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Abstract— Qualitative study of higher order non
linear dynamical systems is a rewarding experi-
ence and a great challenge. This reflective paper
is an attempt to deeply analyze interaction fea-
tures between nutrients, phytoplanktons and zoo-
planktons by building a so-called NPZ-Model. We
used classical methods (of Lyapunov, Hopf, etc.)
to examine existence, positivity, boundedness and
stability of solutions. Our main contribution is the
implementation of a meaningful space parameter
that simultaneously guarantees instability of equi-
libria at the border and stability of the internal
equilibrium. In the case of internal equilibrium
instability, we observed the emergence of limit cycle
which means the existence of periodical solutions.

Keywords-Planktons ; Upwelling ; Dynamical Sys-
tem ; Limit-Cycle ; Stability.

I. INTRODUCTION

Experiments and sporadic observations of front
zones (intense upwelling) show significant primary
production (i.e., phytoplankton and zoo-plankton)
in these zones. This overproduction due to nutri-
ents influx from ocean floor to the Ekman layer

(surface layer) promotes the growth of animal pop-
ulations living in this layer, sardines for example.

Dynamics of living species in aquatic environ-
ments involve biological phenomena such as pre-
dation or interspecies competition. There are also
physical phenomena such as flowing water, tem-
peratures changes and range of salinity. These phe-
nomena are closely linked and are subject to im-
portant multidisciplinary scientific investigations-
that is, oceanography, ecology, mathematics and
physics.

Several deterministic models governing species
dynamics in the food chain have emerged recently.
In particular the interaction between nutrients,
phytoplankton and zooplankton ( [1], [2], [3], [4],
[5], [6]) .

These studies can be roughly broken down into
two categories. The first is dynamical systems
where observables are densities (or number) of
living species. In continuous case, the temporal
evolution is described by an ODE 1. The sec-
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ond category is that of reaction-diffusion systems
where evolution of observables is spatio-temporal,
one uses PDEs 2 in the continuous case. Some-
times one can add transport effect to take into
account water velocity. Note that algebraic systems
are handled in discrete cases.

Among these systems there is a relevant model
governing dynamics of three trophic chain species
mentioned above. It was initiated by Steele and
Henderson in 1981 ( [7], [8] ) and then fleshed
out by Baretta and Ebenhöh in 1997 [9]). Although
they have given a perfect description of numerical
modeling and simulations,their studies failed to
grasp the description of space parameters and
properties of solutions. We suppose that this is due
to a plethora of parameters and the strong non-
linearity of equations. This is why we derive a
model which will be called NPZ-Model, It’s a 3-
D dynamical system. Our study is first articulated
on the space of admissible parameters. It’s a set
of conditions guaranteeing existence, positivity
and boundedness of solutions. Then we rigorously
analyzed the equilibrium stability by applying Lya-
punov method and LaSalle principle of invariance.
In the case of instability, we examined bifurcation
in which a supercritical Hopf bifurcation has been
discovered, this gives a stable limit cycle.

II. NPZ-Model & NOTATIONS

To describe dynamic of phytoplanktons 3, nutri-
ents 4 and zooplanktons 5, we are going to adjust a
model developed by Steele and Henderson in 1992
(cf. [8]) and modified by Edwards and Brindley in
1996 (cf. [10]) then Oschlies and Garçon in 1999
(cf. [11]).

The model describes interaction of three species
in food chain: Nutrients n(t), Phytoplankton p(t)
and Zooplanktons z(t). Molecular concentration
can be affected over time in an aquatic environ-
ment (ocean, lake, etc.). We have the following

2System of Partial Differential Equation
3All chlorophyllian aquatic organisms from plankton, some

microscopic, others large
4as nitrate, phosphate or silicate
5All animal species that are part of plankton

system of equations:

dn

dt
= ξn −

βnp

kn + n

+µn

(α(1−γ)ηp2

α+ ηp2
z+µpp+µzz

2
)
,

dp

dt
=

βnp

kn + n
− αηp2

α+ ηp2
z − µpp ,

dz

dt
= γ

αηp2

α+ ηp2
z − µzz2 .

(1)

The first equation of system (1) expresses nutri-
ents evolution. The combined and vertical mixture
results from an optimized and recycled nutrients
supply for bacteria and phytoplanktons.
Vertical mixing transports nutrients from the deep
layer of water to the mixing layer (Ekman layer),
this transport is expressed by the flux

ξn = S(x, y,~v).(n0 − n), (2)

where the function S designates design the front
zone intensity. It depends essentially on horizontal
position (x, y) and water velocity ~v from the
upwelling phenomenon. In this paper, we consider
S(x, y,~v) constant. This simplification eliminates
the spatial aspect and does not take into account
water velocity.

Nutrients are consumed by phytoplankton
with a characteristic saturation described by a
Holling type II functional response 6

(
− βnp
kn+n

)
.

Their recycling by bacteria is modeled by the last
three terms in brackets of the first equation in sys-
tem (1). A part of all organic waste and exudation
of zoo-plankton are recycled by bacteria. However,
bacteria dynamics is not included in the model.

Phytoplankton’s dynamics is considered in the
second equation of system (1). Their concen-
tration depends on nutrients which constitute a

food source
(

βnp

kn + n

)
. It is also reduced by

natural mortality (−µpp) and by zoo-plankton’s

grazing (predation)
(
− αηp2

α+ ηp2
z

)
which is

Holling type III functional response.

