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Abstract— The numerical method for simulation
dynamics of nonlinear epidemic model of age-
structured sub-populations of susceptible, infectious,
precancerous and cancer cells and unstructured
population of human papilloma virus (HPV) is
developed (SIPCV model). Cell population dynamics
is described by the initial-boundary value problem
for the delayed semi-linear hyperbolic equations
with age- and time-dependent coefficients and HPV
dynamics is described by the initial problem for
nonlinear delayed ODE. The model considers two
time-delay parameters: the time between viral entry
into a target susceptible cell and the production of
new virus particles, and duration of the first stage
of delayed immune response to HPV population
growing. Using the method of characteristics and
method of steps we obtain the exact solution of
the SIPCV epidemic model in the form of explicit
recurrent formulae. The numerical method designed
for this solution and used the trapezoidal rule for
integrals in recurrent formulae has a second order

of accuracy. Numerical experiments with vanished
mesh spacing illustrate the second order of accuracy
of numerical solution with respect to the benchmark
solution and show the dynamical regimes of cell-
HPV population with the different phase portraits.

Keywords- SIPCV epidemic model; Age-
structured model; HPV. Numerical epidemiology;
Method of characteristics;

I. INTRODUCTION

Human papilloma virus (HPV) is the most
common sexually transmitted infection that can
cause dysplasia (precancerous tissue) and cervical
cancer [27], [36], [45]. The importance of this
problem in medicine motivated extensive studied
of HPV-epidemic models over the last decades.
The problem is considered at two levels: (i) social
level (trans-mission of HPV between people and
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effectiveness of HPV vaccination of population)
[13], [43], and (ii) molecular or tissue level (cell-
HPV population dynamics) [17], [48], [54]. Early
epidemic models of the second level (ii) are based
on the systems of nonlinear ODE and consider the
dynamics of several compartments-subclasses of
cells and virus. Since viruses are non-living things
which do not replicate their population dynamics
can be efficiently described by the unstructured
models. But such models are not efficient enough
for the cell populations because they neglect the
life history of biological cell as living organ-ism
and provide only restricted description of system
in many applications. The need for integration of
cell life-histories with population dynamics moti-
vates the development of age-structured, and more
generally, physiologically structured, population
models in cell population dynamics and tumor
growth modelling [18], [21], [29], [32], [35], [38],
[39], [40], [41], [42], [44], [47], [49], [50].

The model considered in this paper is based
on the epidemic models studied in [3], [48], and
includes the age-structured models of susceptible,
infective, precancerous, cancer cells populations
and unstructured model of human papilloma virus
population (SIPCV epidemic model). We use the
L. Hayflick limit theory [20] for modelling prolif-
eration in all cell subpopulations. Biological cell
assumed to divide into mother and daughter cells
with different developmental potential [23]. The
model considers life history of mother cells: birth,
maturing up to the age when they can proliferate,
limited number of divisions at the reproductive
age when it gives birth to several daughter cells,
aging up to the final reproductive age and death.
The features of new model are: (i) death rates
of infected, precancerous and cancerous cells do
not depend from the HPV abundance since the
immune response of biological organism is tol-
erant with respect to its own cells [27], [30],
[36], [45]; (ii) death rate of HPV is density-
dependent function due to the immune response on
the virus population growing [27], [36], [45]; (iii)
interaction strength between susceptible and HPV
is a product of the Lotka-Voltera incidence rate

and result in the growth of infective cells [3]; (iv)
infective cells partially move to the precancerous
subclass and partially apoptose when viruses leave
infectious cells and ready to infect new susceptible
cells [31], [48]; (v) precancerous cells move to
the cancer subclass with the non-linear density-
dependent saturated rate [48]; (vi) two time-delay
parameters describe the time between viral entry
into a target susceptible cell and the production
of new virus particles [26] and a duration of the
first stage of delayed immune response to HPV
population growing [27], [36], [45]. Development
of population dynamics models of mathematical
epidemiology necessarily leads to the development
of methods of numerical epidemiology in simula-
tion of cell-virus interaction dynamics.

There are two main approaches to numerical
simulation of physiologically structured models
of population dynamics. The first one uses the
difference-finite or element-finite approximation of
the boundary-initial value problem for the trans-
port equation [1], [7], [10], [19], [34], [44], [51],
[52]. This approach is preferred when solving
the problems with complex equations, complex
domain of definition or/and non-local boundary
conditions for which it is difficult or impossible to
obtain an exact solution. On the other hand, only
biologically correct monotone and conservative
difference schemes are applicable for the transport
and reaction-diffusion equations in practice. Since
in work [33] it was proved that the physically
correct monotone linear difference scheme of the
second order of approximation and higher for the
transport or reaction-diffusion equations does not
exist, one has to design of the new special non-
linear monotone difference schemes of the second
order of approximation and higher for these types
of equations [7], [10], [19]. The second approach
is based on method of characteristics of the theory
of hyperbolic equations of the first order which
reduces the PDE - transport equation to the ODE
of the first order and allows for applying the
corresponding well-known numerical methods to
this equation. This approach includes the escalator
boxcar train (EBT) method [25], method of char-
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acteristics [1], [3], [5], and different combinations
and variations of them [2], [14], [15], [16], [37],
[52], [56]. Numerical methods of this type provide
the biologically correct numerical solution of the
second and higher order of approximation in most
cases. But despite the importance of study and
development of numerical epidemiology nowadays
there are no works with numerical implemen-
tations of such methods for the physiologically
structured epidemic models so far.

Using the method of characteristics [3], [4], [5],
[6], [8], [9], [11], [24], [53], [55], [58] and method
of steps from the theory of delayed differential
equations [12], [28], [46], [57], [59], we obtain an
exact solution of the SIPCV epidemic model. This
solution is given in form of the recurrent formulae
(like in works [3], [4], [8], [55]) in which the
densities of all subpopulations are defined through
the integrals from solution taken at previous in-
stance of time. For this exact solution we create the
numerical method of the second order of accuracy
using the trapezoidal rule [22] for approximation
of all integrals in the recur-rent formulae. The ex-
act solution of the age-structured delayed SIPCV
epidemic system provides us the advantages in
developing of the more fast and accurate numerical
method in comparison with the other methods used
for the age- and size- structured models [1], [5],
[25]. Evaluation of the convergence rate of the
approximate solution to the exact one is considered
in the next paper, the second part of our work.

For illustration of accuracy of the designed
numerical method we evaluate in experiments the
residual of deviation of numerical solution from
the benchmark solution of SIPCV model obtained
for the special particular coefficients of equations
and initial values. Simulations show that the rela-
tive numerical error converges pointwise to zero
with h → 0 (where h is a mesh spacing) by
the quadratic low that illustrates and confirms the
second order of accuracy of numerical solution.
These results are in good agreement with the
evaluations of numerical errors obtained earlier
in experiments [8] with the numerical method
designed for the nonlinear age-structured models

of population dynamics by the same approach.
Numerical experiments with model parameters of
the system reveal two types of the asymptotically
stable dynamical regimes-non-oscillating and os-
cillating dynamics of population when the quan-
tity of cells and HPV converge to the non-trivial
asymptotically stable states of the system. These
dynamical regimes correspond to the localization
of dysplasia (precancer cells) and cancer tumor in
biological tissue without metastases. Overall, the
numerical method obtained in this paper provides
the reliable and accurate theoretical instrument
for simulation and study of age-structured SIPCV
epidemic models.

