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Abstract

A volcano can be seen as a dynamical system, the number of state variables being its dimension N. The state is
usually confined on a manifold with a lower dimension f, manifold which is characteristic of a persistent
«structural configuration». A change in this manifold may be a hint that something is happening to the dynam-
ics of the volcano, possibly leading to a paroxysmal phase. In this work the original state space of the volcano
dynamical system is substituted by a pseudo state space reconstructed by the method of time-delayed coordi-
nates, with suitably chosen lag time and embedding dimension, from experimental time series of seismic activ-
ity, i.e. volcanic tremor recorded at Stromboli volcano. The monitoring is done by a neural network which first
learns the dynamics of the persistent tremor and then tries to detect structural changes in its behaviour.
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1. Introduction

Stromboli, one of the Aeolian Islands, lo-
cated north of Sicily, Italy, presents a persis-
tent volcanic activity which can be recorded by
a seismometer both in terms of explosion-
quakes, several times per hour, and of volcanic
tremor, which changes its amplitude and spec-
tral content but it is always present. The same
kind of behaviour has been observed for hun-
dreds of years without significant variations.
This suggests the idea of considering the
source of the seismic activity as a dynamical
system (Birkhoff, 1927), ie. a system which
evolves with time but maintains some sort of
«structural stability» (Carniel, 1993). More-
over, the persistence of such seismic activity
gives volcanologists the opportunity to obtain
many valuable data in a relatively short period
of time. Data coming from a fixed seismic sta-
tion installed by our Department near the sum-
mit of Stromboli (Beinat et al., 1994) were ex-
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tensively used in the developing stage of the
method described in this paper. Although
Stromboli is a very peculiar volcano, the
method may be used to analyze seismic or
even other kinds of data recorded at other vol-
canoes all over the world.

2. Dynamical systems

A dynamical system is characterized by
several state variables, which are the compo-
nents of its state vector x. Denoted by N the di-
mension of the dynamical system, i.e. the di-
mension of the state vector, we generally ob-
serve that the dynamics is confined on a mani-
fold (attractor) which has a lower, usually
fractal (Mandelbrot, 1977) dimension f.

Of course the ground motion is not the only
state variable of the volcano dynamical system,
but it is the only one we suppose available. We
therefore have to reconstruct a multidimen-
sional pseudo state space using the well known
time-delayed coordinates method (Packard
et al., 1980): delayed values of the same time
series {R;} are used as different coordinates
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to build n-dimensional vectors
X(Ri, Rivo Risor Rivn-nyo)-

A trajectory of reconstructed points is guar-
anteed to be the image of the original trajec-
tory under a map which is differentiable and in-
vertible, if the condition n > 2f holds (Takens,
1981). Of course Takens’ theorem cannot be ap-
plied in practice because the dimension of the
stable manifold fis as unknown as the dimension
N of the original state space. All we know is that
the so-called embedding dimension n must be
kept as low as possible in order to reduce the
computing time of subsequent analyses.

Secondly, we must choose the value of the
delay 7 used in the reconstruction. This choice,
although not mentioned in Takens’ theorem,
may seriously affect the goodness of the recon-
struction.

3. Neural networks

A neural network (see fig. 1) is a computa-
tional tool composed of a set of neurones — the
circles of the graph — connected by synapses —
the arcs. The definition goes back to the 40’s
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Fig. 1. Architecture of a neural network.
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(McCullogh and Pitts, 1943), although it was
not practically used until the advent of modern
computers. Each neurone reads its input
through the synapses, combines them linearly
with weights associated to each of them and
passes to its output synapses the result of the
application of a suitably defined non-linear ac-
tivation function to the linear combination.

In the training phase the neural network has
to «learn its task» with a set of examples. The
interconnection of nodes and arcs being fixed,
this can only be done by changing the weights
associated to the different synapses. A back-
propagation updating algorithm is often used,
which goes back from the output to the input
changing the weights according to the deriva-
tive of the error signal with respect to the
weight under update, i.e. descending the error
surface in the direction opposite to the gradient.

