(2)" = £*(2)g" ()
i) (£(2) + 9()" = F*(x) + 29" (2)

Lemma 5: For any a € R, we have a +a =
3+ 3w.

Lemma 6: If a € {0,1,2,3}, then we have (3+
3w) — wa = wa.

Theorem 7: Let C = (g(z),wa(x)) be a cyclic
code of odd length n over R. If f(z)"¢ € C for any
f(z) € C, then (14 w)(1+z+22+...+2" 1) e C
and there are two constants e,d € Z} such that
g*(x) = eg(z) and a*(z) = da(x).

Proof: Suppose that C = (g(z),wa(z)),
where a(z)|g(x)|z™ — 1 €  Z4[z]. Since
(0,0,...,0) € C, then its reversible complement
is also in C.

(0,0,...,00 = (34 3w,3+ 3w,...,3+ 3w)
— 31 +w)1,1,..,1)eC.

This vector corresponds of the polynomial
(3+3w) + (34 3w)x + ... + (3 + 3w)z" !
n
= (3+3w)> e

Since 3 € Z}, then (1+w)(1+x+...4+2"" 1) € C.
Let g(z) = go + g1z + ... + gs_ 12571 + gsz®.
Note that
g(x)"°= (34+3w)+ (34+3w)z+...+ (34 3w) ">
g T g P g € O
Since C' is a linear code, then
31+w)(1+z+a2+..+2" ) —gl)eC

which implies that ((3 +3w) —g,)z" 51+ ((3+
3w)—Ge_1)r" 52+ ((3+3w)—gy )zt € C.
By using (3 4+ 3w) — @ = a, this implies that

2" (gt g 12+ A gox®) = 2" g* () € C
Since ¢g*(z) € C, this implies that
9" (z) = g(z)u(z) + wa(z)v(z)

where u(z),v(z) € Z4lx]. Since g; € Zy, for i =
0,1,...,s, we have that v(z) = 0. As deg g*(x) =
deg g(z), we have u(x) € Zj. Therefore there is
a constant e € 7Z; such that g*(z) = eg(x). So,
g(z) is a self reciprocal polynomial.
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Let a(z) = ag + a1z + ... + azx’. Suppose that
wa(r) = wag + waix + ... + wayxt. Then

(wa(x))™ = (3+3w) + (3 + 3w)z + ...
+wa™ N+ L+ waga™

+wagz" ' e C

2

nol
As (3+43w) L=

x

€ C and C'is a linear code, then

xn

-1
C
16

—(wa(z))"™ + (3 + 3w)

Hence, 2"~ 1(—(way) +(3+3w) ) +(—(war—1) +
(3+3w))x+...+ (—(wag) + (3 +3w))x!]. By the
Lemma 6, we get

n—t—l(

x way + wag_ 1T + ... + wagx)

2" lwa*(z) € C. Since wa*(x) € C, we have
wa*(x) = g(x)h(z) + wa(z)s(x)

Since w doesn’t appear in g(z), it follows that
h(z) =0 and a*(z) = a(z)s(z). As dega*(x) =
dega(z), then s(z) € Zj. So, a(x) is a self
reciprocal polynomial. ]

Theorem 8: Let C' = (g(x),wa(z)) be a cyclic
code of odd length n over R. If (14w)(1+z+x2+
.. +a" 1) € C and g(z),a(z) are self reciprocal
polynomials, then c¢(x)" € C for any ¢(z) € C.

Proof: Since C' = (g(x),wa(x)), for any
c(x) € C, there exist m(x) and n(z) in R[z] such
that ¢(z) = g(z)m(x) + wa(z)n(z). By using the
Lemma 4, we have

(x) = (g(z)m(
= (g(x)m(z))
= g (@)m"(x) + wa*(x)

Since ¢g*(z) = eg(x),a*(x) = da(x), we have
c*(z) = eg(z)m*(z) + dwa(z)(z*n*(z)) € C.
So, ¢*(z) € C.