II. MODEL

We consider a SIPCV epidemic model that
consists of susceptible (noninfected), in-fectious
(without significant changing of morphology, CIN
I and CIN II stages [30], [36]), precancerous
(with changed by virus morphology - dysplasia,
but is differentiable yet, CIN III stage [30],
[36]), cancer (nondifferentiable) cells and human
papilloma virus (HPV) that moves freely between
cells. The age-specific densities of susceptible,
infectious, pre-cancerous and cancer cells are
denoted as S(a, t), I(a, t), P (a, t) and C(a, t).
The dynamics of cell subclasses (subpopulations)
is described by the nonlinear age-structured
model with age- and time-dependent death
rates of susceptible ds(a, t), infectious dq(a, t),
precancerous dr(a, t) and cancer cells dc(a, t)
with maximum lifespan ad, an age reproductive
window of non-cancer cells [ar, am] and cancer
cells [ac, ag], ac < ar, ag < am. We assume
that adaptive behavior of the HPV makes the
immune response of biological organism (both
T-killers cells and humoral immunity) tolerant
with respect to infectious and precancerous cells
and noneffective with respect to cancer cells that
is their death rates does not depend from the HPV
abundance [27], [30], [36]. Organism recognizes
cancer cells as its own and does not at-tempt
to destroy them. Since viruses are not living
things and cannot reproduce (multiply) until
they enter a living cell, we use the ODE model
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instead of age-structured model for describing
the dynamics of HPV quantity V (t). The model
considers the time-dependent recruitment rate
of viruses Λ(t), their density-dependent death
rate dv(V (t − σ)) with delay parameter σ - the
duration of the first stage of delayed immune
response to HPV population growing [36]. The
interaction strength be-tween susceptible and
HPV is a product of the Lotka-Voltera incidence
rate α(a − θ, t − θ)V (t − θ)S(a, t) (α(a, t)
is a time and age dependent infection rate, θ
is a delay parameter (θ < σ) - time between
viral entry into a target cell and the production
of new virus particles [26]), and result in the
growth of infectious cells, with partial move
of them to the precancerous subclass with rate
δ(a, t)I(a, t) (δ(a, t) is a time and age dependent
progression rate from infectious to precancerous
cells - dysplasia). Model considers also the partial
apoptosis of infectious and precancerous cells with

rate n(t)
ad∫
0

(d∗q(a, t)I(a, t) + d∗r(a, t)P (a, t))da,

(where n(t) is a time dependent mean number
of virions produced by one cell, d∗q(a, t) and
d∗r(a, t) are time and age dependent death
rates of infectious and precancerous cells as a
result of virus replication), when viruses leave
destroyed cells and ready to infect new susceptible
cells. We assume that 0 < d∗q(a, t) < dq(a, t),
0 < d∗r(a, t) < dr(a, t), that is some of infectious
and precancerous cells may heal themselves or, at
least, can slow down the replication of the HPV
within themselves and die when they reach the
maximum age or as a result of exposure to some
external factors.

Cancer cells cannot be defined in absolute terms
and usually they are recognized only by the ab-
normal rapid proliferation (ac < ar, ag < am)
when cells do not have time for maturation (”non-
differentiable” cells). Cancer cells differ from the
normal ones in their lack of response to nor-
mal fertility control mechanism [27], [30], [36],
[45]. That is why precancerous cells turn to the
cancer in our model only through the prolifer-
ation when a precancerous cell may divide into

two new cancer ones. Fertility rate of precancer-
ous cells turned to the cancer is proportional to
the density-dependent saturated rate µ(Nr(t)) =
ρNr(t)

1+wNr(t)
[48], where the quantity of precancerous

cells of re-productive age and older is Nr(t) =
ad∫
ar

P (a, t)da, ρ ∈ (0, 1] is a progression rate from

precancerous to cancerous cells, w ≥ 1 is a
coefficient of satura-tion, 0 ≤ µ(Nr) < ρw−1

for Nr ≥ 0. These assump-tions lead to the fol-
lowing age-structured epidemic model in domain
Q = {(a, t) |a ∈ (0, ad), t ∈ (0, T )}:

∂S(a, t)

∂t
+
∂S(a, t)

∂a
= −ds(a, t)S(a, t)

− α(a− θ, t− θ)V (t− θ)S(a, t), (1)
∂I(a, t)

∂t
+
∂I(a, t)

∂a
=−(dq(a, t)+δ(a, t))I(a,t)

+ α(a− θ, t− θ)V (t− θ)S(a, t), (2)
∂P (a, t)

∂t
+
∂P (a, t)

∂a
= −dr(a, t)P (a, t)

+ δ(a, t)I(a, t), (3)
∂C(a, t)

∂t
+
∂C(a, t)

∂a
= −dc(a, t)C(a, t), (4)

∂V (t)

∂t
= Λ(t)− dv(V (t− σ))V (t)

+ n(t)

ad∫
0

(d∗q(a, t)I(a, t)+d∗r(a, t)P (a, t))da (5)

Equations (1) - (5) are completed by the boundary
conditions and initial values:

S(0, t) =

am∫
ar

βs(a, t)S(a, t)da (6)

I(0, t) =

am∫
ar

βq(a, t)I(a, t)da (7)

P (0, t) = (1−µ(Nr(t))

am∫
ar

βr(a,t)P (a,t)da (8)
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C(0, t) =

ag∫
ac

βc(a, t)C(a, t)da

+ µ(Nr(t))

am∫
ar

βr(a, t)P (a, t)da (9)

S(a, 0)=ϕ(a), I(a,0)=P (a,0)=C(a,0)=0 (10)

V (t) = V0(t), t ∈ [−σ, 0], (11)

where the birth (fertility) rates of the suscepti-
ble, infectious, precancerous and cancer cells are
βs(a, t), βq(a, t), βp(a, t) and βc(a, t), respec-
tively; ϕ(a) is an initial density of susceptible
cells, V0(t) is an initial value of HPV quantity.
Function α(a−θ, t−θ) is a rate of infection which
takes into account infection of susceptible cells
over the age θ (survived after incubation period)
at the unit of time:

α(a−θ, t−θ) =

{
0, if a < θ
α0(a, t−θ), if a ≥ θ, (12)

where α0(a, t) is an auxiliary rate of infection
defined for a ∈ [θ, ad], t ∈ [−θ, T−θ]. We impose
the following restrictions on the density-dependent
HPV death rate and cells’ birth and death rates
[27], [30], [31], [36], [45]:

δ(a, t), dc(a, t), dr(a, t), dq(a, t), ds(a, t)>0, (13)

βs(a, t), βq(a, t), βr(a, t), βc(a, t) > 0, (14)

α0(a, t) ≥ 0,Λ(t) ≥ 0, n(t) > 0, (15)

dv(V ) > 0,
∂dv(V )

dV
≥ 0 for V > 0, (16)

ϕ(a) ≥ 0,

ad∫
0

ϕ(a)da > 0, V0(t) ≥ 0 (17)

The positiveness of derivative of density-
dependent death rate of HPV in (15) means that
increasing of HPV quantity changes the charac-
teristics of intracellular space that result in the
organism immune response through the activation
of cell immunity (T-killers) and humoral immunity
(B-lymphocytes) that leads to the elimination of
viruses (i.e. monotone increasing of their death
rate). We assume that all coefficients and ini-
tial values of system (1)-(11) are twice continu-
ously differentiable functions and have the private

derivatives of the second order by all their argu-
ments.

III. SUSCEPTIBLE CELL POPULATION

DYNAMICS

Since the time delay θ in equation (1) provides
the formal linearization, we can apply the method
of steps [3], [28], from the theory of linear delayed
ODE (1), (6), (10) and the method of characteristic
[3], [4], [8], [21], [53], [55] from the theory of
line-ar hyperbolic equations of the first order to
the initial-boundary problem for the quasi-linear
transport equation. Without loss of generality time
cut is covered by the set of consequent time
periods

[tk−1, tk]

(tk = kad, k = 1, ...,K, t0 = 0, tK = T ), and
we define the following sets (Fig. 1):

Q
(1)
k = {(a, t)|t ∈ [(k − 1)ad, a+ (k − 1)ad),

a ∈ [0, ad]} (18)

Q
(2 )
k = {(a, t)|t ∈ [a+ (k − 1)ad, kad],

a ∈ [0, ad]}

where Q =
K⋃
k=1

(
Q

(1)
k

⋃
Q

(2)
k

)
. We define also the

auxiliary set of age intervals:

Ω(k) = {[−a(k)l ,−a(k)l+1]|a
(k)
l = lar + (k − 1)ad,

l = 0, ..., L− 1, a
(k)
L = am + (k − 1)ad,

a
(k)
L+1 = kad} (19)

L =

{
[am/ar] + 1, if am/ar − [am/ar] > 0,
am/ar, if am/ar − [am/ar] = 0,

(20)
where k = 1, ...,K, and [a] - is an integer part of
real number a. Using new characteristic variable
v = a − t, and time t we reduce the problem
(1), (6), (10) to Cauchy problem for the linear
homogeneous delayed ODE:

∂S

∂t
= −ds(v + t, t)S(v + t, t)

− α(v + t− θ, t− θ)V (t− θ)S(v + t, t)
(21)

S(v, 0) = ϕ(v). (22)
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Fig. 1. Splitting of domain Q̄ and the age intervals[
a
(1)
l , a

(1)
l+1

]
, for l = 0, ..., L.