Several architectures exist for neural net-
works, which can be supervised or not, i.e.
trained with a set of input-output couples or
just with a set of inputs. A particular kind of
supervised neural network is the auto-associa-
tive one, whose target is to reproduce at its
output just the data received as input.

OUTPUT
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A recent work (Romeo and Taccetti, 1994)
highlighted the possibility of using an auto-
associative neural network as a trigger mecha-
nism for a seismic station. The neural network
is trained to mimic the seismic «normal activ-
ity», recorded by the instrumentation in ab-
sence of interesting seismic events; the data ac-
quisition is then triggered each time there is an
increase in the error signal of the neural net-
work, iLe. a divergence between the «pre-
dicted» and the observed values. The authors
show good results also when there is a need to
detect unevident patterns such as small or far
earthquakes, which would not be triggered by
classical threshold or STA/LTA algorithms.

The drawback of the method is that, as the
error function does not change abruptly, it can-
not be used to determine the first arrival of a
seismic wave precisely; however, it is highly
suitable as a pre-trigger algorithm in order to
recognize events in the presence of a low sig-
nal-to-noise ratio, leaving to other methods the
task of picking up the different phases of the
seismic event.

4. A combined dynamical — neural method

In the following, the feasibility of the appli-
cation of a similar idea to a quite different
problem is investigated, i.e. the analysis of a
pseudo state space of the dynamical system
governing the activity of a volcano.

A time series representing a persistent vol-
canic tremor, ie. the one continuously
recorded at Stromboli, is considered as a state
variable of a dynamical system governing the
behaviour of the whole volcanic system
(Carniel, 1993). From this single variable a
pseudo-state space is reconstructed using the
method of time-delayed coordinates. The lag
time is chosen in correspondence of the first
minimum of the mutual information or redun-
dancy function (Fraser and Swinney, 1986),
while the choice of the embedding dimension
is made according to the method of false near-
est neighbours (Kennel et al., 1992). Details of
the embedding procedure for tremor data will
be given in the next section.
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It can easily be understood that any
«change» in the characteristics of the dynamics
of the reconstructed system may suggest a cor-
responding variation in the dynamics of the
real volcano, a variation which could be not
evident with the «classical» analysis tools, ei-
ther in time or in frequency domain. An auto-
associative neural network is therefore used to
investigate those changes.

Given the architecture of the neural net-
work, which is the one shown in fig. 1 with
outputs forced to be the same as inputs, the
first thing to be fixed is the number of inputs,
outputs and hidden nodes, these latter being
obviously the nodes in the first layer which are
not connected to the output.

The idea is to study the relation of each re-
constructed point to the attractor of the volcano
dynamical system. Therefore the embedding
dimension 7 is used to fix the number of inputs
and outputs of the neural network.

The choice of the number of hidden
nodes requires some discussion. Although no
theoretical results exist to make this choice ob-
jectively, methodologies are being developed
to estimate the optimal number (see e.g.,
Vysniauskas et al., 1993); trial-and-error proce-
dures are however still the most used in order
to find the best configuration for the network.

In this work we will limit ourselves to a
number of hidden nodes smaller than the num-
ber of inputs and outputs; there are several rea-
sons for this choice. The first is that the points
we want to simulate «live» in an n-dimensional
state space but are supposed to belong to a
manifold with a smaller, fractal dimension f
The dynamics therefore should not span the
entire n-dimensional space and a data compres-
sion of the points should be possible. Such a
data compression while passing from input to
output would also avoid the risk of weights be-
ing changed trivially in order to copy the input
data to the output; in this case the network, al-
though showing good performance in the pre-
diction, would not «learn» much about the way
the mechanism under study is working.

For the first reason discussed above, an in-
teger approximation of f would be a good
choice to fix the number of nodes in the hidden
layer, both forcing a compression of the data
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representing the tremor observations and trying
to respect the real dynamics of the system. The
first method to determine the value of f was
published some ten years ago (Grassberger and
Procaccia, 1983); several others were devel-
oped by other authors in order to solve the lack
of objectivity of the original method, which
could result in very different results if applied
by different researchers. Nevertheless, the
problem is still quite difficult, especially in the
presence of a low signal-to-noise ratio (Ca-
sdagli et al., 1991) and too short datasets
(Ramsey and Yuan, 1990). It is useful to re-
member that the demand for data and the re-
lated difficulty of determination of f increase
exponentially with its value.