Let ¢(z) = co + 12 + ... + ot € C. Since C
is a cyclic code, we get

x"_t_lc(a:) = coz" T eV 4o e O
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Since (1+w)+ (1+w)z+...+ (1+w)z" L € C
and C is a linear code we have

z" —1

—(14+w) — 2" ()

=—(1+w)—1+wz+..+(—co— (1+w)z" !

ot (e — (1+w))z" e
By using @ + (1 + w) = —a, this implies that
—(1+w)— ..z e e O
This shows that (¢*(x))"™ € C.
(" () ) =& + 12+ ... + (3 + 3w)z" !

This corresponds this vector (¢¢, G;—1, .., Co, -, 0).
Since (c*(z)™¢)* = (2" ' le(x))"¢, so c(x)™ €
C. ]

Example 9: Let 2° —1 = (v +3)(z2 +2+1) €
Zylz]. Let C = (a* + x4+ 1+ w(2® +z +1)).C
is a cyclic DNA code of length 3 over R. The Gray
image of C under the Gray map ¢ is a DNA code
of length 6, Hamming distance 3. These codewords
are as follows

All 16 codewords of C

Example 10: Let x7

ccocecece TETGETG
GGGGGG  GTGTGT
TTTTTT GCGCGC
AAAAAA CGCGCGE
GAGAGA CTCTCT
AGAGAG TCTCTC
TATATA ACACAC
ATATAT CACACA

—1=(z+3)(2® - 222+

x— 1)(2® — 22 + 20 — 1) € Zyfz]. Let C =<
28 —32° +2* - 323+ 22 — 3z + 1 +w(a® —32° +
at — 323 + 22 — 3x + 1) >. C is a cyclic DNA
code of length 7 over R. The Gray image of C
under the Gray map ¢ is a DNA code of length
14, Hamming distance 7. These codewords are as
follows
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All 16 codewords of C

cccccecceocceoccocoocooeo
GGGGGGGGGGGGGGE
TTTTTTTTTTTTTT
AAAAAAAAAAAAAA
GAGAGAGAGAGAGA
AGAGAGAGAGAGAG
TATATATATATATA
ATATATATATATAT
TGTGTGTGTGTGTG
GITGTGTGTGTGTGT
GCGecGeGoGoGeae
ccoGoaoaoGoaea
CTCTCTCTCTCTCT
TCTCTCTCTCTCTC
ACACACACACACAC
CACACACACACACA

IV. THE REVERSIBLE AND REVERSIBLE
COMPLEMENT CODES OVER S

Throughout this paper, S denotes the commu-
tative ring Zy + wZyg + vZ4 + wvZy = {by +
wby + vbg + wuby : b € Zy,1 < j < 4} with
w? = 2,02 = v,wv = vw, with characteristic
4. S can also be thought of as the quotient ring
Za[w,v]) < w? —2,v% — v, wv —vw > .

Let

S = Zj+wly+ 07y + w7y
= (Z4 +wZhy) +v(Zg + wZy)
= R+vR

We define the Gray map ¢ from S to R as
follows

¢ S— R?
(a,b)

where a,b € R. This Gray map is extended
compenentwise to

a+vb —

o1 St — RQn

x = (x1,.c,@p) —> (a1, .ccy@p, b1, ...y by)

where x; = a; + vb;,a;,b; € Rfor i =1,2,...,n.
In this section, we study the cyclic codes of
odd length n over S satisfy reverse and reverse
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complement constraint. Since the ring S is of
the cardinality 4%, then we define the map ¢
which gives a one to one correspondence between
the element of S and the 256 codons over the
alphabet {A,T,G,C}* by using the Gray map.
For example:

0=0+v0+— ¢1(0) = (0,0) — AAAA
2wv=0+v(2w) — $1(2wv) = (0,2w) —AAAG

14+3v+3wv =14v(34+3w) — p1(14+v(3+3w))
= (1,3 + 3w) — CATT

Definition 11: Let A1, Ao be linear codes.
A1 ® Az = {(a1,a2) : a1 € A1, a2 € Az}

and
A1 @ Ay ={a1+az:a; € Ay,a9 € As}

Let C be a linear code of length n over S.
Define

Ch =
Cy =

{a:3beR"a+vbe C}
{b:JaecR" a+vbe C}

where C1 and C5 are linear codes over R of length
n.

Theorem 12: Let C' be a linear code of length
n over S. Then ¢(C) = C1 ® Cy and |C| =
|C1[ |Cal .-

Corollary 13: If ¢$1(C) = C1 ® Cs, then C' =
’UCl © (1 - U)CQ.

