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Abstract—In this paper we discuss the algebraic struc-
ture of the space H(X) of finite Hausdorff continuous
interval functions defined on an arbitrary topological space
X . In particular, we show that H(X) is a linear space over
R containing C (X), the space of continuous real functions
on X , as a linear subspace. In addition, we prove that
the order on H(X) is compatible with the linear structure
introduced here so that H(X) is an Archimedean vector
lattice.
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I. INTRODUCTION

Interval functions, and interval analysis in general, is
typically associated with numerical analysis and vali-
dated computing, see for instance [22], [23]. Since the
inception of the field in the 1960s, interval functions
have been used extensively in mathematics and its ap-
plications, including in approximation theory [26], non-
smooth and nonlinear analysis [8], [10], [13], differ-
ential inclusions [9], [12], [16], [17], convex analysis
[13], [25], nonlinear partial differential equations [5],
functional analysis [6] and optimization and optimal
control theory [13], [17]. Furthermore, Interval Analysis,
and Set-Valued Analysis in general, are essential tools
in the design and analysis of mathematical models in
the life sciences. As pointed out in [21], biological
dynamic systems typically involve uncertain data and
/ or parameters, numerical and / or inherent sensitivity
and structural uncertainties which necessitate model val-

idation. Problems related to these issues of uncertainty
and sensitivity, including computing enclosures for sets
of solutions [24] and estimation of parameter ranges
[15], essentially belong to Set-Valued Analysis in general
and are often addressed within the setting of Interval
Analysis. We refer the reader to [21] for more details.

In [4] it was shown that the set H(X) of Hausdorff
continuous (H-continuous) interval functions defined on
an open subset X of Rn is a linear space over R
containing C (X) as a linear subspace. The aim of this
paper is to extend this result to the most general case. In
particular, we will show that H(X) is a linear space over
R for every topological space X . As will be seen, this
extension of the result in [4] requires an entirely new
approach, since the methods used in [4] do not apply in
the general setting considered here.

While the result as such is not entirely unexpected, the
method used in the proof is of intrinsic interest. Indeed,
our method reveals the essential mathematical mecha-
nism that allows the extension of the linear operations
on C (X) to the larger set H(X), namely, a minimality
condition satisfied by H-continuous functions which is
(almost) preserved by pointwise interval arithmetic [3].
Furthermore, our method gives an indication of how
to define algebraic operations on certain spaces of set-
valued maps that take values in a general metrisable
topological vector space. This problem is addressed in
[7] in the case when the domain is a Baire space, while
the method developed here for H-continuous functions
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gives some direction as to how one may proceed in the
case of functions defined on a general topological space.

II. PRELIMINARIES

A. H-continuous Functions

For the convenience of the reader unfamiliar with
Interval Analysis, we now recall those definitions and
results that will be used in subsequent sections. We
denote by IR the set of real intervals, that is

IR= {a = [a,a] : a,a ∈ R, a≤ a} .

For a topological space X , we call a function f : X →
IR locally bounded if for every x ∈ X there exists a
neighbourhood V of x and a constant M ∈ R so that
f (y) ⊆ [−M,M] for every y ∈ V . The set of locally
bounded functions f : X→ IR is denoted as A(X), while
A (X) is the set of real valued locally bounded functions.

Every f ∈A(X) may be identified with a pair of (real
valued) functions f , f ∈A (X) by setting f (x) = inf f (x)
and f (x) = sup f (x), x ∈ X . Clearly f (x) = [ f (x), f (x)]
for each x ∈ X . Conversely, by identifying every a ∈ R
with the degenerate interval [a,a], we may consider
A (X) as a subset of A(X).

The relation

f ≤ g⇔
(
∀ x ∈ X :

f (x)≤ g(x), f (x)≤ g(x)

)
, (1)

with f = [ f , f ], g = [g,g]∈A(X), defines a partial order
on the set A(X). Note that the order (1) extends the usual
pointwise order on A (X).

The Upper and Lower Baire Operators [1], [11], [26]
are mappings S, I : A(X)→A (X) defined by

S( f )(x) = inf{sup{z ∈ f (y) : y ∈V} : V ∈ Vx}

and

I( f )(x) = sup{inf{z ∈ f (y) : y ∈V} : V ∈ Vx},

respectively, with Vx denoting the set of open neigh-
bourhoods at x ∈ X . The Graph Completion Operator
F : A(X)→ A(X) is defined by setting

F( f ) = [I( f ),S( f )], f ∈ A(X).