Renewal boundary condition (6) completes the
problem (19), (20). In original variables, solution
of problem (21), (22), has a form (k = 1, ...,K):

S(a, t) =


F

(k−1)
1 (a−t)W1(a−t, tk−1, t),

if (a, t) ∈ Q(1 )
k

F
(k)
1 (a−t)W1(a−t, t−a, t),

if (a, t) ∈ Q(2 )
k ,

(23)

W1(v,tk,t)=e
−

t∫
tk

(ds(v+ξ,ξ)+α(v+ξ−θ,ξ−θ)V (ξ−θ))dξ

(24)
Functions F (k)

1 (a−t) are defined from the initial
(10) and boundary (6) conditions:

F
(0)
1 (v) = ϕ(v), v ∈ [0, ad] (25)

F
(k)
1 (v) = Φ

(k)
1l (v), v ∈

[
−a(k)l ,−a(k)l−1

]
, (26)

l = 1, ..., L+ 1,

where the set of auxiliary functions Φ
(k)
1l (v) is

defined as:

Φ
(k)
11 (u) =

am+u∫
ar+u

βs(v − u,−u)F
(k−1)
1 (v)

W1(v, tk−1,−u)dv (27)

u ∈
[
−a(k)1 ,−a(k)0

]
,

Φ
(k)
1l (u)=

−a(k)
l−2∫

ar+u

βs(v−u,−u)Φ
(k)
1(l−1)(v)W1(v,−v,−u)dv

+

l−3∑
j=0

−a(k)
j∫

−a(k)
j+1

βs(v−u,−u)Φ
(k)
1(j+1)(v)W1(v,−v,−u)dv

+

am+u∫
−a(k)

0

βs(v−u,−u)F
(k−1)
1 (v)W1(v, tk−1,−u)dv,

(28)

u ∈
[
−a(k)l ,−a(k)l−1

]
, l = 2, ..., L,

Φ
(k)
1(L+1)(u) =

am+u∫
ar+u

βs(v − u,−u)F
(k)
1 (v)

W1(v,−v,−u)dv (29)

u ∈
[
−a(k)L+1,−a

(k)
L

]
.

Two parts of the solution (23) have to be linked
continuously, that is S(a, t) ∈ C(Q) at the points
of characteristics a = t − tk−1 in directions a =
const, . By analogy with [3], [4], [8], we can write
the compatibility (continuity) condition of solution
S(a, t) ∈ C(Q) in the form:

ϕ(0) =

am∫
ar

βs(a, 0)ϕ(a)da (30)

where the second term in the right side of Eq. (28)
should be omitted for l = 2, function F

(k)
1 (v) in

Eq. (29) has been already defined on the previous
steps because its argument v ∈ [ar + u, am + u]
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and v > u. The schematic diagram of definition
of the functional sequence Φ

(1)
1l (v) for the example

L = 4 is given in Fig. 2.

IV. INFECTIOUS CELL POPULATION DYNAMICS

Using the same approach as in the previous
section we reduce the problem (2), (7), (10), to
the Cauchy problem for linear nonhomogeneous
delayed ODE:

∂I

∂t
=−d̃q|(v+t, t)I(v+t, t) (31)

+ α(v+t−θ, t− θ)V (t−θ))S(v+t, t)

I(v, 0) = 0, (32)

where d̃q(v, t) = dq(v, t) + δ(v, t), function V (t)
is taken from the previous instant t − θ, func-
tion S(v + t, t) is taken from the previous sec-
tion. Solution of problem (31), (32) has a form
(k = 1, ...,K):

I(a, t) =



F
(k−1)
2 (a− t)W2(a− t, tk−1, t)

+Z
(k−1)
2 (a− t, tk−1, t),

if (a, t) ∈ Q(1)
k ,

F
(k)
2 (a− t)W2(a− t, t− a, t)

+Z
(k)
2 (a− t, t− a, t),

if (a, t) ∈ Q(2)
k ,

(33)

W2(v, tk, t) = exp

− t∫
tk

d̃q(v + ξ, ξ)dξ

 ,

(34)

Z
(k)
2 (v, tk, t) =

t∫
tk

W2(v, ξ, t)α(v + ξ − θ, ξ − θ)

V (ξ − θ)S(v + ξ, ξ)dξ. (35)

Functions F (k)
2 (v) are defined from the initial

(10), and boundary (7) conditions:

F
(0)
2 (v) = 0, v ∈ [0, ad], (36)

F
(k)
2 (v) = Φ

(k)
2l (v), v ∈

[
−a(k)l ,−a(k)l−1

]
, (37)

l = 1, ..., L+ 1,

where the set of auxiliary functions Φ
(k)
2l (v) is

defined as:

Φ
(k)
21 (u)=

am+u∫
ar+u

βq(v−u,−u)(F
(k−1)
2 (v)W2(v, tk−1,−u)

+ Z
(k−1)
2 (v, tk−1,−u))dv, (38)

u ∈
[
−a(k)1 ,−a(k)0

]
,

Φ
(k)
2l (u)=

−a(k)
l−2∫

ar+u

βq(v−u,−u)(Φ
(k)
2(l−1)(v)W2(v,−v,−u)

+ Z
(k)
2 (v,−v,−u))dv

+

l−3∑
j=0

−a(k)
j∫

−a(k)
j+1

βq(v − u,−u)(Φ
(k)
2(j+1)(v)

W2(v,−v,−u) + Z
(k)
2 (v,−v,−u))dv

+

am+u∫
−a(k)

0

βq(v − u,−u)(F
(k−1)
2 (v)

W2(v, tk−1,−u)+Z
(k−1)
2 (v, tk−1,−u))dv,

(39)

u ∈
[
−a(k)l ,−a(k)l−1

]
, l = 2, ..., L,

Φ
(k)
2(L+1)(u)=

am+u∫
ar+u

βq(v−u,−u)(F
(k)
2 (v)W2(v,−v,−u)

+ Z
(k)
2 (v,−v,−u))dv (40)

u ∈
[
−a(k)L+1,−a

(k)
L

]
,

where the second term in the right side of Equa-
tion (39) should be omitted for l = 2, func-
tion F

(k)
2 (v) in Eq. (40) has been already de-

fined on the previous steps be-cause its argument
v ∈ [ar + u, am + u] and v > u (see exam-
ple in Fig.2). Since I(a, t) has the trivial initial
value, two parts of the solution (33) satisfy the
compatibility (continuity) condition of solution,
I(a, t) ∈ C(Q).
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Fig. 2. Schematic diagram of definition of the sequence Φ
(1)
1l (v), l = 1, ..., L+ 1, L = 4.

V. PRECANCEROUS CELL POPULATION

DYNAMICS

The problem (3), (8), (10) is reduced to the
Cauchy problem for nonlinear non-homogeneous
ODE

∂P

∂t
= −dr(v + t, t)P (v + t, t)

+ δ(v + t, t)I(v + t, t) (41)

P (v, 0) = 0, (42)

where I(v+t, t) is taken from the previous section.
Function µ(v+t−σ,NP (t)) will be defined below
in the recurrent formulae for the travelling wave
solution.