The final reason to justify our choice of the
number of hidden nodes is found directly on
the procedure we want to carry out. In fact, as
we will discuss in the following, we are not in-
terested in the absolute value of the error func-
tion but in the ratio of the error functions ob-
tained using different weights. We have there-
fore to use the same architecture for all the
tremor samples we analyze, although this may
be not the optimal choice for some tremor
regimes.

Therefore, the number of nodes in the hid-
den layer in this work is fixed to be just one
less than the number of inputs and outputs.
This assures the data compression suggested
by the embedding of an f-dimensional mani-
fold in an n-dimensional space and experimen-
tally offers sufficiently good results.

S. Tremor data pre-processing and
embedding

The method described in this paper was de-
veloped and tested using a set of tremor data
recorded at Stromboli by a three component
station (Beinat et al., 1994) before and after
one of the paroxysmal phases of 1993. Of
course this is no more than a case study, as the
change in the dynamics of the volcano had al-
ready been evidenced with a more conven-
tional approach (Carniel er al., 1994; Carniel
and Iacop, 1996). In any case, the method has
to be tested where a change definitely hap-
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pened; a long term analysis can then be
planned using the results of the case study in
order to find other structural changes.

Two very strong explosions were felt at 1:10
GMT on October 16, 1993, with large blocks
and spatter up to 2 m in diameter ejected 500 m
from the crater, injuring one woman (GVN,
1993). Besides being a much larger manifesta-
tion than usual of the persistent strombolian
activity, this marked a significant discontinuity
in the external and seismic behaviour of the
volcano, as can be argued looking both at the
mean tremor amplitude and at its spectral content
(Carniel et al., 1994; Carniel and Tacop, 1996).

As outlined above, the first step in the ap-
plication of the combined neural — dynamical
procedure is to embed tremor data, i.e. to re-
construct the pseudo-state space.

The first choice is that of the lag time, i.e.
the time separating the time series values taken
as different coordinates of the reconstructed
points. These values should be as independent
as possible; while the first zero of the autocor-
relation function assures linear independence,
the first minimum of the redundancy function,
an application of Shannon’s information theory
to time series, guarantees a more general inde-
pendence. Without entering into too many de-
tails, which can be found in (Fraser and Swin-
ney, 1986), we can say that the mutual infor-
mation or redundancy function for a given lag
time 7 measures the number of bits of the time
series value R;,, which we can predict on the
average, given the value of R, We therefore
look for values of 7 for which the redundancy
is minimal; in practice, we simply choose the
first minimum of the mutual information as a
function of 7. The method described was used
in order to determine the optimal lag time for
the tremor data. Figure 2 shows the value of
the first minimum of the redundancy function
for the radial, tangential and vertical compo-
nent using tremor samples recorded at the
same hour (around 12 GMT) of different days
of October, both before and after the strong
explosions.

Although the picture may suggest quite dif-
ferent values for the various samples and/or
components, fig. 3 shows that as a matter of
fact the behaviour of the redundancy function,
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Fig. 2. First minimum of the redundancy function for different tremor samples during October 1993. The ver-
tical scale is expressed in sampling periods of 0.0125 s.

18
16

14

Redundancy
® oS P

=)

Lag time

Fig. 3. Behaviour of the redundancy function for vertical component of different tremor samples during Octo-
ber 1993.

245



Roberto Carniel

here shown for the vertical component of all
tremor samples, does not vary so much and the
choice of the minimum is not so critical as
long as lag times less than 5 are avoided. Hav-
ing made these considerations, and for the al-
ready mentioned reason that we have to pro-
cess all the data in exactly the same way, a
unique lag time was chosen, its value being set
equal to 6 sampling intervals which, at a
sampling frequency of 80 Hz, correspond to
0.075 s.