6Which takes into account nutrient consumption time.
Therefore, catch rate decreases with increasing nutrient den-
sity.
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TABLE I: Parameters description of NPZ-Model

Parameters Description

S Upwelling Intensity
β Rate of grazing conversion ( predation)
γ Grazing Coefficient
α Zoo-plankton attack rate

h =
η

α
Average Manipulation Time

kn Mid-saturation Constant for nutrient recruitment
µn Nutrient regeneration efficiency
µp Natural phytoplankton mortality rate
µz Natural zoo-plankton mortality rate
n0 Constant concentration of nutrients under the mixing layer

Grazing is also considered as zooplankton
growth term with the factor γ αηp2

α+ηp2 z−µzz
2 (third

equation of (1) . This factor is there to take into
account that only a part of nutrients is converted
into zoo-plankton biomass. The Other part (1−γ)
is recycled. Mortality of zoo-plankton is assumed
to be quadratic.This hypothesis implies the exis-
tence of a super predator acting on zoo-plankton
whose dynamics are not explicitly considered [12].
It may also be an interspecies competition. Param-
eters (Table I) are described as in the work of
Pasquero & al [13]. Their numerical values will
be discussed in the paper through the space of
admissible parameters (III.1 ).

As the Holling type-II functional response is
one of the most realistic forms to represent
predation rate of predators on their preys [14],
we change the Holling type-III functional to a
Holling type-II like αp

1+αhp .

We then assume that there is neither implicit
predation on the zoo-plankton nor interspecies
competition. We assumed that the steady con-
stancy of nutrient recruitment mid saturation kn is
greater than the constant concentration of nutrients
under the mixing layer n0 ( i.e., kn > n0 ). Then
system (1) becomes what we will call NPZ-Model:



dn

dt
= ξn −

βnp

kn + n

+ µn

(α(1−γ)pz

1 + αhp
+µpp+µzz

)
,

dp

dt
=

βnp

kn + n
− αp

1 + αhp
z − µpp ,

dz

dt
=

αγpz

1 + αhp
− µzz .

(3)

To reduce occurrences of α in the NPZ-Model,
we denote η ≡ α.h. Then we set εn = µn − 1,
γ̄ = 1− γ, therefore NPZ-Model ( 3 ) becomes

dn

dt
= S(n0 − n)− βnp

kn + n

+ µn

(
αγ̄pz

1+ηp
+µpp+µzz

)
,

dp

dt
=

βnp

kn + n
− αp

1 + ηp
z − µpp ,

dz

dt
=

αγpz

1 + ηp
− µzz .

(4)

Let’s define

F1(n, p, z) = S(n0 − n)− βnp

kn + n

+ µn

(
αγ̄pz

1+ηp
+µpp+µzz

)
,

F2(n, p, z) =
βnp

kn + n
− αp

1 + ηp
z − µpp ,

F3(n, p, z) =
αγpz

1 + ηp
− µzz .

(5)
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Then NPZ-Model ( 4 ) is written as:

dn

dt
= F1(n, p, z) ,

dp

dt
= F2(n, p, z) ,

dz

dt
= F3(n, p, z) .

(6)

or, equivalently,

dΦ

dt
(t) = F (Φ(t))

where
Φ(t) = (n(t), p(t), z(t))T ,

and

F :
(
R∗

+

)3 −→
(
R∗

+

)3
Φ 7−→ (F1(Φ), F2(Φ), F3(Φ))T .

Denoting by Fi,x the partial derivative of Fi with
respect to x, we have:

F1,n = −S − βknp

(kn + n)2 ,

F1,p = − βn

kn + n
+

αµnγ̄z

(1 + ηp)2
+ µnµp,

F1,z =
αµnγ̄p

1 + ηp
+ µnµz,

F2,n =
βknp

(kn + n)2 ,

F2,p = − αz

(1 + ηp)2 +
βn

kn + n
− µp,

F2,z = − αp

1 + ηp
,

F3,n = 0,

F3,p =
αγz

(1 + ηp)2 ,

F3,z =
αγp

1 + ηp
− µz.

(7)
Thus, Jacobian matrix of field F is written:

JF (n,p,z) =


F1,n F1,p F1,z

F2,n F2,p F2,z

F3,n F3,p F3,z

. (8)

Thus, we have the main notations that we will
use for qualitative study of NPZ-Model. Note that
intermediate ratings will be defined as needed.

III. QUALITATIVE FEATURES OF NPZ-Model

A. Solutions Properties

Proposition III.1. (Existence, uniqueness, posi-
tivity & boundedness)
System (4) associated with initial condition has a
unique positive and bounded solution.

Proof: (Proposition III.1)
Elements of Jacobian matrix of field F (8 ) are
all continuous, then the function F is locally
Lipschitzian. Thus by Cauchy-Lipschitz theorem
[15], system (4) has a unique local solution.

To show the positively invariance of R3
+, let’s

consider these elements of boundaries: Γ1 ≡ {0}×
R+ ×R+, Γ2 ≡ R+ × {0} ×R+ and Γ3 ≡ R+ ×
R+ × {0}. Note that R3

+ = {(n, p, z) ∈ R3 :

−n ≤ 0;−p ≤ 0 and − z ≤ 0}. We have also

F1/Γ1
= Sn0 + (εn + 1)

(
(1− γ)

αp

1 + ηp
z

+ µpp+ µzz
)
≥ 0,

F2/Γ2
= 0 ,

F3/Γ3
= 0.

