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Abstract

When applying a methodology for obtaining the 3D shear-wave velocity structure of a medium from surface
wave dispersion data, the problem must be considered with caution since one inverts path-averaged velocities
and the use of any inversion method entails some drawbacks such as lack of uniqueness, unwarranted stability
and constraints affecting the data. In order to avoid the application of consecutive inversions and to overcome
these drawbacks, we propose alternative mapping methods, for example spatial prediction methods, or else the
use of an algorithm that, from a mathematical viewpoint, can be understood through the application of the or-
thogonal projection theorem onto convex sets (POCS). Among the first ones, we try inverse weighted distance
interpolation. The POCS algorithm we have used discretises a second order differential equation for the veloc-
ity field with boundary conditions. All these imaging techniques aimed at volumetric modelling and the visuali-
sation of data are discussed, and finally we show some results based on ray path velocities obtained previously
by inversion of phase and group velocities of Rayleigh waves propagating across the Iberian peninsula.

Key words Iberian peninsula — gridding tech- locity variation with depth is normally defined
niques — POCS algorithm — tomographic images for a layered medium in terms of average val-
ues per layer.

An alternative method for the analysis and
quantitative interpretation of surface-wave dis-

As is common practice when studying sur- pqrsion data has recently bee;n proposed by
face wave propagation and inverting velocity ~ 1Vikolova ef al. (1997), consisting in: a) a pre-
dispersion curves in order to obtain Earth mod- vious regionalization of the observed ray path
els, the data are ray path phase and group ve- phase and group veloc1t}e's of surface waves;
locities determined by digital filtering, which b) construction of velocmes 1ndependently of
are then inverted on the basis of the inverse  the paths at a set of points over the region;
theory to obtain shear-wave velocity profiles ¢) inversion for local velocity structure. For the
(Badal et al., 1990, 1992). Inverse modelling purpose of regionalization of yelocmes, a pro-
results in 1D models necessarily referred to the ~ cedure based on the Backus-Gilbert method for
paths travelled by the waves, and the shear ve- linear inversion of travel times of surface

waves (Yanovskaya, 1984; Gobarenko er al.,
1987; Yanovskaya et al., 1988, 1990), which
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tan, 08034 Barcelona, Spain; e-mail: javier@zar.unizar.es ray paths, was used. Linear inversion of travel
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time data yielded phase and group velocity
contour maps for several reference periods. Af-
ter constructing local dispersion curves at dif-
ferent grid points over the region the curves
were inverted using an inversion procedure
based on the inverse theory (Menke, 1984;
Parker, 1994; Tarantola, 1987) for local shear-
wave velocity structure.

Such a working scheme provides velocity-
depth functions at a set of points independently
of the paths, and the construction of interpo-
lated shear velocity patterns from them is
straightforward. Any dependence of the phase
and group velocity on the ray path, which is
the usual case, is avoided, and joint inversion
of phase and group velocities for local velocity
structure is possible. The method has the ad-
vantage that no a priori division of the investi-
gated region into blocks is necessary, i.e. it
does not require a subjective choice of bound-
aries, and thus the results are not affected by
regionalization. However, the method proposed
involves two consecutive inversion processes:
first, to determine regionalised or local surface-
wave velocities; second, to invert regionalised
or local dispersion curves before mapping to
obtain a volumetric model. In this point the
difficulty arises from the use of an inversion
method twice, since any inversion method en-
tails some drawbacks such as lack of unique-
ness, unwarranted stability and constraints af-
fecting the data.

From a mathematical viewpoint, in surface
wave tomography we meet a classic inversion
problem in which the data are linear function-
als of the model and the equation for the model
is a Fredholm integral equation of the first
kind. In effect, a perturbation in phase velocity
C along the i-th path can be expressed as the
average

0C; (w) = Li L(SC (w, 6, p)dl (1.1

where 6C(w, 6, ¢) are the local perturbations
on that path and L is its length. In this expres-
sion the phase velocity C can be replaced by
the group velocity U, both depending on the
frequency @. If we assume that a perturbation
6B in shear velocity, which depends on depth z,
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leads to a variation 6C in phase velocity, we
have

5C(, 6, ) = J’:[E] 5B(6, ¢, ) dz.

% (1.2)

Substituting (1.2) in (1.1), we obtain the inte-
gral

“[5¢C
L jo [5—13]@16/3(9, 6, 2)dzdl.
(13)

5C (@) =1

This expression poses a classic inversion prob-
lem which in its more general form can be for-
mulated as

d®= | Geymmdy (14

where G (x, y) are the data kernels, d represents
the data vector and m the model vector. If there
is no trivial solution a(y) to

0=[ G yamady (1.5)
0

then the solution of the tomographic experi-
ment is unique. In the physical processes of
our interest the uniqueness of the solution can
seldom be established. A way to overcome this
difficulty consists of transforming the equation
(1.5) by means of one of the well studied inte-
gral transforms (Laplace, Fourier, Hankel,
Volterra, ...).

