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Abstract—In this paper we apply an inverse
method that estimates parameters of deterministic
mathematical models to an HIV model. We consider
the case where experimental data concerning the
values of some variables is incomplete or unknown.
The objective is to estimate the parameters and to
restore the information concerning the behaviour
of the incomplete data. The method is based on
integrating both sides of equations of a dynamic sys-
tem, and applying some minimization methods (for
example least square method). Such an approach
was first suggested in [7] and [8]. Analysis of the
HIV model and a corresponding numerical example
is presented.

Keywords-Inverse problem, least square methods,
parameter estimation, HIV model, incomplete data.

I. INTRODUCTION

Several HIV vaccine models have been devel-
oped over the recent years (e.g., [1] and [4]). These
models describe and predict the potential epidemi-
ological impact of vaccination. For the models
to give insight into the transmission dynamics of
HIV, model parameters are of great significance.
The parameters for these model are estimated
based on HIV seroprevalence data. Most often the

data on testing and treatment history is incomplete
(missing). This barrier can be as a result of the
stigma attached to and the discrimination against
people living with HIV and AIDS. In studying the
dynamics of this world pandemic, the availability
of recorded valuable data is thus a challenge.

The proposed method is based on eliminating
the unknown (missing) state variables from the
original system algebraically. The resultant sys-
tem is then used to estimate the unknown model
parameters. The discussion on the identification
of dynamic systems with incomplete data and
restoring the missing data is elementary and can be
suitable for students in basic courses on dynamic
systems identification.

A four dimensional deterministic model for
transmission dynamics of HIV in the presence of
a preventive vaccine is considered as an example.
The model is identified in the cases of incomplete
data. It is assumed that the population sizes of
individuals infected by the wild type strain and by
both the wild and the vaccine strains is unknown.

For this study, the data is artificially generated
from the given parameters from Gumel’s paper [4].
We then ’forget’ about the these parameters and
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part of the generated data. Applying the proposed
method we estimate the parameters and then re-
store the ’forgotten’ data. The performance of the
proposed method with real life data remains to be
investigated in the future.

The remainder of the paper is structured as
follows. Section II briefly outlines the formulation
of the problem. Section III discusses the inverse
method used in solving the problem. Section IV
gives a description of the mathematical model that
is used as an example. Sections V, VI and VII
discusses the method of solution, parameter esti-
mations and a numerical simulation respectively.
Finally, concluding remarks are made in Section
VIII.

II. PROBLEM FORMULATION

Consider a system of ordinary differential equa-
tions of the form

dx

dt
= f(t, x, y, θ), (1)

dy

dt
= g(t, x, y, θ), (2)

where (x, y) is a vector-function
[0, T ] 3 t → (x, y) ∈ Rm × Rn subject to
experimental information concerning the values of
x(tj) at points tj ∈ [0, T ], (tj = 0, 1, . . . , N) are
known. Now, suppose the information concerning
the values y(tj) is either incomplete or unknown.
It may be, for example, some statistical data of
the form:

Table 1: Experimental data.

t0 · · · tj · · · tN
x0 = x(t0) · · · xj = x(tj) · · · xN = x(tN )

y0 = ? · · · yj = ? · · · yN = ?

The parameter θ is l dimensional, that is θ ∈
A ⊂ Rl where A can coincide with Rl (no
constrains between the entries of θ) and A can
be subset of Rn (there are constraints).

The purpose of this study is to identify the
model parameters θ and to restore (recover) the
information concerning the behaviour of the in-
complete or unknown of y(t).

III. INVERSE METHOD

Solve (1) with respect to y to get

y = h

(
t, x,

dx

dt
, θ

)
. (3)

Substitute y by h
(
t, x, dxdt , θ

)
in (2) to obtain

d

dt
h

(
t, x,

dx

dt
, θ

)
= g

(
t, x, h

(
t, x,

dx

dt
, θ

)
, θ

)
.

(4)
For this study consider the case where (4) is linear
with respect to the coefficients ck(θ):

d

dt
h0

(
t, x,

dx

dt

)
=

N∑
k=1

ck(θ)hk

(
t, x,

dx

dt
,
d2x

dt2

)
,

(5)
where ck : A 3 θ 7→ ck(θ) is a scalar function.

The parameter identification for the model is
based on the direct integration of the dynamic
system with posterior application of a quadrature
rule (for example, the adaptive trapezoidal rule).
Some minimization methods (for example, least
squares method (see for example [5])) is then
applied to find the estimates.