Solution of problem (41), (42) has a form (k =
1, ...,K):

P (a, t) = P (v, t)

=



F
(k−1)
3 (a− t)W3(a− t, tk−1, t)

+Z
(k−1)
3 (a− t, tk−1, t),

if (a, t) ∈ Q(1 )
k ,

F
(k)
3 (a− t)W3(a− t, t− a, t)

+Z
(k)
3 (a− t, t− a, t),

if (a, t) ∈ Q(2 )
k , ,

(43)

W3(v, tk, t) = exp

− t∫
tk

dr(v + ξ, ξ)dξ

 ,

(44)

Z
(k)
3 (v, tk−1, t) =

t∫
tk−1

W3(v, ξ, t)δ(v + ξ, ξ)

I(v + ξ, ξ)dξ (45)

Functions F (k)
3 (v) and NP (ξ) are defined from

the initial (10) and boundary (8) conditions:

F
(0)
3 (v) = 0, v ∈ [0, ad] (46)

F
(k)
3 (v) = Φ

(k)
3l (v), v ∈

[
−a(k)l ,−a(k)l−1

]
, (47)

l = 1, ..., L+ 1,

where the auxiliary functions Φ
(k)
3l (v) are defined

as:

Φ
(k)
31 (u) = (1− µ(Nr(−u)))

am+u∫
ar+u

βr(v − u,−u)

(
F

(k−1)
3 (v)W3(v, tk−1,−u)

+Z
(k−1)
3 (v, tk−1,−u)

)
dv, (48)

u ∈
[
−a(k)1 ,−a(k)0

]
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Np(−u) =

ad+u∫
ar+u

(
F

(k−1)
3 (v)W3(v, tk−1,−u)

+Z
(k−1)
3 (v, tk−1,−u)

)
dv, u∈ [−a(k)1 ,−a

(k)
0 ],

(49)

Φ
(k)
3l (u) = (1− µ(Nr(−u)))( −a(k)

l−2∫
ar+u

βr(v−u,−u)
(

Φ
(k)
3(l−1)(v)W3(v,−v,−u)

)
+Z

(k)
3 (v,−v,−u)

)
dv

l−3∑
j=0

−a(k)
j∫

−a(k)
j+1

βr(v − u,−u)
(

Φ
(k)
3(j+1)(v)

W3(v,−v,−u) +Z
(k)
3 (v,−v,−u)

)
dv

+

am+u∫
−a(k)

0

βr(v − u,−u)
(
F

(k−1)
3 (v)

W3(v, tk−1,−u)+Z
(k−1)
3 (v, tk−1,−u)

)
dv

)
u ∈

[
−a(k)l ,−a(k)l−1

]
, l = 2, ..., L (50)

Np(−u) =

−a(k)
l−2∫

ar+u

(
Φ
(k)
3(l−1)(v)W3(v,−v,−u)

+Z
(k)
3 (v,−v,−u)

)
dv

+

l−3∑
j=0

−a(k)
j∫

−a(k)
j+1

(
Φ
(k)
3(j+1)(v)W3(v,−v,−u)

+Z
(k)
3 (v,−v,−u)

)
dv

+

ad+u∫
−a(k)

0

(
F

(k−1)
3 (v)W3(v, tk−1,−u)

+Z
(k−1)
3 (v, tk−1,−u)

)
dv, (51)

u ∈
[
−a(k)l ,−a(k)l−1

]
, l = 2, ..., L.

Φ
(k)
3(L+1)(u) = 2(1− µ(Np(−u)))

am+u∫
ar+u

βr(v−u,−u)F
(k)
3 (v)W3(v,−v,−u)

+Z
(k)
3 (v,−v,−u)

)
dv, (52)

u ∈
[
−a(k)L+1,−a

(k)
L

]
,

Np(−u) =

ad+u∫
ar+u

(
F

(k)
3 (v)W3(v,−v,−u)

+Z
(k)
3 (v,−v,−u)

)
dv (53)

u ∈
[
−a(k)L+1,−a

(k)
L

]
,

where the second term in the right side of Eqs.
(50), (51) should be omitted for l = 2, function
F

(k)
3 (v) in Eqs. (52), (53) has been already de-

fined on the previous steps because its argument
v ∈ [ar + u, am + u] and v > u (see example in
Fig.2). Because the initial value of P (a, t) is triv-
ial, solution (43) satisfies the compatibility (conti-
nuity) condition of solution, P (a, t) ∈ C(Q).

VI. CANCER CELL POPULATION DYNAMICS

Since cancer cells have a specific age reproduc-
tive window [ac, ak] differed from the one of non-
cancer cells, we introduce a new auxiliary set of
age intervals for the problem (4), (9), (10):

Ω̃(k) =
{[
−ã(k)l ,−ã(k)l+1

] ∣∣∣ã(k)l = lac + (k − 1)ad,

l = 0, ..., L− 1, ã
(k)
L = ag + (k − 1)ad, ã

(k)
L+1

= kad} (54)

L̃=

{
[ag/ac]+1, if ag/ac−[ag/ac]>0,
ag/ac, if ag/ac − [ag/ac] = 0,

(55)
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where k = 1, ...,K, and [a] - is an integer part of
real number a. In new characteristic variable v =
a− t = const problem (4), (9), (10) is reduced to
the Cauchy problem for linear homogeneous ODE:

∂C

∂t
= −dc(v + t, t) C(v + t, t) (56)

C(v, 0) = 0, (57)

where function µ(NP (t − σ)) is taken from the
previous instant of time, P (a, t) is taken from the
previous section. Solution of problem (56), (57)
has a form (k = 1, ...,K):

(a, t) = (v, t) (58)

=


F

(k−1)
4 (a− t)W4(a−t, tk−1, t),

if (a, t) ∈ Q(1 )
k ,

F
(k)
4 (a−t)W4(a−t, t−a, t),

if (a, t) ∈ Q(2 )
k ,

(59)

W4(v, tk, t) = exp

− t∫
tk

dc(v + ξ, ξ)dξ

 .

(60)

Functions F (k)
4 (v) are defined from the initial (10)

and boundary (9) conditions:

F
(0)
4 (v) = 0, v ∈ [0, ad] (61)

F
(k)
4 (v) = Φ

(k)
4l (v), v ∈

[
−ã(k)l ,−ã(k)l−1

]
,

l = 1, ..., L̃+ 1, (62)

where the auxiliary functions Φ
(k)
4l (v) are defined

as:

Φ
(k)
41 (u) =

ag+u∫
a+u

βc(v − u,−u)F
(k−1)
4 (v)

W4(v, tk−1,−u)dv + µ(Np(−u))

×
am+u∫
ar+u

βp(v − u,−u)P (v − u,−u)dv,

(63)

u ∈
[
−a(k)1 ,−a(k)0

]
,

Φ
(k)
4l (u) =

−ã(k)
l−2∫

a+u

β(v − u,−u)Φ
(k)
4(l−1)(v)

W4(v,−v,−u)dv+

l−3∑
j=0

−ã(k)
j∫

−ã(k)
j+1

β(v−u,−u)

× Φ
(k)
4(j+1)(v)W4(v,−v,−u)dv

+

ag+u∫
−ã(k)

0

βc(v − u,−u)F
(k−1)
4 (v)

W4(v, tk−1,−u)dv + µ(Np(−u))
am+u∫
ar+u

βp(v − u,−u)P (v − u,−u)dv,

(64)

u ∈
[
−ã(k)l ,−ã(k)l−1

]
, l = 2, ..., L̃,

Φ
(k)

4(L̃+1)
(u) =

ag+u∫
ac+u

βc(v − u,−u)F
(k)
4 (v)

W4(v,−v,−u)dv + µ(Np(−u))

×
am+u∫
ar+u

βp(v−u,−u)P (v−u,−u)dv,

(65)

u ∈
[
−ã(k)

L̃+1
,−ã(k)

L̃

]
,

where the second term in the right side of Equa-
tion (62) should be omitted for l = 2, function
F

(k)
4 (v) in Eq. (63) has been already defined on

the previous steps be-cause its argument v ∈
[ac + u, ag + u] and v > u (see example in Fig.2).
Because the initial value of C(a, t) is trivial, so-
lution (57) satis-fies the compatibility (continuity)
condition of solution, C(a, t) ∈ C(Q).

VII. HPV POPULATION DYNAMICS

Nonlinear death rate dv(V ) of Cauchy problem
for nonlinear delayed ODE (5), (11), satisfies
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restrictions (16) and, hence, it is a locally Lipschitz
continuous function. Hence, the unique smooth
solution of problem (5), (11) exists and can be
ob-tained by the method of steps [28]:

V (t) = V (0) exp

− t∫
0

dv(V (ξ − σ))dξ


+

t∫
0

exp

− t∫
η

dv(V (ξ − σ))dξ

(Λ(η)

+ n(η)

ad∫
0

(d∗q(a, η)I(a− η, η) + d∗p(a, η)

P (a− η, η))da) dη, (66)

where functions I(a, t) and P (a, t) are taken from
the previous sections. Overall, the results obtained
above are summarized in the Theorem 1.

