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Abstract—The firing squad synchronization problem on of a self-reproducing cellular automaton. The problem
cellular automata has been studied extensively for more has been studied extensively for more than forty years.
than forty years, and a rich variety of synchronization al-
gorithms have been proposed for not only one-dimensional
(1D) but two-dimensional (2D) arrays. In the present paper,
we propose a simple and state-efficient mapping scheme:
zebra-like mappingfor implementing 2D synchronization
algorithms for rectangular arrays. The zebra-like mapping
we propose embeds two types of configurations alternately
onto a 2D array like a zebra-like pattern, one configuration
is a synchronization configuration of 1D arrays and the
other is a stationary configuration which keeps its state
unchanged until the final synchronization. It is shown
that the mapping gives us a smallest, known at present,
implementation of 2D FSSP algorithms for rectangular
arrays. The implementation itself has a nice property that
the correctness of the constructed transition rule set is Fig. 1. A 2D rectangle cellular automaton.
clear and transparent. It is shown that there exists a nine-
state 2D cellular automaton that can synchronize any (m
X n) rectangle in (m+n+max(m,n)-3) steps. In the present paper, we propose a simple and state-
efficient mapping schemeebra-like mappindor imple-
menting 2D synchronization algorithms. The zebra-like
mapping we propose embeds two types of configurations
alternately onto a 2D array like a zebra-like pattern, one
configuration is a synchronization configuration of 1D

We study a synchronization problem that gives arrays and the other is a stationary configuration which
finite-state protocol for synchronizing large scale cellul&eeps its state unchanged until the final synchronization.
automata. The synchronization in cellular automata h@ike mapping gives us a smallest, known at present,
been known as the firing squad synchronization problemplementation of 2D FSSP algorithms. Not only the
(FSSP, for short) which was originally proposed by humber of states in the implementation is smaller, but
Myhill in Moore [1964] to synchronize all/lsome partghe correctness of the constructed transition function with
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2561 rules is clear and transparent. of sizem xn at exactlym-+m+max(m, n)—3 optimum
steps, where the general is located at one corner of the
array.

[I. FIRING SQUAD SYNCHRONIZATION PROBLEM
A. FSSP on 2D Arrays

Figure[1 shows a finite two-dimensional (2D) rectan- ) ) ) )
gular array consisting ofn x n cells. Each cell is an B- Optimum-Time L-Shaped Mapping Algorithm
identical (except the border cells) finite-state automaton.

The array operates in a lock-step mode in such a way BEELE ST

that the next state of each cell (except border cells) .
is determined by both its own present state and the ’
present states of its north, south, east and west neighbors.

Thus, we assume the von Neumann-type four nearest

neighbors. All cells foldierg, except the north-west

corner cell genera), are initially in the quiescent state P
at timet = 0 with the property that the next state of a 8]

TEH
quiescent cell with quiescent neighbors is the quiescent N SN ii

s

- L)

%ﬁ

state again. At time = 0, the north-west corner cell;
is in the fire-when-readystate, which is the initiation
signal for synchronizing the array. The firing squad
synchronization problem is to determine a description
(state set and next-state function) for cells that ensures
all cells enter thdire state at exactly the same time and
for the first time. The tricky part of the problem is that
the same kind of soldier having a fixed number of states
must be synchronized, regardless of the sizex n of
the array. The set of states and next state function must B
be independent of andn. ~, .

The problem was first solved by J. McCarthy and N D
M. Minsky who presented &n-step algorithm for 1D
cellular array of lengthn. In 1962, the first optimum- Y
time, i.e. (2n — 2)-step, synchronization algorithm was N2
presented by Goto [1962], with each cell having several -
thousands of states. Mazoyer [1987] developed a six- I\
state synchronization algorithm which, at present, is the \ A <
algorithm having the fewest states for 1D arrays. On the 7\
other hand, a rich variety of synchronization algorithms
for 2D rectangular arrays has been proposed.