Integrating (5) twice with respect to t from t0
to ti, (i = 1, 2, . . . , N ) yields:

Aα− h = 0 (6)

where

A =

∫ ti

t0

(ti − τ)hk

(
τ, x(τ),

dx(τ)

dτ
,
d2x(τ)

dτ2

)
dτ,

α = ck(θ), and h =

∫ ti

t0

h0

(
τ, x(τ),

dx(τ)

dτ

)
dτ.

The values of the unknown parameters α in (6)
can be determined using method of least squares.

Suppose there are some constraints to be sat-
isfied amongst the parameters α. The problem is
thus to minimize the Lagrangian

L(α, λ) = (Aα− h)> (Aα− h)

+ 2λ> (Cα− b) , (7)

where λ is the Lagrange multiplier and

Cα = b (8)
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the constraints that must be satisfied.
The necessary conditions for a constrained min-

imum at α∗ is the existence of vector λ* such that

∇αL(α∗, λ∗) = (α∗)>A>A−h>A+(λ∗)>C = 0
(9)

and
∇λL(α∗, λ∗) = Cα∗ − b = 0. (10)

That is, we obtain the system:(
A>A C>

C 0

)(
α∗

λ∗

)
=

(
A
b

)
(11)

where the matrix:(
A>A C>

C 0

)
(12)

is a square matrix with a non-zero determinant.
The solution to the linear system (11) is given by

(
α∗

λ∗

)
=

(
A>A C>

C 0

)−1( A
b

)
. (13)

With the the parameters α = ck(θ) known,
the information concerning the behaviour of the
incomplete or unknown state variable y(t) can now
be restored from (3).

IV. MATHEMATICAL MODEL

The model monitors four populations namely:
HIV susceptible (X), unvaccinated individuals in-
fected by wild type (Yw), individuals uninfected
by the wild type but infected by the vaccine
strain (Yv) and individuals dually-infected with the
vaccine and wild strain (Yvw). The total (sexual
activity) population size is N = N(t) = X +
Yv + Yw + Yvw. The model is a modified version
of those studied by Blower and Gumel in [1] and
[4] respectively.

A. HIV susceptible (X)

Individuals are recruited, by birth or immigra-
tion, into this population at the rate p1 . This
population is reduced by the natural cessation
of sexual activity at a rate µ, infection with the
vaccine strain at the rate αv, the wild strain and

infected by the dual infected individuals at the rate
αw. In this case it is assumed that the dual infected
individuals can only transmit the wild strain. Thus,

dX

dt
= p1 − µ1X − αv

XYv
N
− αw

X(Yw + Yvw)

N
(14)

B. Individuals uninfected by the wild type but
infected by the vaccine strain (Yv)

This population increases through the new sus-
ceptible being vaccinated at the rate p2 and by
infection by the vaccine strain at the rate αv. It is
decreased by infection with the wild strain and in-
fected by the dual infected individuals at the rate γ.
The parameter γ is of the form (1−ψ)cβw where
ψ is the degree of protection that the vaccine pro-
vides against infection with the wild-type strain, c
the number of sexual partners and βw the rate of
infection by the wild-type strain. The population is
further decreased by natural cessation from sexual
activity and by death induced by infection with the
wild strain at a rate µ2.

dYv
dt

= p2 + αv
XYv
N
− γ Yv(Yw + Yvw)

N
− µ2Yv,

(15)

C. Unvaccinated individuals infected by wild type
(Yw)

This population increases through the suscep-
tible being infected by the wild strain and by
the dual infected individuals at the rate αw. The
population is decreased by natural cessation from
sexual activity and by death induced by infection
with the wild strain at a rate µ3.

dYw
dt

= αw
X(Yw + Yvw)

N
− µ3Yw, (16)

D. Individuals dually-infected with the vaccine
and wild strain (Yvw)

This population increases through infection with
the wild strain and infected by the dual infected
individuals at the rate γ. The population is de-
creased by natural cessation from sexual activity

Biomath 4 (2015), 1512141, http://dx.doi.org/10.11145/j.biomath.2015.12.141 Page 3 of 7

http://dx.doi.org/10.11145/j.biomath.2015.12.141


P. Mathye et al., Identification of HIV Dynamic System in The Case of Incomplete ...

and by death induced by infection with the wild
strain at a rate µ4.

dYvw
dt

= γ
Yv(Yw + Yvw)

N
− µ4Yvw. (17)

The complete model is thus:

dX

dt
= p1 − µ1X − αv XYv

N − αwX(Yw+Yvw)
N ,

dYv
dt

= p2 + αv
XYv

N − γ Yv(Yw+Yvw)
N − µ2Yv,

dYw
dt

= αw
X(Yw + Yvw)

N
− µ3Yw,

dYvw
dt

= γ
Yv(Yw + Yvw)

N
− µ4Yvw,


(18)

Adding all the equations of the system (18) gives

dN

dt
= p1+p2−µ1X−µ2Yv−µ3Yw−µ4Yvw (19)

All model parameters are nonnegative.