Thus, by choosing a function L(n, p, z) = −n, we
see that 〈F,∇L〉 ≤ 0. From the foregoing, we can
deduce by the barrier theorem ( theorem 16.9 in
[16] ) that the vector field point into the domain
along Γ1 and by analogy along Γ2 and Γ3. Hence,
R3

+ is a positively invariant domain, i.e., for any
positive initial condition, solutions remain positive.

To prove boundedness, let’s define

Θ(t) = an(t) + ap(t) + z(t) ,

with a > 0 such that
γ

1− µnγ̄
< a <

1

µn
.

Thus

Θ̇(t) = aṅ(t) + aṗ(t) + ż(t)

= aSn0 − aSn− a
βnp

kn + n
+ a

µnγ̄αpz

1 + ηp

+ aµnµpp+ aµnµzz + a
βnp

kn + n
− a αpz

1 + ηp

− aµpp+
αγpz

1 + ηp
− µzz
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= aSn0 − aSn+ (aαµnγ̄ − aα+ αγ)
pz

1 + ηp

− aµp(1− µn)p− µz(1− aµn)z.

We have

aαµnγ̄ − aα+ αγ ≤ 0 because
γ

1− µnγ̄
< a.

Thus

Θ̇(t) ≤ −aSn−aµp(1−µn)p−µz(1−aµn)z+aSn0.

Let us set

τ = min{S; µp(1− µn); µz(1− aµn)}.

Therefore

Θ̇(t) ≤ −τΘ(t) + aSn0.

By applying Gronwall’s inequality, we obtain:

Θ(t) ≤ e−τtet0Θ(t0) + aSn0e
−t0 .

Accordingly, for a large t , Θ(t) < et0Θ(t0) +
aSn0e

−t0 , and the solutions are bounded.

B. Equilibria of System and Stability

Proposition III.2 (Existence and positivity of
equilibria). System ( 4) has four stationary (equi-
librium ) points which will be called e1, e2, e3, e4

( equations (11) & (12) ). e1 is unconditionally
positive. If we denote

R1 =
µp(kn + n0)

βn0
,

R2 =
ηµz
αγ

,

R3 =
βεnµz

S(kn − n0)A

=
βεnµz

αγS(kn − n0)(1−R2)
,

R4 =

Sαγknµp+Sαγµpn0+Sβηµzn0+βµpµz+µnµ
2
pµz

Sαβγn0+Sηknµpµz+Sηµpµzn0+βµnµpµz+µ2
pµz

,

(9)
and assume that

(R1, R2, R3, R4) ∈]−∞, 1[4,

Then we have

e2, e3 ∈ R3
+ and e4 /∈ R3

+,

that is, the second and third equilibrium points are
in the positive octant (i.e., R3

+) and the fourth is
not.

Proof: (Proposition III.2)
To calculate equilibrium points, we replace the first
equation by the sum of three others and we obtain
the following system :

S(n0−n)+εn

(
αpz (1−γ)

ηp+1
+µpp+µzz

)
= 0,

p

(
− αz

ηp+ 1
+

βn

kn + n
− µp

)
= 0,

z

(
αγp

ηp+ 1
− µz

)
= 0.

(10)
From the third equation of system (10), we have
z = 0 where p = µz

αγ−ηµz
.

By treating the case where z = 0 , we have two
equilibrium points :

e1 = (
∗
n1,

∗
p1,

∗
z1) = (n0, 0, 0),

e2 = (
∗
n2,

∗
p2,

∗
z2)

=

(
knµp
β − µp

,
S (knµp − n0(β − µp))

µp (β − µp) εn
, 0

)
.

(11)
By treating the case where p = µz

αγ−ηµz
, two

other equilibrium points are determined e3 =

(
∗
n3,

∗
p3,

∗
z3) and

e4 = (
∗
n4,

∗
p4,

∗
z4) ( after substitution of p in the

first two equations of system (10) ), where

∗
n3 =

−B1 +
√

∆

2S(αγ − ηµz)
,

∗
p3 =

µz
αγ − ηµz

,

∗
z3 =

−B2 +
√

∆
2εnµz
γ

(αγ − ηµz)
,

∗
n4 =

−B1 −
√

∆

2S(αγ − ηµz)
,

∗
p4 =

µz
αγ − ηµz

,

∗
z4 =

−B2 −
√

∆
2εnµz
γ

(αγ − ηµz)
,

(12)
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with relations:

A = S(αγ − ηµz),
B1 = Sαγkn − Sαγn0 − Sηknµz

+Sηµzn0 − βεnµz,
B2 = Sαγkn + Sαγn0 − Sηknµz − Sηµzn0

−βεnµz + 2εnµpµz
= S(kn − n0)A− βεnµz,

C = −Sαγknn0 + Sηknµzn0 = −knn0A
= 2(An0 + εnµpµz) +B1,

∆ = B2
1 − 4AC = B2

1 + 4knn0A
2 > 0.

(13)
Note that 0 < µn < 1, thus εn = µn − 1 < 0.
According to hypothesis R1 < 1, we have β > µp,
which implies

∗
n2 =

knµp
β − µp

> 0 and knµp < n0(β − µp).