The first optimum-time rectangle synchronization afig. 2. L-shaped decomposition of an x n rectangle cellular

. : tomaton and a space-time diagram for the L-shaped base syn-
gorithm was proposed by Beyer [1969] and Shmaﬁﬁronization algorithm. A black circle in a shaded small square

[1974], independently. Concerning the time optimalitjepresents a general on each and a wake-up signal for the
of the 2D rectangle synchronization algorithms, th&nchronization generated by the general is indicated by a horizontal

following theorems have been shown. and vertical arrow.

Theorem 1Bever [1969], Shinahr [1974] There exists no cel- _ _ _ o _
lular automaton that can synchronize any 2D rectangleThe first optimum-time synchronization algorithm de-
array of sizem x n in less thann +m+max(m,n) —3 Veloped by Beyer [1969] and Shinahr [1974] for rectan-

steps, where the general is located at one corner of fHe arrays operates as follows: We assume that an initial
array. general is located on{¢ on a rectangular array of size

mxn. By dividing the entire rectangle array of sizexn
Theorem Bhinabr [1974] There exists a 28-state cellulainto min(m,n) rotated L-shapedlD arrays, shown in
automaton that can synchronize any 2D rectangle arfi@ig. 2, one treats the rectangle synchronization problem
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asmin(m,n) independent 1D generalized synchronizaented in the previous section, however, the mapping
tions with the general located at the bending cell of trento square arrays consists of two types of configura-
L-shaped array. All cells on each L-shaped array fall intions: one is a one-cell smaller synchronized configu-
a pre-specified synchronization state, simultaneously. \i&gion and the other is a filled-in configuration with a
denote theith (from outside) L-shaped array by and stationary state. The stationary state remains unchanged
its horizontal and vertical segment is denoted by Lonce filled-in by the time before the final synchroniza-
and L, 1 <4 < min(m,n), respectively. See Fig. 2.tion. Each configuration is mapped alternatively onto
Concerning the synchronization of;,Lit can be easily an L-shaped array in a zebra fashion. The mapping is
seen that each general is generated at the cgllaC referred to azebra-likemapping.
time ¢t = 3: — 3, and the general initiates the horizontal A key idea of the small-state implementation is:
(row) and vertical (column) synchronizations ob and
LY, via a 1D generalized optimum-time synchronization
algorithm which can synchronize arrays of lengtiith
a general orkth cell from left end (from bottom in the
L-shaped decomposition) ih— 2 + max(k,¢ — k + 1)
optimum steps, wheré < k& < ¢. Note that the length
of L; is ¢; = m+n —2i+ 1 and the general is on
k; = (m — i+ 1)th cell from left (bottom) end. For any
i,1 <4 < min(m,n), all cells on L; can be synchronized
at timet = 3i—3+&—2+max(kr7;,Ei—k‘i—i—l) =m-+n+
i—44max(m—i+1,n—i+1) = m+n+max(m,n)—3.
Thus, the rectangle array of size x n can be synchro-
nized at timet = m + n + max(m, n) — 3 in optimum-
steps. In Fig. 2 (top), each general is represented by a
black circles in a shaded square and a wake-up signal for*
the synchronization generated by the general is indicated
by a horizontal and vertical arrow.

The algorithm itself is very simple and now we are
going to discuss its implementation in terms of a 2D
cellular automaton.

« Alternative mapping of two types of configura-
tions: A stationary layer separates two consecutive
synchronization layers and it allows us to use the
same state set for the vertical and horizontal syn-
chronization on each layer, helping us to construct
a small-state transition rule set for the synchroniza-
tion layers.

o A one-cell smaller synchronization configura-

tion embedded:A one-cell smaller synchronization

configuration than the classical L-shaped mapping

(Shinahr [1974]) is embedded, where we can save

synchronization time by two steps.