V. METHOD OF SOLUTION

Suppose that N = N(t), X = X(t), Yv = Yv(t)
are known and that Yw and Yvw are unknown.
From

N = X + Yv + Yw + Yvw, (20)

it is clear that the sum Yw + Yvw is also known.
In fact,

Yw + Yvw = N −X − Yv, (21)

Let
Z = Yw + Yvw. (22)

The system with equations (14, 15, 16) and (17)
then becomes

dX

dt
= p1 − µ1X − αv

XYv
N
− αw

XZ

N
, (23)

dYv
dt

= p2 + αv
XYv
N
− γ YvZ

N
− µ2Yv, (24)

dYw
dt

= αw
XZ

N
− µ3Yw, (25)

dYvw
dt

= γ
YvZ

N
− µ4Yvw. (26)

By using the inverse method the parameters in
Equations (23) and (24) can be determined. That
is, parameters p1, p2, µ1, µ2, αv, αw and γ can now
be considered known. Adding Equations (25) and
(26) and rearranging yields

µ3Yw + µ4Yvw = αw
XZ

N
+ γ

YvZ

N
− dZ

dt
. (27)

Let
M = αw

XZ

N
+ γ

YvZ

N
− dZ

dt
, (28)

Equation (27) then becomes

µ3Yw + µ4Yvw = M. (29)

From (22) and (29), form the system

Yw + Yvw = Z, (30)

µ3Yw + µ4Yvw = M. (31)

Solving this system we obtain

Yw =
µ4Z −M

∆
(32)

and
Yvw =

M − µ3Z
∆

(33)

where
∆ = µ4 − µ3. (34)

Differentiating Equation (32) yields,

dYw
dt

=
µ4
∆

dZ

dt
− 1

∆

dM

dt
(35)

Equating (25) and (35) yields,

µ4
∆

dZ

dt
− 1

∆

dM

dt
= αw

XZ

N
− µ3Yw (36)

Simplifying

µ4
∆

dZ

dt
− 1

∆

dM

dt
= αw

XZ

N
−µ3µ4

∆
Z+

µ3
∆
M (37)

Rearranging gives,

µ4
∆

dZ

dt
− 1

∆

dM

dt
= αw

XZ

N
−µ3µ4

∆
Z+

µ3
∆
M (38)

For convenience,

a1
dZ

dt
+ a2

dM

dt
+ a3M + a4Z + F = 0 (39)
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where

a1 =
µ4
∆
, a2 = − 1

∆
, a3 = −µ3

∆
,

a4 =
µ3µ4

∆
and F = −αw

XZ

N
.

The relationship between the parameters a1, a2, a3
and a4 is given by the following constrains

a1 + a3 = 1, (40)

and
a1a3 − a2a4 = 0. (41)

Suppose that the parameters a1, a2, a3 and a4 are
obtained, then

µ4 = −a1
a2

and µ3 =
a1 − 1

a2
.

Finally, with Z, M, µ3 and µ4 known, the unknown
variables Yw and Yvw can be restored from (32)
and (33).

VI. PARAMETER ESTIMATION

Recall (23),

dX

dt
= p1 − µ1X − αv

XYv
N
− αw

XZ

N
, (42)

Integrating both sides with respect to t from t0 to
ti, gives

∆Xi = p1ti − µ1Ji − αvKi − αwPi, (43)

where the integrals

∆Xi =

∫ ti

t0

dX(τ)

dt
dτ, Ki =

∫ ti

t0

X(τ)Yv(τ)

N(τ)
dτ,

Ji =

∫ ti

t0

X(τ)dτ and Pi =

∫ ti

t0

X(τ)Z(τ)

N(τ)
dτ,

are evaluated using the trapezoidal rules. The
system (43) is of the form Aa = h, where

A =

 t1 −J1 −K −P1
...

...
...

...
tN −JN −K −PN

 ,

a =


p1
µ1
αv
αw

 and h =

 ∆X1
...

∆XN

 .

Solving the regression problem

minimize‖Aa− h‖2 (44)

using least squares method we obtain the estimate
ã. Thus the parameters p1, µ1, αv and αw are
found.

Now recall (24),

dYv
dt

= p2 + αv
XYv
N
− γ YvZ

N
− µ2Yv, (45)

Similarily, integrating both sides of (45) yields

∆Yv = p2ti + αvKi − γQ1 − µ2Ii, (46)

where

∆Yv =

∫ ti

t0

dYv(τ)

dt
dτ, Ki =

∫ ti

t0

X(τ)Yv(τ)

N(τ)
dτ,

Qi =

∫ ti

t0

X(τ)Z(τ)

N(τ)
dτ and Ii =

∫ ti

t0

Y (τ)dτ.

