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ABSTRACT. General energy demand is continuously increasing, thus the energy generating assets
need to be optimised for higher efficiency. Wind turbines are no exception. Their maximum efficiency
can be determined on a theoretical basis. The limit is approached by researches day by day, utilizing
the latest developments in airfoil design, blade structure and new and improved ideas in conventional
and unconventional wind turbine layouts. In this paper, we are reviewing the conventional and
unconventional wind turbines and their place in smart cities. Then, an unconventional wind turbine
design, the CO-DRWT (counter-rotating dual rotor wind turbine) is analysed with a CFD (computational
fluid dynamics) code, varying the axial and radial distances between the two turbines. After the
simulations, the power coefficients for the different turbine configurations is calculated. At the end of
this paper, the simulations results are summarized and consequences are drawn for the CO-DRWT
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layouts.
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1. INTRODUCTION

Nowadays, the increasing energy demand pushes engi-
neering applications to their theoretical limit in many
aspects, e.g., sustainability, more autonomous oper-
ation besides the decades-old requirements of higher
performance, more economical operation and easier
manufacturability. To achieve all the above mentioned
requirements, the engineers need to turn to more com-
plicated solutions: either utilizing a completely new
concept or applying a new approach to an existing one.
This applies to renewable energy production assets,
like solar panels, wind turbines, biomass, geothermal
and hydropower plants, too. In the following article,
we will examine the wind turbines (WT) especially the
counter-rotating dual rotor wind turbine (CO-DRWT)
in this regard.

The first concept of a wind turbine was made by
Heron of Alexandria in the first century. The first
known wind turbine that was constructed was the
Nashtifan, which was a vertical axis wind turbine
(VAWT) [I]. The first horizontal axis windmills ap-
peared in the 9" century in Great Iran, and in the
12" century in North-Western Europe. Century by
century, the structure of windmills and the blade ge-
ometry were developed. In the middle of the 19"
century, Daniel Halladay invented the American wind-
mill, which was used for lifting water from wells [2].

The first wind turbine, which generated electricity,
was invented by James Blyth in 1887, which was a
vertical axis wind turbine (VAWT). Its first horizon-
tal axis counterpart (horizontal axis wind turbine -
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HAWT) was constructed by Charles Brush and built-
in 1888.

In the next decades, more and more WTs were
built, the first one exceeding the 100 kW barrier in
terms of the generated power was built in Yalta, 1931.
That design is considered to be the forerunner of the
currently used horizontal axis wind turbines. Thanks
to the ’70-’80s oil crisis, renewable energy sources -
including wind energy - came more and more into
focus, and innovation in the field of WTs sped up.
Nowadays, due to the fear of a nuclear accident and
its environmental effects, the number of installed WTs
grows progressively [3].

Nowadays, multiple WT designs exist in various
sizes that make them applicable in multiple environ-
ments. Thanks to the scalability of WTs and the
availability of external electrical power storage sys-
tems, they can be effectively used both as a base
power plant and as a load follower power plant. In the
next figure, examples of both cases are displayed: on
the left-hand side (Figure North Pole’s first WT,
which is an example of the main power plant and on
the right-hand side (Figure , the WTs of Bahrain’s
World Trade Center, which support the building’s
power system.

With this level of scalability, WT’s can serve as
power sources for smart cities, and they can be con-
nected to a smart grid. WT farms already use a
Supervisory Control and Data Acquisition (SCADA)
system, which is required for a smart city installation,
too. With this, or a modified Internet of Things (IoT)
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FIGURE 1. Wind turbines with different power generation roles: a) Wind Turbine at the North Pole - the main power
generator [4]; b) Wind Turbines on the World Trade Center in Bahrain - secondary power generators [5].

based system, the wind power generation data can be
collected, stored and analysed centrally.

With small and large size WTs, smart and sustain-
able cities can be built relying on renewable energy
sources. Because the demand for renewable sources
is growing from the inhabitants and the governments
too, see the following examples:

e Chicago City Council plans to raise the renewable
portion of its municipal buildings’ energy consump-
tion to 100 % by 2025,

e Paris City Council plans to increase the renewable
portion of the city’s energy consumption to 45 % by
2030 and to 100 % by 2050,

e Budapest City Council plans to increase the renew-
able portion of the city’s energy consumption to
27 % by 2030,

e Danish government plans to go 100 % renewable by
2030 and

e Spanish government plans to achieve the same by

2050 [6} [7].

Those cities, where a large amount of energy has
to be generated in a very limited space, unconven-
tional WTs might provide a better solution. For differ-
ent environments, engineers can create unique uncon-
ventional WT designs which meet the requirements
specifics to the given environment. In Figure [2] there
are three examples of unconventional WTs.

For unique requirements, unconventional WT de-
signs might be necessary. These requirements might
be the maximum specific energy production or addi-
tional comfort criteria (e.g. noise).