Theorem 1. Let the coefficients of SIPCV epi-
demic system (1)-(11) satisfy conditions (12)-(17)
and initial value ϕ(a) satisfies the compatibility
condition (30), then the unique continuous solution
of problem (1)-(11), P (a, t) ∈ C(Q̄), C(a, t) ∈
C(Q̄), V (t) ∈ C([0, T ]) exists and can be ob-
tained by explicit recurrent formulae (23)-(29),
(33)-(40), (43)-(53), (58)-(65),, (66), respectively.

VIII. NUMERICAL IMPLEMENTATIONS

The numerical age-specific densities Sji , Iji , P ji ,
Cji of susceptible, infectious, precancerous, cancer
cells, respectively, are de-fined in the nodes of
uniform grid

ω̄h = {(ai, tj) |ai = ih , i = 1, ..., N, tj = jh,

j = 1, ...,M,N = ad/h,M = T/h} .

The mesh spacing h, the same for the variables
a and t, is chosen so that 0 < h ≤ min(θ, ac),
θ/h − [θ/h] = 0, ac/h − [ac/h] = 0, ar/h −
[ar/h] = 0, ag/h− [ag/h] = 0, am/h− [am/h] =
0, ad/h− [ad/h] = 0. In this case each point

a
(k)
l ∈ Ω(k)

(Eq. (19)) and
ã
(k)
l ∈ Ω̃(k)

(Eq. (54)) coincides always with some point tj .
The numerical HPV quantity Vj is defined at the
points tj . We introduce the special i- and M -
indexes: ic = ac/h, ir = ar/h, ig = ag/h,
im = am/h, Mθ = T/θ. Numerical density of
susceptible cells Sji is defined from Eq. (23):

S0
i = ϕ(ai), i = 0, ..., N, j = 0, (67)

for k = 1:

Sji =



(
F

(0)
1

)
i−j

(W01)
j
i−j, 0 ,

if 1 ≤ j < i ≤ N,(
F

(1)
1

)
j−i

(W1)
j
j−i, j−i ,

if 0 ≤ i ≤ j ≤ N,

(68)

for k > 1:

Sji =



(
F

(k−1)
1

)
j−(k−2)N−i

(W1)
j
j−i (k−1)N ,

if 1 ≤ (j − (k − 1)N) < i,(
F

(k)
1

)
j−(k−1)N−i

(W1)
j
j−i ,j−i ,

if i ≤ (j − (k − 1)N) ≤ N,

(69)

where
(
F

(k)
1

)
l
, (W01)

j
i,p, and (W1)

j
i,p are given:(

F
(0)
1

)
l

= ϕ(al), l = 0, ..., N, (70)(
F

(k)
1

)
l

= Tr

(
g
(k)
1 , e

(k)
1 , ir, im, l

)
, (71)

k ≥ 1, l = 0, ..., N,

(
g
(k)
1

)
l,i
=



βs(ai, tl)
(
F

(0)
1

)
i−l

(W01)
l
i−l,0 ,

if k = 1,

βs(ai, tl+(k−1)N )
(
F

(k−1)
1

)
l−i+N

(W1)
l+(k−1)N
l+(k−1)N−i, (k−1)N ,

if k > 1,

(72)

(
e
(k)
1

)
l,i

= βs(ai, tl+(k−1)N )
(
F

(k)
1

)
l−i

(W1)
l+(k−1)N
l+(k−1)N−i,l+(k−1)N−i , (73)

k = 1, ...,K,
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(W01)
j
i,0 = exp

(
−0.5h

(
(f1)

0
i +

(
f
(0)
1

)j
i+j

)
−

h

j−1∑
l=1

(f1)
l
i+l

)
, (74)

(W1)
j
i,p=


1, if j = p,

exp
(
−0.5h

(
(f1)

p
p−i+(f1)

j
j−i

)
−h

j−1∑
l=p+1

(f1)
l
l−i

)
, if j > p,

(75)

(f1)
j
i = ds(ai, tj) + α(ai − θ, tj − θ)Ṽ (tj − θ),

(76)

where we use the trapezoidal rule [22] for approx-
imating the integrals in Eqs. (27)-(29) with the
order of approximation O(h2):

Tr(x,y,ir,im,l)=



h
(

0.5
(

(x)l,ir+(x)l,im

)
+

im−1∑
i=ir+1

(x)l,i

)
,

if 0 ≤ l ≤ ir,
h
(

0.5
(

(x)l,ir+(x)l,l

)
+

l−1∑
i=ir+1

(x)l,i

)
+h
(

0.5
(

(y)l,l+(y)l,im

)
+

im−1∑
i=l+1

(y)l,i

)
,

if ir < l < im,

h
(

0.5
(

(y)l,ir +(y)l,im

)
+

im−1∑
i=ir+1

(y)l,i

)
,

if im ≤ l ≤ N,

(77)

The smooth function Ṽ (tj − θ) is obtained
from the initial value V0(t) and numerical virus
density V j by parabolic interpolating procedure

[22]. We imply here that sums like
j∑
i=l

fi in all

equations are omitted if j < l. The numerical func-
tion

(
F

(k)
1

)
l

depends from the numerical function

(
e
(k)
1

)
li

(Eqs. (71), (73)) which uses the value of(
F

(k)
1

)
i−l

obtained at the previous steps (index
l > i − l in Eq.(72)). The numerical density of
infectious cells I1i is given:

I0i = 0, i = 0, ..., N, j = 0, (78)

for k = 1:

Iji =


(
Z

(0)
2

)j
i−j ,0

if 1 ≤ j < i ≤ N,(
F

(1)
2

)
j−i

(W2)
j
j−i ,j−i+

(
Z

(1)
2

)j
j−i,j−i

,

if 0 ≤ i ≤ j ≤ N,

(79)

for k > 1:

Iji =



(
F

(k−1)
2

)
j−(k−2)N−i

(W2)
j
j−i,(k−1)N

+
(
Z

(k−1)
2

)j
j−i, (k−1)N

,

if 1 ≤ (j − (k − 1)N) < i,(
F

(k)
2

)
j−(k−1)N−i

(W2)
j
j−i,j−i

+
(
Z

(k)
2

)j
j−i,j−i

,

if i ≤ (j − (k − 1)N) ≤ N,

(80)

where
(
F

(k)
2

)
i
, (W2)

j
i,p and

(
Z

(k)
2

)j
i,p

are given:

(
F

(0)
2

)
l

= 0, l = 0, ..., N, (81)(
F

(k)
2

)
l

= Tr

(
g
(k)
2 , e

(k)
2 , ir, im, l

)
, (82)

k ≥ 1, l = 0, ..., N,

(
g
(k)
2

)
l,i
=



βq(ai, tl)
(
Z

(0)
2

)l
i−l,0

, if k = 1,

βq(ai, tl+(k−1)N )

((
F

(k−1)
2

)
l−i+N

(W2)
l+(k−1)N
l+(k−1)N−i,(k−1)N

+
(
Z

(k−1)
2

)l+(k−1)N

l+(k−1)N−i,(k−1)N

)
,

if k > 1,

(83)
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e
(k)
2

)
l,i

= βq(ai, tl+(k−1)N )

((
F

(k)
2

)
l−i

(W2)
l+(k−1)N
l+(k−1)N−i,l+(k−1)N−i

+
(
Z

(k)
2

)l+(k−1)N

l+(k−1)N−i,l+(k−1)N−i

)
,

(84)

k = 1, ...,K,

(W02)
j
i,0 = exp

(
−0.5h

(
d̃q(ai, t0) + d̃q(ai+j , tj)

)
−h

j−1∑
l=1

d̃q(ai+l, tl)

)
(85)

(W2)
j
i,p=



1, if j = p,

exp
(
−0.5h

(
d̃q(ap−i, tp)

+d̃q(aj−i, tj)
)

−h
j−1∑
l=p+1

d̃q(al−i, tl)

)
, if j > p,

(86)

(
Z

(0)
2

)j
i,0

= 0.5h
(

(f02)
j
i,0 + (f02)

j
i,j

)
+ h

j−1∑
l=1

(f02)
j
i,l, i = j, ..., N, (87)