The system (46) is of the form Aa = h, where

A =

 t1 −Q −I1
...

...
...

tN −Q −IN

 ,

a =

 p2
γ
µ2

 and h =

 ∆Y1 − αvK1
...

∆YN − αvKN

 .

Solving the regression problem

minimize‖Aa− h‖2 (47)

using least squares method we obtain the estimate
. Thus the parameters γ, µ2 and p2 are found.

Lastly recall (39),

a1
dZ

dt
+ a2

dM

dt
+ a3M + a4Z + F = 0 (48)

subject to the constraints

a1 + a3 − 1 = 0 and a1a3 − a2a4 = 0. (49)

Integrating both sides of (48) with respect to t
from t0 to ti, gives

a1∆Zi+a2∆Mi+a3Ui+a4Wi+∆Fi = 0 (50)
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where

∆Zi =

∫ ti

t0

dZ(τ)

dt
τ,∆Mi =

∫ ti

t0

dM(τ)

dt
τ,

Ui =

∫ ti

t0

M(τ)dτ, Wi =

∫ ti

t0

Z(τ)dτ and

∆Fi = −αw
∫ ti

t0

X(τ)Yv(τ)

N(τ)
dτ.

To find the unknown parameters a1, a2, a3 and
a4, the Lagrangian L3 can be written with one
constraint as

L3(a) =
1

2

n∑
i=0

[
a1(Zi − Ui) + a2Mi + a4Wi+

(∆Fi + Ui)
]2

+ λ(a1 − a21 − a2a4)
(51)

where λ1 is the Lagrange multipliers and a =
(a1, a2, a4). To minimize the least-square func-
tional L3, set

∂L3

∂a1
=
∂L3

∂a2
=
∂L3

∂a4
=
∂L3

∂λ
= 0. (52)

The resultant system of equations is then solved
using the method proposed by Fedotov et al [3] for
finding roots of transcendental algebraic equations.
The parameter value a3 is finally obtained from
a3 = 1− a1.

VII. NUMERICAL SIMULATION

In order to illustrate the effectiveness of the
method a numerical example is presented. The
system (18) is solved numerically by Adams
method using a mathematical software Mathcad.
The following parameter values and initial condi-
tions from Gumel [4] are used.

p1 = 400, p2 = 1.6×103, αv = 2.5, αw = 2.25,

γ = 0.9µ1 = 0.031, µ2 = 0.0331, µ3 = 0.0281,

µ4 = 0.231, X0 = 8× 104, Y 0
v = 2000,

Y 0
w = 8000, Y 0

vw = 8000

The solution vectors obtained are taken as experi-
mental data. We then assume that the experimental
data concerning the state variables Yw, Yvw and

the model parameter values to be unknown. The
method discussed in the sections above is then
applied to estimate the model parameter values and
restore the vectors Yw and Yvw.

The results given in the table below, show a
comparison of the actual parameters used, the
estimated parameters and the percentage error
given by ‖α− α̃‖/‖α‖ × 100.

Table 2: The parameter estimates and errors.

Parameter Actual value Estimated value %Error
α α̃

p1 400 400.142 0.035
p2 1.6 ×103 1.6 ×103 0.000
µ1 0.031 0.031 0.000
µ2 0.331 0.326 1.511
µ3 0.281 0.282 0.356
µ4 0.231 0.229 0.866
αv 2.5 2.495 0.200
αw 2.25 2.25 0.000
γ 0.9 0.905 0.556

From Table 2 it can be seen that the estimate
parameters are close enough to the actual ones.
The percentage relative errors for this estimates
are mostly low than 1 %.

Let Yw :=
(
U<3>

)
i

and
(
Yvw := U<4>

)
i

be the
solution vectors obtained from solving the system
(18) and Y Ywi

and Y Yvwi
the estimated vectors.

From Figures 1 and 2, it can be seen that the
estimated vectors, Y Ywi

and Y Yvwi
are within

acceptable limit of error.

VIII. CONCLUSION

In this paper a method to identify dynamic
mathematical models with incomplete (missing)
data was discussed. The method was applied to
a four dimensional HIV vaccination model. The
model parameters and the unknown (missing) data
were restored.

The proposed method gives a direct hint of what
is necessary to measure in practice and what data
can be analytically restored (found).
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Fig. 1. Comparison of the estimated solutions, Y Y wi, with
the “experimental data”, U<3>

i , and the percentage relative
error.
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