Figure 2a] and 2] display examples of the former
category. Figure 28] shows a multiple rotor wind tur-
bine. In such designs, two or more motor rotors are
placed on one tower. Alternatively, wind turbines can
be equipped with additional features that help them
capture more wind.

Figure 2d shows an Archimedes Screw that does not
excel in terms of efficiency, but it generates power with
lower noise levels due to its lower rotational speed.

The dual rotor wind turbines can be differentiated
by the rotational direction of the rotors: both co- and
counter-rotating dual WTs exist. Ozbay et al. [I1]
performed an experimental study to compare the co-
and counter-rotating dual rotor WTs with a single
rotor wind turbine (SRWT). They found that dual
rotor wind turbines produce more energy than single
rotor WTs, and the counter-rotating variant is more
efficient than the co-rotating dual rotor WT.

Ertuk et al. created a mathematical model for
CO-DRWT to analyse the power output by changing
the pitch angle and the incoming wind speed on the
second rotor [12] [I3], while Lee et al. carried out a
measurement and CFD simulations for analysing the
power output of CO-DRWT with a different yaw angle
and tip speed ratio [14].

2. CALCULATION OF WIND TURBINE
EFFICIENCY
A WT’s efficiency can be demonstrated with its power

coefficient (c,), which can be calculated with the fol-
lowing equation:

M- w
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(1)

In the previous equation, the ¢, is the power coef-
ficient, Protor is the mechanical power generated by
the rotor, P,;nq is the wind power, M is the torque
on the rotor, w is the rotor’s angular velocity, p is
the density of the air, S is the swept area, v, is the
freestream velocity.

The swept area for dual rotor wind turbines vary
depending on the second turbine’s position, its value
can be between S =7 -7? and S =27 -2 (r is the
swept area’s radius). From 0 diameter radial shift to
1 diameter radial shift, the swept areas are shown in
Figure [3] and indicated with the two rotor blades.
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FIGURE 2. Unconventional WTs:

a) Dual Rotor Wind Turbine [§]; b) Wind turbine with guide baffle [9]; c)
Archimedes Screw Wind Turbine [10].

29835

FIGURE 3. Swept areas for different CO-DRWT layouts (from 0 diameter to 1 diameter radial shift).

The ¢p’s maximum value is 16/27 (59.26 %) by
Betz’s law, and 30.113 % by the GGS model [15]. The
Betz limit was calculated by Betz in 1919, using a
one-dimensional model, where the flow is incompress-
ible, laminar, frictionless, the force and the pressure
distribution are uniform on the turbine’s blade and
the rotor has an infinite number of blades. The GGS
model is a curvilinear model unlike the rectilinear Betz
model. Under real-life circumstances, the measured
power coefficient of a wind turbine is usually between
the values predicted by Betz’ theorem and the GGS
model.

3. FOUNDATIONS OF UNSTEADY FLOWS

The computational fluid dynamics (CFD) is a sim-
ulation tool for predicting the flow field in a given
domain. For our research, we used a finite volume
method (FVM) based CFD code. This method di-
vides the computational domain into finite volumes.
Continuity, momentum and energy equations are spa-
tially discretized over the mesh generated by this
subdivision. Based on the previous equations, FVM
based CFD codes generally use the following transport
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equation [I6]:

0
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In this equation, V' denotes an arbitrary enclosed
control volume, A denotes the surface of this control
volume, U is a conserved quantity (e.g.: mass), F' is
the same quantity’s flux over the A surface, Sy is the
volumetric source of quantity U over volume V', S4 is
the surface source of quantity U over surface A and
E is the error of the equation (residual).

The previous equation can be written for every
cell of the mesh and solved in a system of equations.
To do so, CFD codes utilise iterative methods that
converge to a solution by reducing the residuals of the
equations.

4. MOTIVATION

In this research, a CO-DRWT was studied without the
tower and the nacelle with the previously described
numerical method. In our analysis, we chose two wind
wheels with a 200 mm rotor diameter. The relative
position of the two rotors varied both in the axial
and radial directions. The axial distance was between
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Axial
distance

Radial
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FIGURE 4. Studied CO-DRWT with 0.5D radial and
1D axial shift with rotational directions indicated.

FI1GURE 5. 3D printed turbines.

0.04D and 2D and the radial distance was between
0D and 1D. (D denoting the rotor diameter, e.g., 2D
is 400 mm).

The initial positions of the rotors and their rota-
tional directions are shown in Figure [4]

For different configurations, the swept area var-
ied. In our cases, for 0D, 0.25D, 0.5D, 0.75D
and 1D radial shifts, the areas were 31415.93 mm?,
41310.76 mm?2, 50548.16 mm?, 58298.74mm? and
62 831.85 mm?, respectively.