Theorem 14: Let C = vCy & (1 —v)Cy be a
linear code of odd length n over S. Then C is a
cyclic code over S if and only if C'y, Cy are cyclic
codes over R.

Proof:  Let  (a},al,..,al ;) €
Cy,(ag,a?,...,a2_) € Oy Assume that
m; = val + (1 —v)a? for i = 0,1,2,...,n — 1.

Then  (mo, m1,...,Mp—1) IS C. Since
C is a cyclic code, it follows that
(mn_l, mo, M1, ..., mn_g) € (. Note that
(Mn—1, M0, ey Mp—2) = v(al_j,ad,...,al o) +
(1 - v)(a2_y,ad,...,a3_,). Hence

1 1 1 2 2 2
(Ap_1500; 0 _o) € C1,(a5, 1,05, ...,a57_5) €
(Y. Therefore C', Csy are cyclic codes over R.
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Conversely, suppose that C;,Cs are cyclic
codes over R. Let (mg,mi,...mp—1) € C,
where m; for
i =0,1,2,...,n — 1. Then (al_;,a},...,al_,) €

I
<
3

—
+
—~

—_

|
<

~—

s}

(V]

Cy,(a%_j,a,...,a2_,) € Oy Note that
(M1, M0, ooy Mp—2) = v(al_y,a,...;al_5) +
(1—v)(a2_4,a3,...,a2_,) € C. So, C is a cyclic
code over S. [ |

Theorem 15: Let C = vC; @ (1 — v)Cs be a
linear code of odd length n over S. Then C is
reversible over S iff Cy, Cy are reversible over R.

Proof: Let Cy,Cs be reversible codes. For
any b € C,b = vb; + (1 — v)by, where b; €
Ci,bo € (C5. Since C; and Cy are reversible,
by € C1,b5 € Cy. So, b" = vb| + (1 —v)b € C.
Hence C is reversible.

On the other hand, Let C be a reversible code
over S. So for any b = vb; + (1 —wv)by € C, where
by € C,by € Ca, we get " = vbj+(1—v)bh € C.
Let b" = vb] + (1 — )b}, = vs1 + (1 —v)sa, where
s1 € (1,82 € (9. So C1 and (5 are reversible
codes over R. [ ]

Lemma 16: For any ¢ € S, we have ¢ +¢ =
(3 4 3w) + v(3 + 3w).

Lemma 17: For any a € S, @+ 30 = 3a.

Theorem 18: Let C = vC1 @ (1 — v)Cs be a
cyclic code of odd length n over S. Then C is
reversible complement over S iff C' is reversible
over S and (0,0, ...,0) € C.

Proof: Since C is reversible complement,
for any ¢ = (co,¢1,.50n-1) € C,"¢ =
(€n—1,¢n—2,...,¢0) € C. Since C is a linear
code, so (0,0,...,0) € C. Since C is reversible
complement, so (0,0,...,0) € C. By using the
Lemma 17, we have

3 = 3(Cn_1,cn_2,...,60)
= (€p_1,Cn_2,...,¢0) + 3(0,0,...,0) € C.
So, for any ¢ € C, we have ¢" € C.

On the other hand, let C' be reversible. So,
for any ¢ = (co,c1,.050n-1) € C, " =
(cn—1,Cn—2,...,c0) € C. To show that C is re-
versible complement, for any ¢ € C,

" = (Gp-1,Cn—2,...,C0)

= S(Cn_l,cn_z, ...,CO) + (6,6, ,6) eC.

Page 6 of [


http://dx.doi.org/10.11145/j.biomath.2017.12.167

Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...