2. Spatial prediction methods

Since our interest is to study lateral distribu-
tions of velocity patterns on the Iberian penin-
sula, and due to the difficulties arising from
successive inversion problems, firstly we pro-
pose to apply alternative methodologies based
on mathematical gridding algorithms. These
methods (which can be considered as simple
interpolation schemes) are efficient and easy to
implement, and ease the following facilities:
a) solution constrained according to initial (or
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experimental) data; b) information visualised
throughout a graphic display of the data:
¢) representation illustrated by a surface or a
volume.

Several techniques may be used to produce
such information. Gridding can be viewed as
an operator that maps the data (x;, y;, z;; F)) to
the trivariate function F(x, ¥, z) over a grid.
For some applications, a suitable function F
must be chosen carefully, being a crucial point
for the entire process. But, given the character-
istics of our problem, the imaging process in it-
self and the way we obtain valuable results are
more important than the form of the mapping
function. We describe some methods below. In
the final part, we apply one weighted distance
method to our data.

2.1. Fitting of local trend surfaces

The simplest way to describe gradual varia-
tions of a property is to model them by polyno-
mial regression. The idea is to fit a polynomial
surface by least squares through the data
points. Let us assume that the spatial coordi-
nates X and Y are the independent variables,
and that Z (the property of interest) is the de-
pendent variable. In two dimensions the poly-
nomials are surfaces of the form:

ZK D= Y (b,X'T)

r+s<p

2.1)

where 7 and s are the polynomial coefficients,
p is the order of the trend surface and b, is a
constant. Two major disadvantages of this gen-
eral trend analysis are the susceptibility to out-
liers and the inability to fit a low order polyno-
mial through complex data. However, they can
be reduced with a moving window approach
(Leenaers et al., 1990).

2.2. Kriging

Kriging is a distance weighting, moving av-
erage estimation method where optimal
weights are obtained from a graph (variogram)
of scattered data (Krajewski and Gibbs, 1996).
With this approach, kriging becomes a «geo-
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statistical» method, ie., a statistical method
that is applied in such a way to take into ac-
count what is known about the spatial charac-
teristics of the parameters involved. When the
variogram is well behaved and well known, the
resulting kriged estimate is frequently stated to
be the best, linear, unbiased estimate (BLUE)
that can be calculated. Once the variogram is
modelled and its descriptive parameters deter-
mined, kriging estimation can begin. This is
accomplished by solving a system of simulta-
neous, linear equations. More specifically, the
solution consists of calculating the weights that
should be given to surrounding data values to
minimise the error of the estimate at each cell
node. Kriged results provide a solution where
the mean squared error at each cell node equals
zero. This differs from inverse distance weight-
ing where each scattered data points weight is
computed separately as a function of the geo-
graphic distance between scattered data points
and cell node locations, and the sum of all dis-
tances between scattered data points and cell
node locations. In spite of the clear advantages
mentioned above, this method is very sensitive
to the number of data points: the amount of
calculation time increases as this number in-
creases. In our case, we process large data sets
which become this method low-efficient. In ad-
dition, time is needed to understand a site-spe-
cific variogram and to construct a reliable vari-
ogram that fits the spatial variation of the pa-
rameter being investigated. Nevertheless, it is a
powerful tool currently under study that we are
trying to implement.

2.3. Distance function approach

Given a set of data points, one of the sim-
plest mathematical expression for a continuous
surface that intersects these points is an inter-
polating polynomial that passes through all
data points. The linearity of the process implies
that the modelling function can be represented
as combination of some basis. The cubic spline
basis, that is, the solution obtained when the
energy function is minimised, is a useful
choice. This results in the smoothest function
which passes through the data. Given the data
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(x;, F;), the cubic spline representation F is
characterised by the following conditions:

— F, F’ and F” are continuous;

- Fx) =Fy

— F is piecewise cubic, that is, on each in-
terval [x;, x;11] is a cubic polynomial;

— F is linear on the extreme of the data in-
terval.

The straightforward equation of this ap-
proach is as follows:

N
F(p) = cllp-plf+a+br+cy+dz (22)

i=1

where p = (x, y, z) and p; = (x;, y;, z;). Imposing
the four conditions just mentioned, we calcu-
late the coefficients by solving the system of
equations:

-t P
-l c F.
lpi-p,P LI s I e
. .
2 F
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When the number of data points is very large,
then methods based upon distance functions
may not be a practical way of modelling. In
fact, distance function methods require to solve
for every point a linear system of equations of
the size (N+4)xX(N+4) where N is the number
of data points. Moreover, these systems can be
very badly conditioned.