By numerical simulations, the ¢, values were calcu-
lated and evaluated for each radial and axial distance.

5. MEASUREMENT METHOD

For measurements and validation, specimens were
manufactured by 3D printing. These are shown in
Figure [

The torque generated by the 3D printed rotors was
determined by wind tunnel measurements at Szent
Istvan University. For the measurement, we used the
university’s wind tunnel, with a HELOIS HQ630 fan
controlled with a Procon frequency converter. During
the measurement, the wind speed and the tip speed
ratio of the rotors were monitored and controlled, the
torque was observed by a weighing motor [I7]. The
measurement setup is shown in Figure [6}

6. SIMULATION PARAMETERS

For the simulations, Mentor Graphics’ FIoEFD was
employed with the same flow conditions as the mea-

FIGURE 6. Wind turbine models in the wind tunnel.

surement. As a fluid, “Air” was selected from
the software’s material database. The flow enters
the computational domain through its “Front” face
with a 3.79m-s~! freestream velocity. For the other
boundaries of the domain, the ambient pressure was
set to latm. The turbines’ speed of rotation was
1447.675 RPM, which means a turbine tip speed ratio
was 4.

The tip speed ratio describes the relation between
the WT’s angular speed and the wind speed, and it
can be calculated by equation (3), where X is the tip
speed ratio, w is the angular velocity, Rp is the blade’s
radius and v, is the freestream velocity.

o @ Bs (3)
Voo

In the simulations, the rotation of the rotors was

modelled two different ways:

e in steady-state solutions with the frozen rotor
method for sweeping the whole range of dimensions
in a computationally efficient way, and

e in transient solutions with the sliding mesh tech-
nique for simulating the turbulence, cross-checking
the steady-state results and for validating the cal-
culations against measurement data [17].

In a steady-state simulation, it is assumed, that
the flow field will eventually converge to a stationary
solution, no time-dependency is expected. As a result,
it provides a single value for every quantity. In con-
trast, the transient solution solves the task in a fully
time-dependent manner. As a result, it provides the
complete time history of every quantity.

Due to the periodic geometry of the rotor, the be-
haviour of the turbine is quasi-static, the generated
power is expected to converge to a regular, periodic,
ergodic function. Hence, the results of the steady-
state simulation are expected to converge to the time-
average of the transient solution.

The steady-state simulations ran with two finishing
conditions, one being a minimum iteration number of
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10D

FiGure 7. Computational domain in FloEFD.

10000, the other being the convergence of the moni-
tored physical values (average and maximum velocity,
torque on the rotors).

The unsteady simulations were initialized with the
steady-state solutions and then ran to a physical time
of 0.4144582 seconds, which is equivalent to 10 com-
plete rotations.

In each simulation, the k — e turbulence model was
used with a two-scale wall function based on the Van
Driest model.

For the studies, a rectangular computational do-
main was used, where the first rotor was fixed, while
the position of the second rotor varied. The domain
size is shown in Figure[7]

For the spatial discretization, FloEFD’s own mesher
was used, which provides a cartesian mesh with cell-
mating and cut-cell methods. The cell count was
between 2.8 — 3 million, depending on the position of
the turbines. The meshes are shown in the following
figures (Figure [§and Figure [9).

7. RESULTS

For each configuration, the flow field was similar.
Downstream the turbine, velocities are generally lower
than the free flow velocity, as energy is extracted from
the wind. However, near the wingtips, where vor-
tex shedding can be observed, local velocities may
be higher than the free flow velocity. The velocity
distribution in the wake of the turbines is shown in
the next figure (Figure for a transient case with
the 0.5D radial shift (100 mm) and 0.25D axial shift
(50 mm) configuration.

The torque generated on the blades’ surfaces was
constantly monitored. This value served as the basis
for the evaluation. Steady-state simulations provide
a single torque value for each configuration, while
transient runs generate the complete time history of
the measurement. The transient torque results for
one rotation are shown in Figure

The ¢, values of the turbines were calculated from
the torque results of the steady-state simulations us-
ing equation . The power coefficients of the two
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rotors (cp1 and cpe) were added to calculate the over-
all ¢, of the CO-DRWT. These values are plotted in
Figure[12] For a comparison, a Single Rotor Wind Tur-
bine (SRWT) was evaluated using the same method,
and its ¢, is also plotted in the same figure with a
blue dashed line.

Both the steady-state and the transient results
were cross-checked against the measurement data.
The comparison was carried out for the R = 0.5D,
A = 0.5D case and the R = 1D, A = 0.5D case
with the same flow conditions, which were described
in the previous section. The transient simulations
predicted the overall ¢, with 10.14 % and 7.93 % dif-
ference, respectively, while the steady-state simula-
tions prediction accuracy was 13.75% and 12.73 %,
respectively.