Thus
∗
p2 > 0. Consequently, R1 < 1 implies

e2 = (
∗
n2,

∗
p2,

∗
z2) ∈ R3

+. From R2 =
ηµz
αγ

< 1,

we deduce
∗
p3 =

µz
αγ − ηµz

> 0. Considering

hypothesis

R3 =
βεnµz

S(kn − n0)A
< 1

and the fact that A > 0 because R2 < 1, we have :

B1 = S(kn − n0)A− βεnµz > 0

C = −knn0A < 0.

Thus B2
1 < ∆ = B2

1 − 4AC, so −B1 +
√

∆ > 0.
Thereby

−B1 +
√

∆

2S(αγ − ηµz)
> 0.

Hence

R3 < 1 implies that
∗
n3 > 0.

We have also
R4 < 1,

from where

4εnµz(Sαβγn0 − Sαγknµp − Sαγµpn0

−Sβηµzn0 + Sηknµpµz
+Sηµpµzn0 + βεnµpµz − εnµ2

pµz) < 0
.

Then
−B2 +

√
∆ > 0.

Therefore

R4 < 1 =⇒ ∗
z3 > 0.

Ultimately

e4 /∈ R3
+ because

∗
n4 < 0

Indeed
∗
n4 =

−B1 −
√

∆

2S(αγ − ηµz)
and

2S(αγ − ηµz) > 0−B1 −
√

∆ < 0,

because
B1 > 0.

Definition III.1 (Space of admissible parame-
ters).
We define the space of admissible parameters Pad
by

Pad=
{
(α,β,η,µp,µz,kn,n0,S,µn,γ)∈(R∗

+)7×]0,1[2

: n0 < kn; R1, R2, R3, R4 < 1
}
.

(14)

Remark III.1. The space of admissible parame-
ters defined above (III.1) Pad is not empty . Table
II gives examples of admissible parameters.

Proposition III.3 (Stability of e1 and e2). Equi-
librium points e1 (11) is always unstable, and if√

∆0 > b0 , e2 is unstable also.

Proof: (Proposition III.3)
By substituting e1 into the Jacobian matrix (8), we
have:

JF (n0,0,0) =

−S − βn0

kn+n0
+ µnµp µnµz

0 βn0

kn+n0
− µp 0

0 0 −µz

 .

(15)
The eigenvalues are

−S, −µz, and
βn0

kn + n0
− µp.
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TABLE II: Some admissible parameters with conditions
R1, R2, R3, R4.

α 0.33 0.94 0.52
β 0.84 0.89 0.47
γ 0.85 0.88 0.30
η 0.15 0.24 0.13
µn 0.66 0.88 0.71
µp 0.19 0.38 0.07
µz 0.82 0.41 0.43
kn 0.55 0.23 0.95
n0 0.82 0.69 0.98
S 0.92 0.78 0.40
R1 0.38 0.57 0.34
R2 0.46 0.11 0.35
R3 0.01 0.01 −6.8e−4

R4 0.92 0.77 0.82

One of the eigenvalues is strictly positive, it is
βn0

kn+n0
−µp = µp

(
1−R1

R1

)
> 0. Then, according to

Lyapunov’s indirect theorem, the equilibrium point
e1 is unstable.

On the other hand, characteristic polynomial of
the linearized system around e2 is :

Pe2(λ) = (λ− λ0)Qe2(λ), (16)

where Qe2(λ) is the quadratic form given by (17)

a0λ
2 + b0λ+ c0, (17)

with

a0 = knµp,

b0 = R1Sβ
3εnn0 − 3R1Sβ

2εnµpn0

+3R1Sβεnµ
2
pn0 −R1Sεnµ

3
pn0n

−Sβ3εnn0 + 3Sβ2εnµpn0

−3Sβεnµ
2
pn0 + Sεnµ

3
pn0 + Sknµp,

c0 = −R1Sβ
3ε2nµpn0 + 3R1Sβ

2ε2nµ
2
pn0

−3R1Sβε
2
nµ

3
pn0 +R1Sε

2
nµ

4
pn0

+Sβ3ε2nµpn0 − 3Sβ2ε2nµ
2
pn0

+3Sβε2nµ
3
pn0 − Sε2nµ4

pn0.

After simplification

a0 = knµp ,

b0 = Sεnn0(R1 − 1) (β − µp)3 + Sknµp ,
c0 = εnµp(Sa0 − b0).

We observe that a0 > 0, c0 < 0 because R1 < 1.
So the discriminant of the quadratic form Qe2(λ)

is
∆0 = b20 − 4a0c0 > 0.

Then, the two real roots of Qe2(λ) are

λ1 =
−b0 +

√
∆0

2a0
> 0 and λ2 =

−b0 −
√

∆0

2a0
.