The second choice is that of the embedding
dimension. The method of false nearest neigh-
bours was used (Kennel er al., 1992). The idea
of the algorithm is based on the successive re-
construction of pseudo-state spaces with larger
and larger dimensions. When passing from an
embedding dimension d to the next one d + 1 it
is possible to divide the couples of points con-
stituting the d-dimensional trajectory among
true and false neighbours, these latter being
those points which appear to be near just be-
cause we are looking at the trajectory in a di-
mension which is still too small. This is ex-
actly what happens when one sees a couple of
points in a photograph which appear to be very
near but belong to two distinct objects which
are far from each other in reality; the appear-
ance of vicinity is simply due to the fact that a
2-dimensional object such as the photo has not
a sufficiently high embedding dimension to
represent 3-dimensional real objects. The error
would be solved passing to a 3-dimensional
embedding such as a hologram but no further
advantage would be gained passing to a hypo-
thetical 4-dimensional one.

Starting from a one-dimensional time series
and iterating the computation of the percentage
of false neighbours in the transition from one
embedding to the next, the correct embedding
dimension will then simply be the one that pre-
sents no more false neighbours, while the per-
centage of false neighbours still surviving in
lower dimensions gives the estimate of the er-
ror of a reconstruction in such spaces. The
main criterion used by the algorithm to detect
false neighbours is straightforward: the in-
crease in distance between two embedded
points is large when going from dimension d to
dimension d + 1. However, this criterion is not
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sufficient for determining a proper embedding
dimension. The problem is that with finite data
the nearest neighbour of a point is necessarily
close to it. In order to deal with the problem of
increasing sparseness of the points in the
higher dimensional reconstructed spaccs a sec-
ond criterion is added, relating the distance in
each reconstructed space to an estimate of the
size of the manifold; all the details can be
found in (Kennel et al., 1992).

Of course when analyzing real data the per-
centage of false nearest neighbours does not
necessarily go exactly to zero. The correct em-
bedding dimension should then be the one for
which such percentage falls below a certain
threshold, which as we have seen represents
the error expected in that embedding.

Figure 4 shows the values the method just
described suggests for a number of tremor
samples recorded during the days preceding
the explosions of 16 October 1993 in the ra-
dial, tangential and vertical component. One
can immediately note how the embedding di-
mension increases considerably if one requires
a very low percentage of false neighbours, i.e.
a very small error in the reconstruction proce-
dure. It is trivial to understand that there is a
major drawback in the computing times of any
subsequent analysis of reconstructed data if
one chooses a high dimension. This is particu-
larly true in the case of the neural network,
where the training algorithm has to fix the val-
ues of all the weights which, according to our
network architecture, are 2 -n- (n — 1), if n is
the embedding dimension. An embedding di-
mension of 5 was therefore chosen; this choice,
as can be seen from fig. 5, guarantees an ac-
ceptable reconstruction error while maintaining
a reasonable complexity of the neural network
to be trained.

6. Neural network construction

Using the results in terms of optimal lag
time and embedding dimension described in
the previous section, a neural network was
built with 5 inputs, 5 outputs and 4 hidden
nodes. The input and output data are recon-
structed points, i.e. 5-ples of tremor time series
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Fig. 4. Suggested embedding dimension by false nearest neighbours method for different October 1993

tremor samples and different thresholds.

samples separated by a lag time equal to
0.075 s.

Tremor records used to feed the network are
60 s long, i.e. 4800 points sampled at 80 Hz.
For each record the following procedure is ap-
plied:

— the weights of the synapses are set equal
to the ones computed by training the network
with the previous tremor record (we will call
them old weights);

— the current record is processed by the net-
work and the mean value of the error function,
L.e. the modulus of the difference between the
output data and the real input data which the
network is supposed to mimic, is computed;

— initialized with the old weights, the net-
work is now trained again by the back-propa-
gation scheme, using as input data the current
tremor record. The values of the weights are
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stored at the end of this training phase; we will
call them new weights;

— the neural network is now used again to
process the current tremor record, this time
with the new weights; the mean value of the
error function is computed once again.

Changes in the dynamics, in the framework
of the volcano dynamical system, may be of
two kinds: internal changes and external
ones.