So, C is reversible complement. [ ]
Lemma 19: For any a,b € S,
a+b=a+b—3(1+w)(l+wv).
Theorem 20: Let D1 and Dy be two reversible
complement cyclic codes of length n over S. Then
D1+ Dy and D N Do are reversible complement
cyclic codes.
Proof: Let dy = (co, c1, .-,
(cgscly.oeyck 1) € Dy. Then,

cn-1) € D1,dy =

(s +d2)" =((enr+ ey, o (1 +]), (ot ) )
(et —3(1+w)(1+0), ..
@+ cd —3(1 +w)(1+v))
=1 — 3(L+ w)(1 +0),...%

—3(1+w>(1+v))+(07_1,...,%)
:<dqc ~ 3L+ w)(1 +0)"

" —1
=
+d72“c € D1 + Ds.
This shows that Dy + D5 is reversible complement

cyclic code. It is clear that D; N Dy is reversible
complement cyclic code. [ ]

V. BINARY IMAGES OF CYCLIC DNA CODES
OVER R

The 2-adic expansion of ¢ € Z4 is ¢ = a(c) +

2fB(c) such that a(c) + S(c) + v(c) = 0 for all
CcE 7y
¢ ale) Ble) (o)
0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 0
The Gray map is given by
U Zy— 73

c — ¥Y(e) =

(B(c),7(c))
for all ¢ € Z4 in [14]. Define

O : R— 75
a+bw — O(a+wb) =V (p(a+wb)
= Y(a,b)

= (B(a),7(a), B(b),7(b))

Biomath 6 (2017),
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Let a + wb be any element of the ring R. The
Lee weight wy, of the element of the ring R is
defined as follows

wr,(a + wb) = wr,(a,b)

where wr,(a, b) described the usual Lee weight on
Zi. For any cj,co € R the Lee distance dj, is
given by dr(c1,c2) = wr(c1 — c2).

The Hamming distance d(c1,cz) between two
codewords c; and cp is the Hamming weight of
the codewords ¢; — .

AA — 0000 CG — 0111
CA — 0100 CT — 0110
GA — 1100 GC — 1101
TA — 1000 GG — 1111
AC — 0001 GT — 1110
AG — 0011 TC — 1001
AT — 0010 TG — 1011
cc — 0101 TT — 1010

Lemma 21: The Gray map O is a distance
preserving map from (R", Lee distance) to (Z3",
Hamming distance). It is also Zg-linear.

Prgof: For c1,6 € R"™, we have O(cl —
CQ) = 0(012 — O(CQ). SO, dL(Cvl,CQ) = EUL(CI —
c2) = wp(O(c1 — 2)) = wu(O(c1) — O(e2)) =
dr(O(c1),0(c2)). So, the Gray map O is distance
preserving map. For any ci,co € R" ki, ka2 €
Zs,we have O(qu +koco) = klO(cl) +k20(02)
Thus, O is Zo-linear. [ |

Proposition 22: Let o be the cyclic shift of R™
and v be the 4-quasi-cyclic shift of Z3". Let O be
the Gray map from R" to Z3". Then Oo = 0.

Proof: Let ¢ = (cp,c¢1,...,cn—1) € R", we
have ¢; = ay; + wby; with a14,b9; € Z4,0 < i <
n — 1. By applying the Gray map, we have

B(a10),v(a10), B(b20),v(b20), B(a11),
y(a11), B(b21),v(b21), ..., Blain—1),
Y(a1n-1), B(ban-1),(b2n—1)

v

O(c)=

Hence

v(0(c)) =
B(ain—1),Y(a1n-1), B(b2n—1),7(b2n-1),
Blaio), v(ao), B(bo), ¥(b20), -, Blarn—2),
Y(a1n—2), B(b2n—2),7(b2n—2)
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On the other hand,

J(C) = (Cnfl,CO,Cl, "'7Cn72)-
We have
O((c)) =

B(ain-1),v(a1n-1), B(ban—1),

Y(b2n-1), Blaio), v(a0), B(b20), ¥(b20); -+
B(ain—2),v(a1n—2), B(ban—2),v(b2n—2)

Therefore, Oc = v0. [ |

Theorem 23: If C is a cyclic DNA code of
length n over R then O(C) is a binary quasi-cyclic
DNA code of length 4n with index 4.

VI. BINARY IMAGE OF CYCLIC DNA CODES
OVER S

We define

v S —7

ap +way +vag + wvas — (ap,a1,az,as)

where a; € Zy4, for i = 0,1, 2, 3.
Now, we define © : S — Z§ as

ag + way + vas + wvas

— O(ap + way + vag + wovas)

= U(¥(ap + way + vag + wvaz)) =
(ﬁ(aﬂ)a’Y(QO)vﬁ(al)”Y(al)vﬁ(a2)ar)/(a2)aﬁ(a3)a’y(a3))v

where VU is the Gray map Z4 to Z3.