(18)
As λ1 is positive because

√
∆0 > b0, we con-

clude from Lyapunov’s indirect theorem [15] that
the equilibrium point e2 is unstable. �

Theorem III.1. (Stability of e3) Let’s define

H11 =
S

n
+

βkn
∗
p

n(kn + n)(kn +
∗
n)
,

H22 =
αω0

(1 + ηp)(1 + η
∗
p)
,

Π =
µpµn
−2n

+
β
∗
n

−2(kn + n)(kn +
∗
n)

+
µnγ̄α

∗
z

−2n(1 + ηp)(1 + η
∗
p)
,

Γ =
µn
−2n

(
µz + γ̄α(1 + η

∗
p)p
)
,

Ψ =
δγ − α

(1 + ηp)(1 + η
∗
p)
,

f(n, p, z) = H11H22 −Π2,

g(n, p, z) = −Ψ2H11 − Γ2H22 + 2ΠΨΓ,

ζ(n, p, z) = α
(ω0 + η

∗
z)p− η∗pz − ω0

∗
p

(1 + ηp)(1 + η
∗
p)

,

G =
{

(n, p, z) ∈ R3
+ / f(n, p, z) > 0,

g(n, p, z) > 0, ζ(n, p, z) < 0
}
,

where ω0 > 0 and δ ∈ R∗ , A, B, C are
auxiliary constants defined precisely in the proof
(See equations (22) & (23) ).
If ∆ = B2 −AC > 0, then we have:
(i) G is an open set containing the inner equi-

librium e3 ,
(ii) the equilibrium e3 is asymptotically stable in

G.

Proof: (Theorem III.1)
We will directly show the global stability before
checking condition (i) .
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Let e3 = (
∗
n3,

∗
p3,

∗
z3) , (

∗
n,

∗
p,

∗
z) be the inner equi-

librium point. We denote XT = (n− ∗
n, p−∗

p, z−∗
z)

and V : G −→ R defined by

V (n,p,z)=

∫ n

∗
n

σ− ∗
n

σ
dσ+

∫ p

∗
p

σ−∗
p

σ
dσ+δ

∫ z

∗
z

σ−∗
z

σ
dσ,

where δ > 0. Then, V is a positive function of
class C1 and radially unbounded. In addition to
that V (

∗
n,

∗
p,

∗
z) = 0. We will investigate the sign

of V̇ . We have

V̇ =
dV

dt
=
n− ∗

n

n

dn

dt
+
p− ∗

p

p

dp

dt
+ δ

z − ∗
z

z

dz

dt

, V̇1 + V̇2 + V̇3

V̇1 =
n− ∗

n

n

(
Sn0 − Sn−

βnp

kn + n
+
αµnγ̄pz

1 + ηp

+µnµpp+ µnµpz
)
.

As (
∗
n,

∗
p,

∗
z) is an equilibrium, then from the first

equation of system ( 4) we have :

Sn0 = S
∗
n+

β
∗
n
∗
p

kn +
∗
n
− αµnγ̄

∗
p
∗
z

1 + ηp
−µnµp

∗
p−µnµz

∗
z.

By substituting this equality into V̇1, we get:

V̇1 =
n− ∗

n

n

[
− S(n− ∗

n)−β

(
np

kn+n
−

∗
n
∗
p

kn+
∗
n

)

+µnγ̄α

(
pz

1 + ηp
−

∗
p
∗
z

1 + η
∗
p

)

+µnµp(p−
∗
p) + µnµz(z −

∗
z)

]
Let’s consider : V̇1 = M1 +M2 +M3 +M4 +M5

with

M1 = −S
n

(n− ∗
n)2,

M2 = −β
n

(n− ∗
n)

(
np

kn + n
−

∗
n
∗
p

kn +
∗
n

)
,

M3 =
αµnγ̄

n
(n− ∗

n)

(
pz

1 + ηp
−

∗
p
∗
z

1 + η
∗
p

)
,

M4 =
µnµp
n

(n− ∗
n)(p− ∗

p),

M5 =
µnµz
n

(n− ∗
n)(z − ∗

z).

Thus,

M2 =−β
n

(n− ∗
n)

[
kn(np− ∗

n
∗
p)−n ∗

n(p− ∗
p)
]

(kn + n)(kn +
∗
n)

=β
∗
n

(n− ∗
n)(p− ∗

p)

(kn + n)(kn +
∗
n)

−βkn
n

(n− ∗
n)(np− ∗

n
∗
p)

(kn + n)(kn +
∗
n)

.

We have :

np− ∗
n
∗
p = np−n∗

p+n
∗
p− ∗

n
∗
p = n(p− ∗

p)+
∗
p(n− ∗

n)

M2 =β
∗
n

(n− ∗
n)(p− ∗

p)

(kn + n)(kn +
∗
n)

−βkn
∗
p

n

(n− ∗
n)2

(kn + n)(kn +
∗
n)

−βkn
(n− ∗

n)(p− ∗
p)

(kn + n)(kn +
∗
n)
,

M2 = β(
∗
n− kn)

(n− ∗
n)(p− ∗

p)

(kn + n)(kn +
∗
n)

−βkn
∗
p

n

(n− ∗
n)2

(kn + n)(kn +
∗
n)
,

M3 =
µnγ̄α

n
(n− ∗

n)

[
pz + ηp

∗
pz − ∗

p
∗
z − ηp∗p∗z

]
(1 + ηp)(1 + η

∗
p)

.

We have also

pz + ηp
∗
pz − ∗

p
∗
z − ηp∗p∗z

= η
∗
pp(z − ∗

z) + pz − p∗z
= η

∗
pp(z − ∗

z) + pz − p∗z + p
∗
z − p∗z

= η
∗
pp(z − ∗

z) + p(z − ∗
z) +

∗
z(p− ∗

p)

= (1 + η
∗
p)p(z − ∗

z) +
∗
z(p− ∗

p).