The operators I, S and F are monotone with respect to
the order (1) on A(X) and the pointwise order on A (X).
That is,

f ≤ g⇒ I( f )≤ I(g), S( f )≤ S(g), F( f )≤ F(g). (2)

Consequently, F is inclusion isotone so that

f (x)⊆ g(x), x ∈ X ⇒ F( f )(x)⊆ F(g)(x), x ∈ X . (3)

Furthermore,

I(I( f )) = I( f ), S(S( f )) = S( f ), F(F( f )) = F( f ) (4)

and

I( f )≤ F( f )≤ S( f ) (5)

for every f ∈ A(X), where we consider the real val-
ued functions I( f ) and S( f ) as interval functions, as
explained previously.

Using the Graph Completion Operator, the following
notions of continuity of interval functions are defined,
see [1], [26].

Definition 2.1: A function f ∈ A(X) is Sendov con-
tinuous (S-continuous) if F( f ) = f .

Definition 2.2: A function f ∈ A(X) is Hausdorff
conitnuous (H-continuous) if f is S-continuous and
f = g for every S-continuous function g so that g(x) ⊆
f (x), x ∈ X .
The set of all S-continuous functions is denoted by F(X)
while H(X) denotes the set of H-continuous functions.

We may note that the Baire operators characterise
lower and upper semi-continuity of real functions. In
particular, for every f ∈A (X) we have

f is lower semi− continuous⇔ I( f ) = f

and

f is upper semi− continuous⇔ S( f ) = f .

Consequently, f = [ f , f ] ∈ A(X) is S-continuous if and
only if f is lower semi-continuous and f is upper semi-
continuous. Therefore if we identify a continuous func-
tion f ∈ C (X) with the (degenerate) interval function
[ f , f ], it is clear that the resulting interval function is S-
continuous and, since its values are degenerate intervals,
it is H-continuous. Conversely, if f = [ f , f ] ∈ H(X) is
such that f (x) is a degenerate interval for every x ∈ X ,
then f = f is a continuous function. In this way we
may identify C (X) in a canonical way with a subset
of H(X), namely, the set of H-continuous functions
with degenerate values at every x ∈ X . We make no
distinction between a continuous function f and the
interval function [ f , f ] so that we consider C (X) as a
subset of H(X).

Recall the following results on H-continuous functions
[1] which will be used in subsequent sections.

Theorem 2.3: The following are equivalent for all f =
[ f , f ] ∈ A(X).
(i) f is H-continuous.

(ii) F( f ) = F( f ) = f .
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(iii) S( f ) = f and I( f ) = f .

Theorem 2.4: If f = [ f , f ] is H-continuous, then the
set

Dε( f ) = {x ∈ X : f − f < ε}

is open and dense in X for every ε > 0.
Theorem 2.5: The functions F(S(I( f ))) and

F(I(S( f )) are H-continuous for every f ∈ A(X).
We may note that if f = [ f , f ] is S-continuous then,

due to (4), we have

F(S(I( f ))) = F(S( f )) = [I(S( f )),S( f )].

Since

f = I( f )≤ I(S( f ))≤ S( f )≤ S( f ) = f

it follows that

F(S(I( f )))(x)⊆ f (x), x ∈ X . (6)

Similarly, F(I(S( f )))(x)⊆ f (x), x ∈ X .

B. Interval Arithmetic

We now recall the arithmetic operations on IR, see
for instance [3]. The sum of two intervals a = [a,a],b =
[b,b] ∈ IR is given by

a+b = [a+b,a+b].

The scalar multiple of a ∈ IR and α ∈ R is defined as

αa = [min{αa,αa},max{αa,αa}].

With respect to addition and scalar multiplication, de-
fined in this way, IR is not a vector space over R. Indeed,
the additive identity in IR is clearly the degenerate
interval 0 = [0,0]. However, if a = [a,a]∈ IR is a proper
interval, that is a 6= a, then a does not have an additive
inverse. However, as is shown in [20], IR does have a
rich algebraic structure. In fact, IR is a quasilinear space
with cancelation law. That is, the following properties are
satisfied for all a,b,c ∈ IR and α,β ∈ R.