A shared pre-firing state: A single stateX is

shared between an initial general state of the square

synchronizer, the stationary state in the stationary
layer, and a pre-firing state of the embedded 1D
synchronization algorithm used. The statdtself
acts as a pre-firing state of the square synchronizer
to be constructed.

The question is: how many states are required for its « A simple condition for final synchronization:

realization? Any cell in stateX, except G ,, enters the final
synchronization state at the next step if all its
neighbors are in state X or the boundary state of
the square. The cell,G, enters the synchronization
state if and only if its north and west cells are
in state X and its east and south cells are in the
boundary state. A cell in stat¥ that is adjacent

to the cell G, ,, is also an exception. These are the

only conditions that make cells fire.

Let @ be a set of internal states for the 1D optimum-
time generalized synchronization algorithm which is
embedded onto a 2D array as a base algorithm. When
we implement the algorithm on rectangle arrays based
on the scheme above, we usually have to add a direc-
tion information to each state in order to simulate the
embedded synchronization operations on each horizontal
and vertical segment. Thus, approximately, @ | —1
states are usually required for its independent row andin our construction we take the Mazoyer's 6-state 1D
column synchronization operations in order to avoid stasgnchronization rule as an embedded synchronization
mixing. Only a firing state is shared by the two areaalgorithm. The set of the 6-states {&, Q, A, B,
Shinahr [1974] gave a 28-state implementation based Gn X }, whereG is a generalQ is a quiescent, anX

the idea above. is a firing state, respectively. The other three st#teB
_ _ and C are auxiliary states, respectively.
C. Zebra-Like Mapping on Square Arrays The seven-state square synchronizer that we construct

The proposed mapping for square arrays is basicaligs the following state sefG, Q, A, B, C, X,
based on the rotated L-shaped mapping scheme pfé; whereF is a newly introduced firing stateX is a
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t=0 t=1 t=2 t=3

second layer is finished. In this way, the secondakts
as a stationary layer.

Concerning the embedding on the ot layer, the
cell C;; takes the stationary stat¢ time ¢ = 2i — 2
and generates a new general in staten the cell G;;
and G4, at timet = 2¢ — 1. The general in stat&
initiates a synchronization for the following cel€; ; 1,
Ci,z‘+2, ceey CL,n} and {Ci+1,il Ci+27i, . Q%i}’ each of
lengthn — . All cells on the two horizontal and vertical
segments of length — i enter the pre-firing statX at
timet =2i—1+42(n—1i)—2 = 2n— 3. In this way, for
odd i, theith L; acts as a synchronization layer. As for
the evenith layer, at timet = 2i — 2, the cell G; takes
the stateX and it extends the X-arm in the right and
lower direction, respectively, towards the ce{l€; ;. 1,
Ci,i_i_Q, . CL,n} and {Ci-l-l,i! Ci+2,i1 . QLZ'}, each of
lengthn — i. Every cell once entered in stakeremains
unchanged by the time before synchronization. At time
t=2i—2+4+n—1i=n+i—2, the filled-in operation on
the ith layer for eveni is finished. At timet = 2n — 3,
Fig. 3. Snapshots of the optimum-time synchronization process gff of the cells, except £n, ON the square of size x n
a 13> 13 square array. enter the stat&, which is a pre-firing state.

Thus we have seen:

. . . Theorem 3Umeo and Kubo [2010] There exists a seven-
general, andQ is a quiescent state, respectively. The

state G is the general state of the embedded synchr?);?;e 2D2(;,;that can synchronize amy n square array
nization. Those stated, B and C are also auxiliary e ps.

states, respectively. The transition rule set is constructedrigure[3 shows some snapshots of the synchronization
in such a way that: The initial general on Cin state process operating in optimum-steps om3ax 13 square

X generates a new general in st&@eon the cell G, array.