M3 = µnγ̄α(1 + η
∗
p)
p

n

(n− ∗
n)(z − ∗

z)

(1 + ηp)(1 + η
∗
p)

+µnγ̄α

∗
z

n

(n− ∗
n)(p− ∗

p)

(1 + ηp)(1 + η
∗
p)

So, we can rewrite V̇1 like :
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V̇1 = − 1

n

(
S+

βkn
∗
p

(kn + n)(kn +
∗
n)

)
(n− ∗

n)2+(
µpµn
n

+
β(

∗
n− kn)

(kn + n)(kn +
∗
n)

+
µnγ̄α

∗
z

n(1 + ηp)(1 + η
∗
p)

)
×(n− ∗

n)(p− ∗
p)

+

(
µnµz
n

+
µnγ̄α(1 + η

∗
p)p

n

)
(n− ∗

n)(z − ∗
z).

Let’s look at

V̇2 = (p− ∗
p)

(
β

n

kn + n
− α

1 + ηp
z − µp

)
.

From the second equation of system (4) we have:

−µp = − β
∗
n

kn +
∗
n

+
α
∗
z

1 + η
∗
p
.

By substituting µp in V̇2 we obtain:

V̇2 = (p− ∗
p)

(
βn

kn + n
− β

∗
n

kn +
∗
n

− αz

1 + ηp
+

α
∗
z

1 + η
∗
p

)

= (p− ∗
p)

(
βkn(n− ∗

n)

(kn + n)(kn +
∗
n)

−αz(1 + η
∗
p)− ∗

z(1 + ηp)

(1 + ηp)(1 + η
∗
p)

)
.

Let’s denote V̇2 = N1 +N2 with

N1 =
βkn(p− ∗

p)(n− ∗
n)

(kn + n)(kn +
∗
n)

,

N2 = −α(p− ∗
p)
z + η

∗
pz − ∗

z − ηp∗z
(1 + ηp)(1 + η

∗
p)

Then, N2 can be expressed like

N2 =
−α(p− ∗

p)(z − ∗
z)

(1 + ηp)(1 + η
∗
p)
− αω0(p− ∗

p)2

(1 + ηp)(1 + η
∗
p)

+α
(ω0 + η

∗
z)p− η∗

pz − ω0
∗
p

(1 + ηp)(1 + η
∗
p)

,

with ω0 > 0. Likewise V̇1 and V̇2 , V̇3 can be
written as

V̇3 = δ(z − ∗
z)

(
γp

1 + ηp
− µz

)
.

From the third equation of system (4) we have:
µz = γ

∗
p

1+η
∗
p
, thereby:

V̇3 =
δγ(z − ∗

z)(p− ∗
p)

(1 + ηp)(1 + η
∗
p)
,

thus

V̇2 + V̇3 =− αω0

(1 + ηp)(1 + η
∗
p)

(p− ∗
p)2

+
βkn

(kn + n)(kn +
∗
n)

(n− ∗
n)(p− ∗

p)

+
δγ − α

(1 + ηp)(1 + η
∗
p)

(p− ∗
p)(z − ∗

z)

+α
(ω0 + η

∗
z)p− η∗

pz − ω0
∗
p

(1 + ηp)(1 + η
∗
p)

.

Then, V̇ can be written as V̇ = −XTHX +
ζ(n, p, z) where :

H =

H11 Π Γ
Π H22 Ψ
Γ Ψ 0

 . (19)

As (n, p, z) ∈ G, Sylvester’s criterion [17] is
satisfied and we have H positive defined. Then

V̇=−XTHX+ζ(n,p,z) < 0, ∀(n,p,z)∈G\{e3}.

Thus, V satisfy conditions of Lyapunov stability
theorem, [15, page 194], then e3 is asymptotically
stable in G. Now let’s show condition (i):

p0 = 1 + η
∗
p

k0 = kn +
∗
n

Then elements of H are written at point e3 like

H11 =
Sk2

0 + βkn
∗
p
∗
n

∗
nk2

o

,

H22 =
αω0

p2
o

,

(20)
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Fig. 1: (i)- Some orbits in the phase space. The point in black is the equilibrium e3 and in red the two others .(ii)-System
parameters (blue), coordinates of e3 (black) and associated eigenvalues (red). (iii)- Density evolution vs time transient phase
and (iv) permanent phase. ω0 = 1.79 et ∆ = 0.0037

Π =
Π1 − Π2

2
∗
np2

ok
2
o

=

αγµn
∗
zk2

o−(µnk
2
oµpp

2
o+µnk

2
oα

∗
z+β

∗
n

2
p2
o)

2
∗
np2

ok
2
o

,

Γ =
Γ1 − Γ2

2
∗
n

=
αγµnp0

∗
p− µn(µz + αp0

∗
p)

2
∗
n

,

Ψ =
Ψ1 −Ψ2

2p2
o

=
α− δγ

2p2
o

.

(21)
We thus obtain

f(
∗
n,

∗
p,

∗
z) =

4ω0α
∗
nk2

op
2
o(Sk

2
o + βkn

∗
p
∗
n)

4
∗
n

2
k4

0p
4
0

−(Π1 −Π2)2

4
∗
n

2
k4

0p
4
0

.

If we choose ω0 such that

ω0 >
(Π1 − Π2)2

4α
∗
nk2

op
2
o(Sk

2
o + βkn

∗
p
∗
n)
, (22)

then
f(

∗
n,

∗
p,

∗
z) > 0.