Based on the results, the followings can be stated:

(1.) The first rotor’s torque is almost constant, with
a minimal fluctuation caused by turbulence (see

Figure .

(2.) In the A = 0.5D case, the torque on the second
turbine shows a certain degree of fluctuation. The
extent of the fluctuation is highly dependent on
the radial shift: with R = 0D, the torque is highly
disturbed by turbulence, with R = 0.5D, the torque
shows sinusoidal fluctuations, with R = 1D, the
fluctuations diminish (see Figure [11).

(3.) As shown in Figure with our geometry, the
CO-DRWT with R = 0D radial shift and A = 2D
axial gap is the most efficient configuration.

(4.) In the examined region, the CO-DRWT with
R = 1D produce approximately the same (= 0.5)
power coeflicient, in the case of R = 0D, the ¢, is
increasing with the axial shift (see Figure .

(5.) In the R = 0.25D and R = 0.5D cases, the power
coefficient decreases as the axial shift increases until
the A = 1.25D distance, after the minimum point,
the ¢, increases. For the R = 0.75D case, the
same can be observed, but the lowest ¢, value is at
A = 1D distance (see Figure [12).

(6.) Comparing the results with the measurement
data, we found the transient simulations produced
roughly 8% and 10 % lower torque values, while the
results of the steady-state simulations were about
—13% and +14 %.

(7.) For each radial shift value, the maximum power
coefficient of the CO-DRW'T was higher than the
SRWT’s across the whole range of axial shifts. The
maxima of the individual curves were:

(a.) 1.34 times higher for R = 1D,

(b.) 1.30 times higher for R = 0.75D,

(c.) 1.28 times higher for R = 0.5D,

(d.) 1.17 times higher for R = 0.25D,

(e.) 1.36 times higher for R = 0D than the
SRWT’s cp,.
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FIGURE 8. The whole computational domain’s mesh for the R = 1D and A = 0.25D configuration.
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FIGURE 9. Mesh near the first turbine.
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F1GURE 10. Velocity distribution in the turbines’ region for the R = 0.5D and A = 0.25D configuration.
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FIGURE 11. Torque values in the time domain.
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FIGURE 12. Power coefficient (c,) by the axial and radial distance.

(8.) From a comparison of the SRWT’s and CO-
DRWT’s power coefficients, it can be seen that
the cp curves of the CO-DRWT were:

(a.) 1.30 times higher for R = 1D,

(b.) 1.21 times higher for R = 0.75D,

(c.) 3% lower for R =0.5D,

(d.) 3% lower for R = 0.25D,

(e.) 1.22 times higher for R = 0D than the
SRWT’s c,.

According to Statement 3, for the R = 1D case, a
minimal turbine interaction is beneficial in terms of
efficiency. Thus, shifting the second turbine radially
has its benefits both in terms of energy generation
and, probably, maintainability. However, radial shift-
ing poses a design challenge for the turbine’s nacelle
and tower design and it increases the turbine’s space
requirement. For the R = 0D case, there is a turbine
interaction, but the smaller swept area has benefits
for the energy generation. In this case, with the ax-
ial shift, the ¢, is growing, which is good for energy
generation, maintainability and space utilization.

According to Statement 4 and 5, the CO-DRWT
with R = 0D and R = 1D are generally efficient con-
figurations, while the other configurations are efficient
with small axial gaps.

According to Statement 5, for R = 0.25D, R =
0.5D and R = 0.75D, ¢, grows as the axial shift de-
creases. Hence, the minimal axial distance is beneficial
in terms of efficiency. However, in practical cases, too
small of a gap between the turbines might cause a
collision of the blades due to their deformation under
aerodynamic loads. For determining the minimum
allowable distance, a measurement or a two-way FSI
simulation is necessary.

According to Statement 7, for the 1D radial shift,
the ¢, of CO-DRWT was 1.34 times higher than the
SRWT’s ¢,. At this distance, there is an interaction
between the two rotors, hence, with a greater radial
shift, the interaction diminishes and c, can grow.
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8. CONCLUSIONS

In this study, we analysed a counter-rotating dual ro-
tor wind turbine, with a variable axial and radial shift.
As a conclusion, we plotted the power coefficients
against the axial and radial distances (Figure .
The power coefficient was calculated based on the
results of CFD simulations with the frozen rotor tech-
nique and validated against transient simulations with
the sliding mesh approach and measurement data.

Based on the results of the presented study, the CO-
DRWT has a large potential in the pursuit of more
efficient ways of wind energy harvesting. Depending
on the application and environment, a wisely chosen
CO-DRWT configuration could generate more electri-
cal power than the SRWT. In our opinion, in the close
future, CO-DRWTs will appear in large numbers in
urban areas thanks to their efficient use of space, and
they will appear on wind farms, as a result of their
higher energy density compared to SRWTs.
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