(
Z

(k)
2

)j
i,p

=



0, if j = p,

0.5h
(

(f2)
j
i,p + (f2)

j
i,j

)
+h

j−1∑
l=p+1

(f2)
j
i,l, i = 1, ..., N,

if j > p,

(88)

(f02)
j
i,p=(W02)

j
i,pα(ai+p−θ, tp−θ)Ṽ (tp−θ)Spi+p,

(89)

(f2)
j
i,p=(W2)

j
i,pα(ap−i−θ, tp−θ)Ṽ (tp−θ)Spp−i,

(90)

where in Eqs.(82), (86), (88), we use the trape-
zoidal rule [22] for approximating the inte-grals
with the order of approximation O(h2). The nu-
merical density of precancerous cells P ji is given:

P 0
i = 0, i = 0, ..., N, j = 0, (91)

for k = 1:

P ji =


(
Z

(0)
3

)j
i−j,0

, if 1 ≤ j < i ≤ N,(
F

(1)
3

)
j−i

(W3)
j
j−i,j−i+

(
Z

(1)
3

)j
j−i,j−i

,

if 0 ≤ i ≤ j ≤ N,

(92)

P ji =



(
F

(k−1)
3

)
j−(k−2)N−i

(W3)
j
j−i, (k−1)N

+
(
Z

(k−1)
3

)j
j−i,(k−1)N

,

if 1 ≤ (j − (k − 1)N) < i,(
F

(k)
3

)
j−(k−1)N−i

(W3)
j
j−i,j−i

+
(
Z

(k)
3

)j
j−i,j−i

,

if i ≤ (j − (k − 1)N) ≤ N,

(93)

where
(
F

(k)
3

)
i
, (W3)

j
i,p and

(
Z

(k)
3

)j
i,p

are given:

(
F

(0)
3

)
l

= 0, l = 0, ..., N. (94)(
F

(k)
3

)
l

= (1− µ(k)l )Tr

(
g
(k)
3 , e

(k)
3 , ir, im, l

)
,

k ≥ 1, l = 1, ..., N, (95)

µ
(k)
l = Tr

(
g̃
(k)
3 , ẽ

(k)
3 , ir, id, l

)
, k ≥ 1 (96)

(
g
(k)
3

)
l,i

=



βr(ai, tl)
(
Z

(0)
3

)l
i−l,0

, if k = 1,

βr(ai, tl+(k−1)N )

((
F

(k−1)
3

)
l−i+N

(W3)
l+(k−1)N
l+(k−1)N−i,(k−1)N

+
(
Z

(k−1)
3

)l+(k−1)N

l+(k−1)N−i,(k−1)N

)
if k > 1,

(97)

(
e
(k)
3

)
l,i

= βr(ai, tl+(k−1)N )

((
F

(k)
3

)
l−i

(W3)
l+(k−1)N
l+(k−1)N−i,l+(k−1)N−i

+
(
Z

(k)
3

)l+(k−1)N

l+(k−1)N−i,l+(k−1)N−i

)
,

(98)
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(
g
(k)
3

)
l,i

=



(
Z

(0)
3

)l
i−l,0

, if k = 1,(
F

(k−1)
3

)
l−i+N

(W3)
l+(k−1)N
l+(k−1)N−i,(k−1)N

+
(
Z

(k−1)
3

)l+(k−1)N

l+(k−1)N−i,(k−1)N
,

if k > 1,

(99)

(
ẽ
(k)
3

)
l,i

=
(
F

(k)
3

)
l−i

(W3)
l+(k−1)N
l+(k−1)N−i,l+(k−1)N−i

+
(
Z

(k)
3

)l+(k−1)N

l+(k−1)N−i,l+(k−1)N−i
, (100)

(W03)
j
i,0 = exp (−0.5h (dr(ai, t0) + dr(ai+j , tj))

−h
j−1∑
l=1

dr(ai+l, tl)

)
, (101)

(W3)
j
i,p=



1, if j = p,
exp (−0.5h (dr(ap−i, tp)
+dr(aj−i, tj))

−h
j−1∑
l=p+1

dr(al−i, tl)

)
, if j > p,

(102)

(
Z

(0)
3

)j
i,0

= 0.5h
(

(f03)
j
i,0 + (f03)

j
i,j

)
+ h

j−1∑
l=1

(f03)
j
i,l, i = j, ..., N, (103)

(
Z

(k)
3

)j
i,p

=



0, if j = p,

0.5h
(

(f3)
j
i,p + (f3)

j
i,j

)
+h

j−1∑
l=p+1

(f3)
j
i,l, i = 1, ..., N,

if j > p,

(104)

(f03)
j
i,p = (W03)

j
i,p δ(ai+p, tp)I

p
i+p, (105)

(f3)
j
i,p = (W3)

j
i,p δ(ap−i, tp)I

p
p−i, (106)

where we use in Eqs.(95), (96), (101) - (104) the
trapezoidal rule [22] for approximating the inte-
grals with accuracy O(h2). The numerical density
of cancer cells Cji is given:

C0
i = 0, i = 0, ..., N, j = 0, (107)

for k = 1:

Cji =


0, if 1 ≤ j < i ≤ N,(
F

(1)
4

)
j−i

(W4)
j
j−i,j−i ,

if 0 ≤ i ≤ j ≤ N,
(108)

for k > 1:

Cji=



(
F

(k−1)
4

)
j−(k−2)N−i

(W4)
j
j−i, (k−1)N ,

if 1 ≤ (j − (k − 1)N) < i,(
F

(k)
4

)
j−(k−1)N−i

(W4)
j
j−i,j−i ,

if i ≤ (j − (k − 1)N) ≤ N,

(109)

where
(
F

(k)
4

)
i

and (W4)
j
i,p are given:(

F
(0)
4

)
l

= 0, l = 0, ..., N, (110)

(
F

(k)
4

)
l

= Tr

(
g
(k)
4 , e

(k)
4 , ic, in, l

)
+ µ

(k)
l h(

P
l+(k−1)N
ir

βr(ar, tl+(k−1)N )

+ P
l+(k−1)N
im

× βr(am, tl+(k−1)N )

+2

im−1∑
p=ir+1

P l+(k−1)N
p βr(ap, tl+(k−1)N )

 ,

k ≥ 1, l = 1, ..., N, (111)

(
g
(k)
4

)
l,i
=


0, if k = 1,

βc(ai, tl+(k−1)N )
(
F

(k−1)
4

)
l−i+N

(W4)
l+(k−1)N
l+(k−1)N−i,(k−1)N , if k > 1,

(112)

(
e
(k)
4

)
l,i

= βc(ai, tl+(k−1)N )
(
F

(k)
4

)
l−i

(W4)
l+(k−1)N
l+(k−1)N−i,l+(k−1)N−i (113)
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(W4)
j
i,p=



1, if j = p,
exp (−0.5h (dc(ap−i, tp)
+dc(aj−i, tj))

−h
j−1∑
l=p+1

dc(al−i, tl)

)
, if j > p,

(114)

where we use in Eqs. (111), (114) the trape-
zoidal rule [22] for approximating the integrals
with accuracy O(h2). The exact solution (66) of
initial problem (5), (11) for HPV density can be
written in a more convenient form for numerical
implementation:

V (t) = V (t− h) exp

− t∫
t−h

dv(V (ξ − σ))dξ


+

t∫
t−h

exp

− t∫
η

dv(V (ξ − σ))dξ

(Λ(η)+

n(η)

ad∫
0

(d∗q(a, η)I(a, η)+d∗r(a, η)P (a, η))da

)
dη.

(115)

Using the trapezoidal rule [22] for approximat-
ing the integrals in Eq. (115) yields the numerical
density of virus population:

V j = V j−1 exp
(
−0.5h

(
dv(Ṽ (tj − σ))

+dv(Ṽ (tj−1 − σ))
))

+ 0.5h
(

(g5)
j

+ (g5)
j−1 exp

(
−0.5h

(
dv(Ṽ (tj − σ))

+dv(Ṽ (tj−1 − σ))
)))

, (116)

(g5)
j = Λ(tj) + n(tj)

(
0.5h((e5)

j
0 + (e5)

j
id

)

+h

id−1∑
i=1

(e5)
j
i

)
, (117)

(e5)
j
i = d∗q(ai, tj)I

j
i + d∗r(ai, tj)P

j
i . (118)

The above results lead to the following Theo-
rem.