and G at timet = 1. The general in stat& initiates
a synchronization for the following cellsC; 2, Ci 3, ...,
Cin} and{Cy1, C31, ..., G, 1}, each of lengthn — 1. In this section we give three implementations for
Note that the length of the array where optimum-timectangle synchronization algorithms. As is shown in
synchronization operations are embedded is shorter Fig. 2, a 1D generalized FSSP algorithm is mapped on
one than the usual embedding in section 2. The cella L-shaped 1D array, where the cells on the horizontal
on the segments are constructed to operate so that thay vertical segments have to cooperate with each other.
simulate the Mazoyer’s optimum-time synchronizatiofhus, in contrast to the square implementation, two
operations. All cells on the two horizontal and verticahdependent, small-size synchronization configurations
segments of lengtlh — 1 enter the pre-firing stat¥ at cannot be implemented on the horizontal and vertical
timet=1+2(n—1) —2 = 2n — 3. In this way, the segment on a single synchronization layer in the rectan-
first L; acts as a synchronization layer. At time= 2, gle case. All the implementations given are variants of
the cell G, takes the statX and it extends an X-arm (athe zebra-like mapping. The first ten-state implementa-
cell segment in statX) in the right and lower direction, tion is a straightforward implementation of the zebra-
respectively, towards the cel{; 3, Co 4, ..., G} and like mapping, which yields a non-optimum algorithm.
{C32, Cs2, ..., G, 2}, respectively, each of length—2. The second 11-state implementation is a variant of the
Every cell once entered in staté remains unchangedzebra-like mapping where the first synchronization layer
by the time before it meets a local condition for thé; and the thereafter layers; i > 3 take a different
synchronization given later. At time=2+n —2 =n, set of synchronization rule set. The third one is a nine-
the filled-in operation with the stationary stateon the state implementation which regards the marking symbol

[1l. ZEBRA-LIKE MAPPING ONRECTANGLE ARRAYS
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Fig. 4. Snapshots of the non-optimum-time ten-state synchronifég. 5. Snapshots of the optimum-time eleven-state synchronization

tion process on d3 x 9 rectangular array. process on d3 x 9 array.
TABLE |
A LIST OF IMPLEMENTATIONS FOR2D RECTANGLE FSSP
ALGORITHMS.
used in the recursive division as the pre-firing state _ _
ki h | ith K i . Th Implementations # of # of Time Notes
making the a gor!t m work in o_ptlmum-steps. ose states| rules | complexity
three implementations are stated in Theorems 4, 5 and 6. Beyer [1969] - — | optimum | rectangle
Their proofs are omitted due to the limited space avai- Shinahr [1974] 28 | — | optimum ] rectangle
. . Umeo, Maeda and 6 1718 non- rectangle
lable. Some snapshots of the synchronization processes Fyjwara [2002] optimum
in those three implementations are given in Fig(ijdg 4, 5, Umeo and Kubo [2010] 7 | 787 | optimum | square
Theorem 4 10 1629 non- rectangle
andm- (this paper) optimum
. Theorem 5 11 4044 | optimum | rectangle
Theorem 4 There exists a ten-state 2D CA that can (this paper)
synchronize anym x n rectangle arrays inn + n + e 9 | 25611 optimum | rectangle
max(m,n) — 2 non-optimum steps.
Theorem 5There exists an eleven-state 2D CA that can
synchronize anym x n rectangle arrays inn + n + IV. CONCLUSION
max(m, n) — 3 optimum steps. We have proposed a nine-state optimum-time synchro-

Hization algorithm that can synchronize any rectangle
arrays of sizem x n with a general at one corner in
m+n+max(m,n)—3 steps. The algorithm is based on
a new, simple zebra-like mapping scheme which embeds

Theorem 6 There exists a nine-state 2D CA that ca
synchronize anym x n rectangle arrays inm + n +
max(m,n) — 3 optimum steps.
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Fig. 6.

process on d3 x 9 array.

Snapshots of the optimum-time nine-state synchronizati([)1n4
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