Let ap + wa; + vas + wvas be any element of
the ring S. The Lee weight wy, of the element of
the ring S' is defined as

wr (ap+way +vas+wvaz) = wr((ag, a1, asz, as))

where wr,((ag, a1, a2, a3)) described the usual Lee
weight on Zji. For any ¢y, co € S, the Lee distance
dy, is given by dp(c1,c2) = wr(c1 — ¢2).

The Hamming distance d(cq,c2) between two
codewords c; and cp is the Hamming weight of
the codewords ¢; — ¢.

The binary images of cyclic DNA codes;

AAAA  — 00000000
AACA — 00000100
AAGA — 00001100
AATA — 00001000
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Lemma 24: The Gray map © is a distance
preserving map from (S™, Lee distance) to (Z3",
Hamming distance). It is also Zo-linear.

Proof: It is proved as in the proof of the
Lemma 21. ]

Proposition 25: Let o be the cyclic shift of S™
and 0 be the 8-quasi-cyclic shift of Z5". Let © be
the Gray map from S” to Z§". Then Oc = 0.

Proof: It is proved as in the proof of the
Proposition 22. ]

Theorem 26: If C is a cyclic DNA code of
length n over S then ©(C) is a binary quasi-cyclic
DNA code of length 8n with index 8.

Proof: Let C' be a cyclic DNA code of length
n over S. So, o(C) = C. By using the Proposition

!/

25, we have ©(0(C)) = v(©(C)) = ©(C). Hence
O(C) is a set of length 8n over the alphabet Z,
which is a quasi-cyclic code of index 8. ]

VII. SKEW cycLIC DNA CODES OVER R

We will use a non trivial automorphism, for all
a+ wb € R, it is defined by

0 : R— R
at+wb — a—wb

The ring R[z,0] = {ao+a 12+ ...+ apn_12" 1 :
a; € R,n € N} is called skew polynomial ring. It
is non commutative ring. The addition in the ring
RJz, 0] is the usual polynomial and multiplication
is defined as (ax?)(bx?) = ab’(b)x'*/. The order
of the automorphism 6 is 2.

Definition 27: A subset C' of R"™ is called a
skew cyclic code of length n if C satisfies the
following conditions,

i) C is a submodule of R",

i1) If ¢ = (co,c1,...,cn—1) € C, then oy (c) =
(0(cn-1),0(co), ..., 0(cn-2)) € C

Let f(z) + (2" — 1) be an element in the set
R, = Rz,0]/(z" — 1) and let 7(z) € R[z,6)].
Define multiplication from left as follows,

r()(f(z) + (@ = 1)) = r(2)f(z) + (2" = 1)

for any r(x) € R|[z,0].
Theorem 28: R, is aleft R [z, §]-module where
multiplication defined as in above.
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Theorem 29: A code C' over R of length n is a
skew cyclic code if and only if C'is a left R [z, 0]-
submodule of the left R [z, §]-module R,,.

Theorem 30: Let C be a skew cyclic code over
R of length n and let f(z) be a polynomial in C'
of minimal degree. If f(z) is monic polynomial,
then C' = (f(x)), where f(x) is a right divisor of
" — 1.

For all x € R, we have

0(z) + 0(z) = 3 — 3w.

Theorem 31: Let C = (f(x)) be a skew cyclic
code over R, where f(x) is a monic polynomial
in C of minimal degree. If C' is reversible comple-
ment, the polynomial f(x) is self reciprocal and

n

(3 + 3w) > eC.

Proof: Let C = (f(x)) be a skew cyclic
code over R, where f(x) is a monic polynomial
in C. Since (0,0,...,0) € C and C is reversible
complement, we have (0,0, ...,0) = (3 + 3w,3 +
3w,...,3+3w) € C.

Let f(x) =14+ a1z +...+ a1~ + 2t Since
C' is reversible complement, we have f"“(z) € C.
That is

fré(x) = (343w) + (3+3w) x4 ...+ (3+3w) ™2
+(243w)z" T a4
a2 4 (24 3w) ™

Since C'is a linear code, we have

n

() — (3 + 3w) ™~ cC.