We have also

g(
∗
n,

∗
p,

∗
z) = −Ψ2H11 − Γ2H22 + 2ΠΨΓ with

−Ψ2H11 =
−δ2 ∗

n
2
γ2(Sk2

0 + βkn
∗
p
∗
n)

4
∗
n

2
p4

0k
2
0

+
δ2αγ

∗
n

2
(Sk2

0 +βkn
∗
p
∗
n)−α2 ∗

n
2
(Sk2

0 +βkn
∗
p
∗
n)

4
∗
n

2
p4

0k
2
0

,

−Γ2H22 =
−2ω0(Γ1 − Γ2)2p2

ok
2
o

4
∗
n

2
p4

0k
2
0

,

2ΠΨΓ =
α(Π1 −Π2)(Γ1 − Γ2)

4
∗
n

2
p4

0k
2
0

−δγ(Π1 −Π2)(Γ1 − Γ2)

4
∗
n

2
p4

0k
2
0

.

Thus

g(
∗
n,

∗
p,

∗
z) =

Aδ2 +Bδ + C

4
∗
n

2
p4

0k
2
0

with :
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parameters , (c)- Eigenvalues in red for S < Sb and in blue for S > Sb.

A = −∗
nγ2(Sk2

0 + βkn
∗
p
∗
n),

B = 2α
∗
nγ(Sk2

0 + βkn
∗
p
∗
n)

−γ(Π1 −Π2)(Γ1 − Γ2),

C = −α2 ∗
n(Sk2

0 + βkn
∗
p
∗
n)

−2ω0(Γ1 − Γ2)2p2
ok

2
o

+α(Π1 −Π2)(Γ1 − Γ2).

(23)

Let’s set the condition

∆ = B2 − 4AC > 0 (24)

And let δ1 and δ2 the two real roots of the
polynomial Aδ2 +Bδ + C such that δ1 < δ2 .
Then, there exist admissible parameters (ω0 =
1.79 and ∆ = 0.0077, See Fig 1 for the rest of
parameters ) verifying the condition (24). So it’s
sufficient to choose δ < δ1 or δ > δ2 and we will
have Aδ2 +Bδ + C > 0, which implies :

g(
∗
n,

∗
p,

∗
z) > 0.

As we have obviously ζ(
∗
n,

∗
p,

∗
z) = 0 ≤ 0 , we

conclude that e3 ∈ G.

C. Bifurcation around equilibrium e3

We are interested in system behavior according
to upwelling intensity, the parameter S. We set a
range of admissible parameters where equilibrium
e3 is stable. We denote S0 the parameter resulting
from this choice and we will call it bifurca-
tion parameter. By varying S in [Smin, Smax] =
[0.1, 5.85], we look for the bifurcation value de-
noted by Sb , this will be the point where equilib-
rium e3 loses its stability. Let P (X) be the char-
acteristic polynomial of system linearized around
e3,

P (X) = h0X
3 + h1(S)X2 + h2(S)X + h3(S),

where h0 = 1, h1, h2, h3 are functions of S given
by :

h1(S) = −(F
1,

∗
n

+ F
2,

∗
p

+ F
3,

∗
z
),

h2(S) = F
1,

∗
n
(F

2,
∗
p

+ F
3,

∗
z
)

+F
2,

∗
p
F

3,
∗
z
− F

3,
∗
p
F

2,
∗
z
− F

2,
∗
n
F

1,
∗
p
,

h3(S) = −F
1,

∗
n
F

2,
∗
p
F

3,
∗
z

+ F
1,

∗
n
F

3,
∗
p
F

2,
∗
z

+F
2,

∗
n
F

1,
∗
p
F

3,
∗
z
− F

1,
∗
z
F

3,
∗
p
F

2,
∗
n
,

where Fi,x are the elements of the Jacobian matrix
of field F (7) .
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Fig. 3: Emerging limit-cycle after Hopf bifurcation ( S = 4 ) . It is the convergence of 11 trajectories after a transient time
of 8000. The black dot indicates the unstable equilibrium.

The 3× 3 matrix given by

H =

h1 h3 0
h0 h2 0
0 h1 h3


is called Hurwitz’s matrix associated to polynomial
P (X). Then P is stable (i.e., the real parts of the
eigenvalues are strictly positive) if and only if all
the principal minors of H (noted Hi) are positive
i.e.,

H1(S) = h1(S) > 0,
H2(S) = h1(S)h2(S)− h3(S) > 0,
H3(S) = h3(S)H2(S) > 0.

By fixing S0 = 0.85, we observe numerically that
H2(3.38) = H3(3.38) = 0 (Fig 2). Then Sb =
3.38 is a bifurcation value. It is a Hopf bifurcation
according to the Liu criterion [18] (III.1).

Lemma III.1 (Liu criterion). Suppose that the
following conditions are satisfied

(i) h0(Sb) > 0, H1(Sb) > 0, H2(Sb) = 0,
(ii) dH2

dS (Sb) 6= 0.

Then there is a simple Hopf bifurcation.

Looking at the typology of eigenvalues (Fig 2)7,
we have :
(i) For S ∈ [Smin, Sb[ , a negative real

eigenvalue, and two conjugate complexes of
strictly negative real part. The equilibrium e3

is therefore locally stable.
(ii) For S ∈]Sb, Smax], we have a negative real

eigenvalue, and two conjugate complexes
with a strictly positive real part. The equi-
librium e3 is therefore unstable.