Supposing that the dynamics is developing
on a manifold which can be called a strange at-
tractor, an internal change may consist simply
in a shift of the dynamics towards a different
region of the same attractor. It is well known
that an attractor is a completely invariant set,
i.e. the dynamics cannot lead us from a point
of the attractor to another one which does not
belong to it any more; moreover, it is topologi-
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Fig. 5. Error estimate by false nearest neighbours method for different October 1993 tremor samples and em-

bedding dimension 5.

cally transitive, i.e. it cannot be decomposed
into two subsets which are invariant them-
selves. This means that starting from any point
of the attractor, the dynamics will sooner or
later enter a neighbourhood of any other point
of the attractor itself. However, nothing is
known about the frequency (or probability)
with which each region of the attractor is vis-
ited. If we think of a particular region being as-
sociated to a paroxysmal phase, an internal
change may be just an indication of the begin-
ning of a paroxysmal phase.

A dynamical system may possess two or
more different attractors for the same values of
all its parameters; each of them being com-
pletely invariant, no jump is allowed between
two of them unless an external intervention
forces the system state to change abruptly. A
dynamical system may also possess different
attractors, perhaps in the same region of the
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state space, for different values of its parame-
ters. Once again, an external intervention is
needed in order to trigger the change of the pa-
rameter values. These are examples of external
changes and, as a different attractor may be as-
sociated to a different external behaviour of the
volcano, these also can be forecasters of a
paroxysmal phase.

The problem is now that of finding a good
parameter to monitor in order to signal possi-
ble changes in the dynamics, both internal and
external.

The first parameter one can observe is the
value of the error function, both in the first
run, i.e. with the old weights, and in the sec-
ond, where the new weights are used. Both
these values suffer from the dependence from
the tremor intensity: the error function usually
increases when the tremor ground motion
shows higher velocity values. On the other
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hand, a normalized error function does not
seem to offer good results. A different parame-
ter is therefore introduced, i.e. the ratio be-
tween the error function computed using the
new weights and the one computed using the
old synapses configuration.

This parameter has the advantage of being
independent from the mean absolute value of
the ground velocity and of being able to
«catch» just what we are looking for, i.e.
changes in the dynamics of the tremor and —
hopefully — of the whole volcano system.

In fact, if such a change appears, the old
weights, being computed in order to optimize
the recognition of the dynamical features of the
previous tremor sample, are not supposed to fit
well the distribution of the reconstructed points
of the new tremor record. On the other hand,
new weights, being tuned according to the
characteristics of the new tremor sample, are
expected to offer good results, i.e. a low mean
value of the error function. Therefore, the ratio
between the mean error function computed
with the old weights and the one observed us-
ing the new ones should be quite high.

In the «normal case», when analyzing two
similar consecutive tremor records, the preci-
sion of the approximation should not be so de-
pendent on the choice between the two sets of
synapse weights; therefore, a value of the ratio
close to 1 should be expected.

A difficult choice is that of the time separat-
ing two consecutive analyzed tremor records;
in fact, a separation which is too long may re-
sult in a very complex evolution of the «old to
new weights» ratio, as the old weights are not
likely to work too well with a tremor record
which is very distant in time. On the other
hand, a phenomenon which causes a gradual
change in the dynamics of the system will
probably not be detected if the time lag be-
tween analyzed tremor records is too short, be-
cause the weights would be modified too
slowly to cause a significant increase in the
monitored parameter.

As regards the analysis of Stromboli tremor
data, in this phase two kind of analyses were
investigated: in the first case (daily analysis) a
tremor sample per day was used, always
recorded around noon (GMT), in the second
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(hourly analysis) all hourly tremor records
recorded by our seismic station were used.

The results are plotted in figs. 6 and 7, re-
spectively. For each case the sum of the «old
to new weights» ratios computed indepen-
dently for the three components of the ground
motion (radial, tangential and vertical) is
graphed together with the value of the sum of
the mean of the error function obtained using
the new weights for the same components.
This is done in order to better reveal global
modifications in the seismic activity. As one
can see from both graphs, a change is clearly
detected by the ratios between the dynamics
before and after the big explosions of 16 Octo-
ber, 1:10 GMT. This is a first suggestion that
the method is able to detect such changes.