(i) a+(b+ c) = (a+b)+ c
(ii) a+b = b+a

(iii) a+b = a+ c⇒ b = c
(iv) α(a+b) = αa+αb
(v) α(βa) = (αβ )a

(vi) 1a = a
(vii) (α +β )a = αa+βa if αβ ≥ 0

III. THE LINEAR SPACE H(X)

The linear structure of C (X) is defined, naturally,
through the pointwise operations

( f +g)(x) = f (x)+g(x), x ∈ X

and
(a f )(x) = a f (x), x ∈ X .

The fact that these operations turn C (X) into a linear
space over R is due to the fact that addition and multi-
plication are continuous operations form R×R to R, and
that R is a linear space over itself. The first condition
implies that C (X) is closed under the operations of
pointwise addition and scalar multiplication, while the
second ensures that the resulting operations satisfy the
axioms of a linear space.

For f ,g ∈ A(X), let us denote by f ⊕g the pointwise
interval sum of f and g. That is,

f ⊕g(x) = f (x)+g(x)
= [ f (x)+g(x), f (x)+g(x)], x ∈ X .

(7)

For α ∈ R, the pointwise product α� f is defined as

α� f (x)
= α f (x)
= [min{α f (x),α f (x)},max{α f (x),α f (x)}].

(8)

We note the following consequence of the fact that IR
is a quasi-linear space over R.

Proposition 3.1: With respect to addition and scalar
multiplication given by (7) and (8), A(X) is a quasilinear
space with cancellation law.

When attempting to extend the pointwise operations
on C (X) to H(X) in this way, one encounters a double
breakdown of the above situation. Firstly, H(X) is not
closed under the pointwise operation of interval addition.

Example 3.2: Consider the functions f ,g ∈ H(R)
given by

f (x) =


0 i f x < 0

[0,1] i f x = 0

1 i f x > 0

and

g(x) =


0 i f x < 0

[−1,0] i f x = 0

−1 i f x > 0
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The pointwise sum of f and g is

f ⊕g(x) =


0 i f x 6= 0

[−1,1] i f x = 0

which is clearly not H-continuous.
It is easily seen that F(X) is closed under the pointwise
interval operations. However, here we encounter the
second breakdown: The pointwise interval operations on
F(X) do not satisfy the axioms of a linear space. This is
due to the fact that, as mentioned in Section II (B), IR
is not a vector space over R.

The main result of this section, namely, that H(X) is
a vector space over R for any topological space X , is a
consequence of the following.

Proposition 3.3: If f = [ f , f ] is S-continuous and the
set

Dε( f ) =
{

x ∈ X : f (x)− f (x)< ε
}

contains an open and dense subset of X for every ε > 0,
then f contains exactly one H-continuous function.

Proof: Since f is S-continuous, it follows from (2),
(3) and (5) that f contains the functions h1 = F(I(S( f )))
and h2 =F(S(I( f ))), and h1≤ h2. According to Theorem
2.5 both h1 and h2 are H-continuous. Suppose that g =
[g,g] is H-continuous and g(x)⊆ f (x), x ∈ X . Then f ≤
g ≤ g ≤ f so that the monotonicity of the operators I
and S (2) and Theorem 2.3 implies that h1 ≤ g ≤ h2.
Therefore it is sufficient to shown that h1 = h2. Suppose
that there exists x0 ∈ X so that h2(x0)> h1(x0). Let M =
(h2(x0) + h1(x0))/2 so that h2(x0) > M > h1(x0). Pick
any ε > 0 so that h2(x0)> M+ε/2 > M−ε/2 > h1(x0).
Since h2 is lower semi-continuous and h1 is upper semi-
continuous, there exists V ∈ Vx0 so that h2(x) > M +
ε/2 > M− ε/2 > h1(x) for every x ∈ V . Then h2(x)−
h1(x)> ε for every x ∈V . According to (2) and (5), f =
S( f )≥ S(I( f )) = h2 ≥ h2 and f = I( f )≤ I(S( f )) = h1 ≤
h1. Therefore f (x)− f (x)≥ h2(x)−h1(x)> ε for every
x ∈V . Since V is open, it follows that Dε( f ) not dense
in X , contrary to the assumption that Dε( f ) contains an
open and dense subset X . Therefore h2(x) ≤ h1(x) for
every x ∈ X . Then, since h1 is upper semi-continuous
and h2 is lower semi-continuous, (2) and Theorem 2.3
imply that

h2 = S(h2)≤ S(h1) = h1

and
h2 = I(h2)≤ I(h1) = h1

so that h2 ≤ h1. Hence h1 = h2.