We conclude from the Poincaré-Andronov-Hopf
theorem [19], that there exists a limit cycle for
S ∈]Sb, Smax] =]3.38; 5.85].

IV. RESULTS & DISCUSSION

After the definition of NPZ-Model, we are in-
terested in qualitative study of system. We made
sure of the existence, uniqueness, positivity and
boundedness of solutions. Then, we calculated
the stationary points and established sufficient
conditions for their positivity. We have discovered
that the two equilibria on the border of R3

+ are
unconditionally unstable, which is interpreted as

7The eigenvalues are scaled for image visibility.
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Fig. 4: Distribution of concentrations at equilibrium e3 with 105 range from admissible parameters ( dist-equ3(n) in NPZ-
Prog.py)

a correlation of dependence between the three
species. We have shown thanks to Lyapunov’s
theorem [15] , that the internal equilibrium is
stable in a subset G ∈ R3

+. This set is not unique
and depends strongly on parameters of system.

We have written a python program (NPZ-
Prog.py) 8 whose main task is to select a range of
admissible parameters ( i.e., checking proposition
III.1 ). Then, we used these parameters to evaluate
respectively equilibria and the associated eigen-
values.Thus, by drawing 105 ranges of admissible
parameters, it was observed that

∗
p3 is a uniform

distribution in [0.4, 5.85] on the other hand
∗
n3

and
∗
z3 are not at all uniform and are distributed

respectively in [0.01, 0.89] and [0.30, 5.55](Fig 4).
Then comes the integration of the NPZ system

with the odein function of python which is based
on a Runge-Kutta method of order 4 with adaptive
steps.

As shown in Theorem III.1, there is a range
of parameters where the equilibrium e3 is stable.
In this case, simulations confirm that eigenvalues
are of negative real part and two of them are com-

8Attached with additional files

plex conjugate. Orbits spiral and converge towards
equilibrium e3 (Figure 6). By varying upwelling
intensity S, we have shown that a super-critic Hopf
bifurcation occurs, that is to say, there is a value of
S where the equilibrium e3 loses its stability and a
limit cycle appears. We have not rigorously studied
stability of this cycle but the numerical simu-
lations conjecture its stability. This phenomenon
of periodic maintained oscillations was observed
by Edwards & Bees [10] where they considered
zooplankton predation of Holling type-III. This
shows that our choice of Holling type-II does not
remove this fundamental aspect of the original
model (Fig 5).

In the case where we have these periodic so-
lutions, we are interested in primary production
which is defined as the growth term in phytoplank-
ton’s dynamics and defined by

PP =
βnp

kn + n
(25)

The quantity PP is periodic because n and p are,
looking at evolution of its average with respect to
S ∈ [3.4, 5.85] (after bifurcation ), we see that the
average primary production is constant ( 〈PP 〉 =
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Fig. 5: e3 Unstable: (i)-Some orbits in the phase space. The point in black is the equilibrium e3 and in red the two others
. (ii)- System parameters (blue), coordinates of e3 (black) and associated eigenvalues (red). (iii)-Density evolution vs time
transient phase and (iv) permanent phase.
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Fig. 6: Same as caption in Figure 5. Case where equilibrium e3 is stable.

0.29 ) with a growing standard deviation through
S (Figure 7).

V. CONCLUSION

To study the dynamics of nutrients, phytoplank-
tons and zoo-planktons, we focused on a system of
ODE (4). There is a space of admissible parame-
ters where solutions are well defined. We also have

an interior equilibrium point. In the case where
the equilibrium is unstable, there is a stable limit
cycle which means periodical solutions. We had
algebraically determined four equilibria, of which
e4 /∈ R3

+. This is due to the sufficient conditions
stated on positivity of three others (9). It would be
interesting to look for positivity conditions for the
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Fig. 7: Average primary production according to the upwelling intensity S.

four equilibria and to study if necessary, the bi-
stability of e3 and e4. A biological interpretation
of the parameter and time spaces would strengthen
understanding of the model. Finally, it would be
enriching to consider transport-diffusion effect and
to couple the NPZ-model with an upwelling equa-
tion.

APPENDIX

Tables III, IV and V show a list of some
functions used to perform this paper. There are
three python codes 9 : NPZ _ Sympy_ Calcul.py
, NPZ_ Prog.py, Hurwitz_ Prog.py . Tables below
give functions and their outputs

TABLE III: NPZ _ Sympy_ Calcul.py

Function Output

Coef_ Jacobienne() Jacibian Matrix
SolveNZZero()

∗
n1,

∗
p1,

∗
n2,

∗
p2

SolveNZOriginal()
∗
n3,

∗
p3,

∗
n4,

∗
p4

Val _ Propres() Eigenvalues
Coef_ Hurwitz() Elements of Hurwitz Matrix

9File attached as support materials.

TABLE IV: NPZ _ Prog.py

Function Output

Test_ param() Range of admissible parameters
Condition _ Lasalle() ∆ = B2 − 4AC 24
dist_ equ3(n) Figure 4
plot _ snapshot() Figures 1 , 5 , 6
plot _ orbit() Figure 3

TABLE V: Hurwitz _ Prog.py

Function Output

plot _ prim _ production () Figure 7
plot _ orbite _ projection () Figure 8
plot _ val _ pro _ color Figure 2
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