Theorem 2. Let the conditions of the The-
orem 1 are hold. The numerical method for
the recurrent formulae (23)-(30), (33)-(40), (43)-
(53), (58)-(66) - exact solution of the Sys-
tem (1)-(11), developed for the uniform grid
ω̄h = {(ai, tj) |ai = ih , i = 1, ..., N, tj = jh,
j = 1, ...,M,N = ad/h,M = T/h} is given by
Eqs. (67)-(118). The method is based on the trape-
zoid rules and approximates the exact solution of
the System (1)-(11) with accuracy ψ = O(h2).

Along with the study of the order of approxima-
tion of numerical method it is im-portant to obtain
the estimations of the velocity of conversation of
numerical solution to exact one. This question is
studied in the next, second part of our paper. In
the next section we consider a series of numerical
experiments which illustrate the theoretical results
ob-tained in Theorems 1 and 2.

IX. NUMERICAL EXPERIMENTS

The theoretical results obtained in Theorem 2
are illustrated by the numerical experiments. In the
first group of experiments we study the residual
as a measure of deviation of obtained numerical
solution from some benchmark solution of System
(1)-(11) taken from [8], [37], [56]. It is easy to
verify by direct substitution that functions

S(a, t) = I(a, t) = P (a, t) = C(a, t)

= exp(−εa)(1 + exp(−t))−1, (119)

V (t) = (2σ + t)0.5, (120)

are exact solution of the system (1)-(11) with the
following particular coefficients and initial values:

βs(a, t)=βq(a, t)=ε(exp(−εar)−exp(−εam))−1

= const, (121)

µ(t) = ρ (ε (1 + exp(−t)) (exp(−εar)

− exp(−εad))−1 + w
)
, (122)

βr(t)=ε(1−µ(t))−1(exp(−εar)−exp(−εam))−1,
(123)

βc(t)=(ε−µ(t)βr(t) (exp(−εar)−exp(−εam)))

×(exp(−εac)−exp(−εag))−1, (124)
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ds(t)=ε−α(1+exp(−t))−0.5−(1 + exp(t))−1,
(125)

dq(t)=ε+ α(1 + exp(−t))−0.5 − δ
− (1 + exp(t))−1, (126)

dr(t) = ε+ δ − (1 + exp(t))−1, (127)

d∗q(t) = 0.2dq(t), (128)

d∗r(t) = 0.2dr(t), (129)

dc(t) = ε− (1 + exp(t))−1, (130)

dv(V (t− σ)) = 0.05(1 + V (t− σ))0.5, (131)

Λ(t) = 0.5(2σ + t)−0.5

+ 0.05
(

1 + (σ + t)0.5
)0.5

(2σ + t)0.5

− nε−1
(
d∗q(t) + d∗r(t)

)
×(1−exp(−εad)) (1+exp(−t))−1, (132)

S(a, 0) = I(a, 0) = P (a, 0)

= C(a, 0) = 0.5 exp(−εa), (133)

V0(t) = (2σ + t)0.5, t ∈ [−σ, 0]. (134)

Exact solutions (119) satisfy the continuity condi-
tion (30) and conditions:

I(0, 0) =

am∫
ar

βs(a, 0)I(a, 0)da, (135)

P (0, 0) = (1− µ(Nr(0))

am∫
ar

βr(a, 0)P (a, 0)da,

(136)

C(0, 0) =

ag∫
ac

βc(a, 0)C(a, 0)da

+ µ(Nr(0))

am∫
ar

βr(a, 0)P (a, 0)da. (137)

The set of constants used in experiments is
given in Table I. Our goal here is to pro-vide a
detailed description of the numerical experiments
and obtained numerical results which will help the

potential users to evaluate the numerical method of
characteristics and increase the chances of its im-
plementation in simulation of epidemic dynamics
in various applications.

TABLE I
SET OF CONSTANTS

Constant Value Constant Value
ar 0.3 σ 0.2
am 0.9 n 1.5
ac 0.1 α 0.01
ag 0.4 δ 0.01
ad 1 ρ 0.1
T 10 w 0.5
θ 0.1 ε 4

The time of simulation in all experiments equals
to 10 cell’s lifespan T = 10ad. Deviation of the
numerical solution Y j

i = (Sji , I
j
i , P

j
i , C

j
i )

from the benchmark one Y (ai, tj) =
(S(ai, tj), I(ai, tj), P (ai, tj), C(ai, tj)) and V j

from V (tj) with x = h/ad → 0 (dimensionless
parameter) is measured by the two dimensionless
norms of functional spaces H and C [8], [51]:

δ
(1)
H (Y )=

M∑
j=0

N∑
i=0

∣∣∣Y j
i −Y (ai, tj)

∣∣∣
M∑
j=0

N∑
i=0

∣∣∣Y j
i

∣∣∣
−1

,

(138)

δ
(1)
C (Y )= max

0≤i≤N
0≤j≤M

∣∣∣Y j
i −Y (ai, tj)

∣∣∣
 max

0≤i≤N
0≤j≤M

∣∣∣Y j
i

∣∣∣
−1

,

(139)

δ
(2)
H (V )=

M∑
j=0

∣∣V j − V (tj)
∣∣ M∑

j=0

∣∣V j
∣∣−1

, (140)

δ
(2)
C (V )= max

0≤j≤M

∣∣V j − V (tj)
∣∣ ( max

0≤j≤M

∣∣V j
∣∣)−1

,

(141)

All program projects were created in Microsoft
Visual C 2019, platform Microsoft .Net Frame-
work and were launched on a PC (CPU i5 of 8-
th generation 1.6 GHz, RAM 16 Gb). The results
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of numerical experiments are presented in Table 2
and are shown in Fig. 3 ( � - the values of δ(1)H (S),
δ
(1)
C (S) from Table II depending from x = h/ad, -

- - - the graphs of corresponding regressions y(x)

(with denoted equations)), Fig. 4 (δ(1)H (I), δ(1)C (I)

and y(x)), Fig. 5 (δ(1)H (P ), δ(1)C (P ) and y(x)), Fig.
6 (δ(1)H (C), δ(1)C (C) and y(x)) and Fig. 7 (δ(2)H (V ),
δ
(2)
C (V ) and y(x)). The session time of simulation
Ts (sec) (diagnostic session time of Microsoft
Visual C 2019) depending from parameter x in
each numerical experiment is shown in Table III.

TABLE II
THE VALUES OF δ

(1)
H (Y ), δ(1)C (Y ),

Y j
i = (Sj

i , I
j
i , P

j
i , C

j
i ), AND δ

(2)
H (V ), δ(2)C (V ) FOR

THE DIFFERENT VALUES OF x.

x 0.005 0.01 0.025 0.05
δ
(1)
H (S) 0.00038 0.0015 0.0094 0.0371
δ
(1)
C (S) 0.00074 0.0023 0.0184 0.0716
δ
(1)
H (I) 0.00035 0.0014 0.0088 0.0347
δ
(1)
C (I) 0.00066 0.0026 0.0164 0.0639
δ
(1)
H (P ) 0.00035 0.0014 0.0086 0.0342
δ
(1)
C (P ) 0.00065 0.0026 0.0161 0.0629
δ
(1)
H (C) 0.00077 0.0031 0.0193 0.0757
δ
(1)
C (C) 0.0015 0.0054 0.0368 0.1397
δ
(1)
H (V ) 0.00021 0.0008 0.0051 0.0210
δ
(1)
C (V ) 0.00036 0.0014 0.0091 0.0382

TABLE III
THE SESSION TIME OF SIMULATION Ts IN SECONDS

(DIAGNOSTIC SESSION TIME OF MI-CROSOFT
VISUAL C 2019), DEPENDING FROM THE x.

x 0.005 0.01 0.025 0.05
Ts (sec) 651 52 4 2

The equations of regressions in Figs. 3 - 7
are built automatically in MS Excel at the points
of δ(1)H (Y ), δ(1)C (Y ), δ(2)H (V ), δ(2)C (V ) depending
from the values of x. They exhibit the quadratic
(parabolic) low of convergence δ

(1)
H (Y ) → 0,

δ
(1)
C (Y ) → 0, (Y j

i = (Sji , I
j
i , P

j
i , C

j
i )) and

δ
(2)
H (V ) → 0, δ(2)C (V ) → 0 with x → 0 in all ex-

periments that illustrates and confirms the second

Fig. 3. � - values of δ(1)H (S), δ(1)C (S), - - - graphs of
regressions y(x), x = h/ad.