Other peaks can be noted on the graphs,
usually preceded by a value which is less than
3, which is the value we expect for a «stables
case (i.e. 1 for each component). This suggests
that for the previous tremor sample old weights
perform better than new ones in the recogni-
tion of reconstructed points. This may seem
very strange at first sight, but it can be ex-
plained having a look at the tremor samples
analyzed. In fact those were deliberately cho-
sen without any further control to study the re-
action of the neural network to a real situation
in which a tremor sample is recorded every
hour after a normal trigger procedure, which in
our case is a combination of the application of
both amplitude and frequency thresholds and
of the well-known STA/LTA ratio.

As a matter of fact, the trigger procedure
cannot have a 100% efficiency and parts of
small explosion-quakes may be present, during
periods of high strombolian activity, also in the
tremor samples. The presence of (part of) an
event in the very last part of a record is the
worst case for the back propagation training
method. In fact the new weights, tuned on the
first part of the record, are changed by the al-
gorithm when analyzing the very last points in
order to try to model the distribution of the ex-
plosion-quake. This tuning cannot in general
be completed because the number of explo-
sion-quake points is insufficient and the
synapse weights are fixed at the end of the
training phase to a value which is not optimal
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to reproduce the explosion-quake but certainly
not able to reproduce the volcanic tremor cor-
rectly. This causes the error function with the
new weights to be worse than the one derived
with the old ones, resulting in a very low «old
to new weights» ratio.

It is now obvious that these new weights
will not be able to reproduce the successive
record correctly, resulting in a very high value
of the «old to new weights ratio» in correspon-
dence of the next tremor sample, signalling a
change which is not of the kind we are looking
for, ie. the method fails, although with the
good  «side-effect> of detecting previously
undiscovered events. A rule of thumb to iden-
tify the occurrence of this problem, a rule
which can be automatically checked, consists
in examining the value of the ratio just before
the peak; if this is too low, the explanation
could be the one described above. If, on the
contrary, nothing strange is noticed in the pre-
vious value of the ratio or in the examination
of the tremor records, this could be interpreted
as a change in the dynamics of the tremor it-
self. Hints can be searched for also directly in
the evolution of the error function for the new
weights, but it is always important to remem-
ber that this is strictly linked to the evolution
of the mean tremor level, and therefore a high
value is not necessarily an indication of the
new weights being badly tuned.

7. Conclusions

A volcano can be seen as a dynamical sys-
tem and any experimental time series, e.g. each
component of the ground motion derived from
volcanic tremor, can be considered one of its
state variables. After a pseudo-state space re-
construction with suitably chosen lag time and
embedding dimension, a trajectory of N-dimen-
sional points is analyzed by a neural network
which first tries to mimic the behaviour with
the synapses weights computed for the previ-
ous tremor sample, then with new ones tuned
on the current record. The ratio of the two er-
ror functions is used as a monitoring parame-
ter. This seems to be able to recognize changes
in the dynamics of the system.
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Unfortunately, undesired peaks are also pre-
sent in the time evolution of the ratio, often
more linked to the characteristics of the previ-
ous sample than to the ones of the current
record; these «false alarms» can however be
easily recognized with a careful analysis.

Some kind of integral value of the «old to
new weights» ratio could also be introduced in
order to identify slower changes which cannot
be detected by a single peak of the ratio as it
is. Of course an analysis extended over a long
period of time is needed in order to test the
method and maybe to find out different param-
eters to be monitored.

In fact, many minor changes to the algo-
rithm were and can be experimented. The orig-
inal tremor data can be rescaled to a common
maximum value before the analysis, in order to
minimize the highlighting of simple amplitude
changes. Additionally, the sequence of the re-
constructed points can be randomized in order
to smooth the evolution of the old to new
weights ratio and to reduce the highlighting
of simple «post-event» tremor changes. Of
course, the final interpretation of the type of
change indicated by the neural network is al-
ways up to the researcher. The main purpose of
the network is that of indicating points which
deserve further analysis and this becomes more
and more useful as the length of the dataset
increases.

Although volcanic tremor ground motion of
Stromboli seems to be quite a promising
choice for the time series to analyze, the
method could be tuned to be applied to any
other physical variable almost continuously
recorded on a volcano.
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