Corollary 3.4: If f1, ..., fn are H-continuous, then the
function f1⊕ ...⊕ fn contains exactly one H-continuous
function.

Proof: We give a proof for the case when n = 2.
The general case follows in exactly the same way. Let
f = [ f , f ] and g = [g,g] be H-continuous. Therefore f
and g are S-continuous, so that f ,g are lower semi-
continuous while f ,g are upper semi-continuous. Since
the sum of lower (upper) semi-continuous functions are
lower (upper) semi-continuous, it follows that f ⊕ g =
[ f ⊕g, f ⊕g] = [ f +g, f +g] is S-continuous. Fix ε > 0.
It follows from Theorem 2.4 that Dε( f ⊕ g) = {x ∈
X : f ⊕g(x)− f ⊕g(x)< ε} contains an open and dense
subset of X . In particular, D ε

2
( f )∩D ε

2
(g) ⊆ Dε( f ⊕ g).

The result follows from Proposition 3.3.
In view of Corollary 3.4 we define addition in H(X)

as follows.
Definition 3.5: For f ,g ∈ H(X), the sum f + g of f

and g is the unique H-continuous function contained in
f ⊕g.

Theorem 3.6: H(X) is a linear space over R with
addition defined as in Definition 3.5 and scalar multi-
plication given by (8). Furthermore, C (X) is a linear
subspace of H(X).

Proof: Consider f ,g,h ∈ H(X) and α,β ∈ R. De-
note by 0 both the additive identity in R and the H-
continuous function that is identically 0.
H(X) is closed under scalar multiplication. If α = 0,
then α f = α � f = 0, so α f is H-continuous. Suppose
that α > 0. Clearly α f = [α f ,α f ] is S-continuous.
Suppose that f1 = [ f

1
, f 1] ⊆ α f is S-continuous. Then

1
α

f1 = [ 1
α

f
1
, 1

α
f 1] is S-continuous and 1

α
f1 ⊆ f so that

1
α

f1 = f . Hence f1 = α( 1
α
) f1 = α f so that α f is H-

continuous. The case when α < 0 is dealt with in the
same way.
Associativity of addition. Since addition in IR is
associative, it follows that f ⊕ (g⊕ h) = ( f ⊕ g)⊕ h =
f ⊕g⊕g. Now f +(g+h)⊆ f ⊕ (g+h)⊆ f ⊕ (g⊕h) =
f ⊕g⊕h and, similarly, ( f +g)+h⊆ f ⊕g⊕h. It now
follows from Corollary 3.4 that f +(g+h) = ( f +g)+h.
Commutativity of addition. Since f + g ⊆ f ⊕ g =
g⊕ f ⊇ g+ f , it follows from Corollary 3.4 that f +g =
g+ f .
Additive identity. Clearly f +0 = f ⊕0 = f .
Additive inverse. We have f +(−1 f ) ⊆ f ⊕ (−1 f ) =
[ f − f , f − f ] so that 0 ⊆ f ⊕ (−1 f ). Corollary 3.4
implies that f +(−1 f ) = 0.
First distributive law. According to Proposition 3.1,
α( f + g) ⊆ α( f ⊕ g) = (α f )⊕ (αg) ⊇ α f +αg. Thus
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α( f +g) = α f +αg by Corollary 3.4.
Second distributive law. According to Definition 3.5,
α f +β f ⊆ α f ⊕β f . But by Proposition 3.1, α f ⊕β f =
(α + β ) f if αβ ≥ 0 so that, in this case, (α + β ) f =
α f +β f by Definition 2.2. Now suppose that α > 0 and
β < 0. If α +β > 0, then

α f +β f ≤ α f +β f = (α +β ) f ≤ (α +β ) f ≤ α f +β f

so that (α +β ) f ⊆ α f ⊕β f . Corollary 3.4 now implies
that (α + β ) f = α f + β f . The case when α + β ≤ 0
follows in the same way.
Associativity of scalar multiplication. It follows from
Proposition 3.1 that α(β f ) = (αβ ) f .
Multiplicative identity. It follows from (8) that 1 f = f .
If f ,g∈C (X), then f ⊕g = f +g so that C (X) is closed
under addition in H(X), with the sum in H(X) corre-
sponding to the pointwise sum in C (X). Furthermore, in
view of (8), C (X) is closed under scalar multiplication.
Therefore C (X), with the usual pointwise operations, is
a linear subspace of H(X).