Fig. 4. � - values of δ(1)H (I), δ(1)C (I), - - - graphs of
regressions y(x), x = h/ad.

Fig. 5. � - values of δ(1)H (P ), δ(1)C (P ), - - - graphs of
regressions y(x), x = h/ad.

order of accuracy of numerical solution. The most
numerical error among all 5 subclasses is obtained
for the cancer cell population (Fig. 6, Table II
- δ(1)H (C), δ(1)C (C)). The large deviation (> 3%)
of numerical cancer cell population density from
the benchmark solution for x ≥ 0.025 can be
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Fig. 6. � - values of δ(1)H (C), δ(1)C (C), - - - graphs of
regressions y(x), x = h/ad.

Fig. 7. � - values of δ(1)H (V ), δ(1)C (V ), - - - graphs of
regressions y(x), x = h/ad.

explained by the complexity of nonlinear boundary
condition (9) which includes the integral from
the numerical precancerous cell population density
com-puted with some numerical error. Neverthe-
less, we observe the significand decreasing of
δ
(1)
H (C), δ(1)C (C) for x ≤ 0, 01 with follow-ing

convergence of them to 0. Besides the accuracy of
numerical method, we consider also the valuable
in practice parameter - session time of simulation
Ts given in Table III. Since the refine of difference
grid leads necessarily to increasing of Ts, numer-
ical experiments with benchmark solution provide
the optimal range of mesh spacing h for which
the appropriate accuracy of numerical solution can
be reachable for an acceptable time of simulation.
According to the data of Table III the critical
point of mech spacing after which the time of
simulation begins to grow rapidly is h = 0.01
(or x = 0.01). On the other hand, the results of

Fig. 8. Graphs of NS(t) for non-oscillating dynamics for
3 different initial values ϕ(a).

Table II show that for x = 0.01 the deviation
of numerical solution from the benchmark one
(relative numerical error) is less or equal than
0, 5% for all subclasses of population that corre-
sponds to the acceptable accuracy of simulation in
most biological systems. From Tables II and III, it
follows that the optimal value of the dimensionless
parameter is x = h/ad = 0.01 that corresponds to
the mesh spacing h = 0.01. This result is in good
agreement with the recommended value of time
spacing obtained in the numerical experiments
for nonlinear age-structured model of population
dynamics in [8].

In the second group of numerical experiments
we study the asymptotically stable dynamical
regimes of population. Simulations reveal two
types of asymptotically stable dynamics: non-
oscillating and oscillating convergence of all sub-
population quantities to the nontrivial equilibrium
states. The dynamical regime of the first type -
non-oscillating dynamics is shown in Figs. 8 -
12. In particular, in Fig. 8 it is shown the graphs
of susceptible cell quantity dynamics for three
different initial values ϕ(a). The corresponding
graphs of infected cell quantity, precancerous cell
quantity, cancer cell quantity and HPV quantity
dynamics are shown in Figs. 9, 10, 11, 12, respec-
tively.

It should be noted that the non-oscillating dy-
namics of dysplasia (precancerous cells) and can-
cer growth shown in Figs. 10 and 11 by dotted
lines is a most realistic type of tumor tissue

Biomath 10 (2021), 2110027, http://dx.doi.org/10.11145/j.biomath.2021.10.027 Page 18 of 23

http://dx.doi.org/10.11145/j.biomath.2021.10.027


V V Akimenko, F Adi-Kusumo, Age-structured delayed SIPCV epidemic model of HPV and cervical ...

Fig. 9. Graphs of NI(t) for non-oscillating dynamics for
3 different initial values ϕ(a).

Fig. 10. Graphs of NP (t) for non-oscillating dynamics for
3 different initial values ϕ(a).

Fig. 11. Graphs of NC(t) for non-oscillating dynamics for
3 different initial values ϕ(a).

growth.
The second type of dynamical regimes - os-

cillating dynamics is shown in Figs. 13 - 17. In
Fig. 13, it is shown the susceptible cell quantity
dynamics for two different initial values ϕ(a).
The corresponding graphs of infected cell quantity,

Fig. 12. Graphs of V (t) for non-oscillating dynamics for
3 different initial values ϕ(a).

Fig. 13. of NS(t) for oscillating dynamics for 2 different
initial values ϕ(a).

precancerous cell quantity, cancer cell quantity
and HPV quantity dynamics are shown in Figs.
14, 15, 16, 17, respectively. Asymptotically stable
regimes of SIPCV model shown in Figs. 8 - 12 and
13 - 17 demonstrate the localization of dysplasia
(precancerous cells) and cancer in biological tissue
without metastases.

Thus, the results of simulations exhibit that the
numerical method designed for the age-structured
SIPCV epidemic model can be applied for numer-
ical study and modelling of cell-HPV population
dynamics with high accuracy.

X. CONCLUSION

In this study we consider a new epidemic
model of age-structured sub-populations of sus-
ceptible, infectious, precancerous and cancer cells
and unstructured population of hu-man papilloma
virus (HPV) (SIPCV epidemic model). The model
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Fig. 14. of NI(t) for oscillating dynamics for 2 different
initial values ϕ(a).

Fig. 15. of NP (t) for oscillating dynamics for 2 different
initial values ϕ(a).

Fig. 16. of NC(t) for oscillating dynamics for 2 different
initial values ϕ(a).

is based on the competi-tive system of initial-
boundary value problems for delayed semi-linear
transport equations with integral boundary con-
ditions and initial problem for delayed nonlinear
ODE. For this system we obtained the exact so-
lution in the form of recurrent formulae in which

Fig. 17. of V (t) for oscillating dynamics for 2 different
initial values ϕ(a).

the den-sities of all subpopulations depend from
the integrals from solution taken at previous in-
stance of time. The main ideas and method of
derivation of such exact solutions are taken from
works [3], [8]. The new result obtained in this
work is the numerical implementation of recurrent
formulae for exact solution and development of the
numerical method of the second order of approx-
imation for simulation of susceptible, infectious,
precancerous, can-cer cells and human papilloma
virus population dynamics. Since evaluation of the
accuracy of numerical solution and session time of
simulation are essential to successful use of nu-
merical method in applications, we estimated the
difference between computed solution and bench-
mark solution of model and session time on the
refined difference grid. Numeri-cal experiments
showed that the relative numerical error of solution
may be reduced up to 0.1% for the very small
value of mesh spacing parameter h = 0.005 (that
is 0.5% of ad) but for large value of session time of
simulation. We recommend to use in applications
the optimal value of mesh spacing h = 0.01 (1%
of ad) that pro-vides the small value of relative
numerical error (less than 0,5%) for acceptable
session time. This recommendation is in a good
agreement with the results of numerical experi-
ments obtained in [8] for nonlinear age-structured
model of population dynamics.

The numerical experiments with model pa-
rameters revealed two types of asymptotically
stable dynamical regimes of SPICV population

Biomath 10 (2021), 2110027, http://dx.doi.org/10.11145/j.biomath.2021.10.027 Page 20 of 23

http://dx.doi.org/10.11145/j.biomath.2021.10.027


V V Akimenko, F Adi-Kusumo, Age-structured delayed SIPCV epidemic model of HPV and cervical ...

non-oscillating and oscillating convergence of so-
lution to the positive steady states. The non-
oscillating type of SPICV population dynamics
corresponds to the observed in practice dynamics
of tumor growth-localization of dysplasia (pre-
cancerous cells) and cancer in biological tissue
without metastases. Overall, development of age-
structured SIPCV epidemic model, derivation of
its ex-act solution and design of corresponding nu-
merical methods provide the theoretical instrument
for study the dynamics of susceptible, infected,
precancerous, cancerous cells and viruses popu-
lations that help us better understand the features
of human papilloma virus infectious disease.
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