T —

This implies that
—z" 4 (@ — (34 3w))a" Tt + .
+ (@ — (34 3w))a" 2 —a" L e C.

t+1—n

Multiplying on the right by « , we have

—14 (@1 — (34 3w))0(L)x + ...
+ (@1 — (34 3w))0 1 (D)2t~ — (1)t € C.

By using a +a@ = 3 + 3w, we have

2 t—1 t

—1—-—ai1x—ar_ox* —...—a1x"” " —«x

= 3f*(zx) € C.
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Since C' = (f(z)), there exist ¢(z) € R]z,0]
such that 3f*(x) = ¢(z)f(x). Since deg f(x) =
deg f*(x), we have gq(z) = 1. Since 3f*(x) =
f(z), we have f*(z) = 3f(x). So, f(z) is self
reciprocal. u

Theorem 32: Let C' = (f(x)) be a skew cyclic
code over R, where f(x) is a monic polynomial
in C of minimal degree. If (3 + 3w)2 =L € C
and f(x) is self reciprocal, then C' is reversible
complement.

Proof: Let f(x) = 1+aiz+...+ap_1ot 1ot

be a monic polynomial of the minimal degree.

Let c¢(x) € C. So, ¢(x) = q(x)f(x), where
q(z) € R|z,0]. By using Lemma 4, we have
(@) = (g(0) f(@))* = ¢ () f*(2). Since f(z)
is self reciprocal, so ¢*(x) = ¢*(x)ef(z), where
e € Z4\{0}. Therefore ¢*(z) € C = (f(x)). Let
c(z) = co+ 1z + ... + ezt € C. Since C is a
cyclic code, we get

c(x)z" T =cor" T e 4 e C
The vector corresponding to this polynomial is
Ct) eC.

Since (3 + 3w,3 + 3w, ...,3 + 3w) € C and C
linear, we have

(343w, 3+3w, ..., 3+3w)—(0,0, ..., 0, co, 1, ..., Ct)
= (33w, ..., H3w, (3H3w)—cy, ..., (3H+3w)—;) € C.

By using a +a = 3 + 3w, we get

(0,0, ...,O,Cg, Clyeeny

3+ 3w,3 + 3w, ...,3+ 3w, <, ..., ) € C,

which is equal to (c(z)*)". This shows that
((c(z)*)")* = c(x)™ € C. ]

VIII. DNA CODES OVER S

Definition 33: Let f; and fy be polynomials
with deg fi = t1,deg fo = t2 and both dividing
2" — 1€ Rlz].

Let m = min{n — t;,n — t2} and f(x) =
vfi(z) + (1 — v)fa(z) over S. The set L(f) is
called a I'-set, where the automorphism I' : § —
S is defined as follows:

a+wb+vc+wvd— a+b+w(b+d)—ve—wudc.
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aq aq as
0 TI(ag) TI'(a1)
L(f) — 0 0 ap al
0 O 0 I'(ap)
The set L(f) is defined as
L(f) = {E0> Elv cey Emfl}v
where
2'f if i is even

-

L(f) generates a linear code C' over S denoted
by C = (f)p. Let f(z) = ap + ez + ... + az’
be over S and S-submodule generated by L(f) is
generated by the matrix in Eq. (I)).

Theorem 34: Let f; and fy be self reciprocal
polynomials dividing ™ — 1 over R with degree
t1 and to, respectively. If fi = fo, then f = v f; +
(1 —v)fy and [(L(f))] = 256™. C = (L(f)) is a
linear code over S and O(C) is a reversible DNA
code.

Proof: Tt is proved as in the proof of the
Theorem 5 in [5]. |

Corollary 35: Let fi and fy be self reciprocal
polynomials dividing 2™ — 1 over R and C =
(L(f)) be a cyclic code over S. If £=1 € C,
then ©(C) is a reversible complement DNA code.

Example 36: Let fi(z) = folz) =
dividing " — 1 over R. Hence,

C = (vfi(z) + (1 =) fa(x))p = (z — D)p

is a I'-linear code over S and ©(C) is a reversible
complement DNA code, because of

2'T(f) if 4 is odd

r — 1

x’—1

r—1

e C.
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Q¢ 0 0
F(at) 0 0
. . a0 0 (1)
I'(a1) I'(at) 0
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