Finally we show that H(X) is an Archimedean vector
lattice with respect to the partial order (1), and that C (X)
is a sublattice of H(X).

Theorem 3.7: H(X) is an Archimedean vector lattice
with respect to the partial order (1). Furthermore, C (X)
with the usual pointwise order is a sublattice of H(X).

Proof: First we prove that H(X) is a lattice.
Consider f = [ f , f ],g = [g,g] ∈ H(X) and let h′(x) =
sup{ f (x),g(x)} for every x ∈ X . Since h′ is lower semi-
continuous, it follows from (2) and Theorems 2.3 and
2.5 that h = F(S(h′)) ∈ H(X) and f ,g ≤ h. Suppose
that f ,g≤ p for some p ∈H(X). Then f ,g≤ p so that
h′ ≤ p. Theorem 2.3 and (2) imply that h = I(S(h′)) ≤
I(S(p)) = p. Similarly h ≤ p so that h ≤ p. It therefore
follows that h = sup{ f ,g} in H(X). In the same way
inf{ f ,g} = F(I(h′′) where h′′(x) = inf{ f (x),g(x)} for
every x ∈ X .

Next we show that H(X) is an Archimedean vector
lattice. In this regard, consider f ,g,h ∈ H(X) so that
f ≤ g and a real number α > 0. Since α f = [α f ,α f ] and
αg = [αg,αg] it is clear that α f ≤ αg. Since f ⊕ h =

[ f + h, f + h] is S-continuous, it follows from (6) that
F(S(I( f +h)))(x)⊆ f ⊕h(x), x∈ X . Since, by Corollary
3.4, f ⊕ h contains exactly one H-continuous function,
namely f + h, and F(S(I( f + h))) is H-continuous by
Theorem 2.5, it follows that f +h = F(S(I( f +h))). In
the same way, g+h = F(S(I(g+h))). Since f +h≤ g+
h, it follows from (2) that f +h≤ g+h. Therefore H(X)
is a vector lattice. Since H(X) is Dedekind complete
[1], it follows from [18, Theorem 25.1] that H(X) is

Archimedean.
Lastly we show that C (X) is a vector lattice subspace
of H(X). Since C (X) is a linear subspace of H(X),
it is sufficient to show that C (X) is a sublattice of
H(X), that is, we must show that the lattice operations
in C (X) agree with those in H(X). This is clear from
the respective expressions for sup{ f ,g} and inf{ f ,g} in
H(X).

We may note that Theorems 3.6 and 3.7 are known,
indirectly, for the class of so-called completely regular
weak cb-spaces [19]. The Dedkind completion of an
Archimedean Riesz space is an Archimedean Riesz space
[18]. Anguelov [1] showed that if X is a completely
regular space, then the Dedekind completion of (the
Archimedean Riesz space) C (X) is the set Hcm(X)
of H-continuous functions majorised by a continuous
function. Dăneţ [14] showed that Hcm(X) = H(X) if
and only if X is a weak cb-space. Therefore, if X is
a completely regular weak cb-space, then H(X) is the
Dedekind completion of the Archimedean Riesz space
C (X), and is therefore an Archimedean Riesz space,
and hence also a vector space over R. Here we have
given direct proofs of these algebraic results, in the most
general case.

IV. CONCLUSION

It has been shown that H(X) is a linear space, and in
fact an Archimedean Riesz space, over R for an arbitrary
topological space, generalising a result of Anguelov,
Markov and Sendov [4]. However, this generalisation
required a new approach since the method [4] relies on
the fact that, for X a Baire space, a function f ∈H(X) is
pointvalued and continuous on a dense subset of X . In the
general case considered here, this property does not hold.
Our method may also apply to more general situations,
namely, to spaces of set-valued maps with values in a
metrizable topological vector space.

The result presented in this paper also has implications
for real analysis and the life sciences. In [2] it is shown
that the rational completion of C (X) may be constructed
as a space of (nearly finite) H-continuous functions when
X is completely regular. Our method may be applied
to generalise this result to arbitrary topological spaces.
Furthermore, computations involving uncertainty, which
occurs frequently when modeling phenomena in the life
sciences, need not be restricted to functions with domain
a Baire space.
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