2.4. Inverse Weighted Distance (IWD)
interpolation

The principle upon which the distance
weighting methods are based on, is to assign
more weight to nearby points than to distant
points. The idea is that observations located
close together tend to be more alike than ob-
servations spaced further apart. The most com-
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mon form for the values to be estimated is:

2 Z(x)d;"
Zgy=1—

> d;"

i=1

2.4)

where x; is the point at which the surface is to
be interpolated, x; is a data point, d;; is the in-
terdistance and W is the weighting exponent.
For d = 0 the exact value of the original sam-
ple has to be preserved. The factors controlling
the results include the following items:

— The weighting exponent. By changing
the exponent, the distribution of scattered data
point weights can be from highly biased in favor
of the nearest data points, to nearly equal for all
data points. The greater the exponent, the more
detailed and less smoothed the results are.

— The search area size and the number of
data points. In general, the use of small search
areas and few scattered data points results in
the «enhancement» of local anomalies since
few data are being averaged. Conversely, the
use of large search areas and many scattered
data points results in the «smoothing» of local
anomalies since many data are being averaged.
Scattered data points should come from differ-
ent locations surrounding the cell node. If these
data are clustered to one side of the cell node
and are used, then the estimated cell node
value may be biased. In such a case, a new
definition of the weight should be adopted
(Weber and Englund, 1992).

There are several disadvantages to take into
account: first, the choice of a weighting func-
tion may introduce ambiguity; second, the
method is easily affected by uneven distribu-
tion of data points; third, the method is, by def-
inition, a smoothing technique, that is, maxima
and minima in the interpolated surface can oc-
cur only at data points. Therefore, the location
and values of extremes cannot be detected when
they are not included as original samples.

2.5. Results

We have applied this last interpolation tech-
nique by considering as starting data the inver-
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Atlantic Ocean

Fig. 1. ILIHA array in the Iberian peninsula (station NE23 was moved to NE30). The path coverage for two-
station surface wave velocity measurements is displayed by straight lines which represents approach directions

of the wave fronts crossing the Iberian area.

sion results obtained from the high-quality
long-period data recorded at broadband sta-
tions installed in the Iberian peninsula during
the ILIHA broadband seismology experiment
(details are given in Appendix).

As the resolution kernels associated with the
layered model are found to be narrow in width
for the upper 200 km, the total depth interval
of reliability is approximately 20-200 km. Un-
fortunately, the first 20 km of the crust are not
well defined for the range of periods used. Of
course, the wavelengths longer than 30 km (pe-
riods greater than 10 s) that we use do not ac-
count for the results obtained via generalised
inversion for the top crustal layers. This part of
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the layered model is an underresolved region
needed as part of the inversion process but
having only limited physical significance. The
fine structure at shallow depths is certainly not
resolved, but this fact does not detract from our
study, since its major results concern the mantle.
We sampled each trajectory with a number
of equidistant data points, three per path,
which results in an irregular grid covering the
global domain, as the paths travelled by the
waves are not homogeneously distributed
(fig. 1). The pathwise restriction we want to
preserve is already done with the mentioned
process. The irregular grid so obtained can be
firstly viewed as a disadvantage; however,
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Fig. 2a-d. Volumetric views of the Iberian peninsula showing its seismic velocity structure obtained using
IWD interpolation. Each structure corresponds to a different value of the exponent in the weighling function:
a) 0.5; b) 1.5; ¢) 2.0; d) 4.0. In the pictures, blue tones correspond to the lower velocity values, and red or yel-

low toncs correspond to the higher ones.

since we are not interested in a smooth veloc-

ity field, the use of such a grid and of a proper

weighting exponent enhances the local proper-
ties of the seismic velocities.
Figure 2 a-d shows four different volumeltric
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representations according to four different ex-
ponent values: 0.5, 1.5, 2.0 and 4.0. The pro-
cess to construct the 3D images involves a
voxel technique that permits us to display a
solid volume under different viewpoints (rota-
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tion) and different features (level of invisibility
for a selected range of colours, cutting by dif-
ferent planes, user-applied source light, bril-
liance and contrast levels, etc.). The volume is
constructed by linear interpolation of the dif-
ferent reference layers obtained by the TWD
approach, in order not to introduce spurious in-
formation. We must point ont that colours are
not equivalent in the pictures, but they are very
similar. Low exponents tend to smooth data,
which means that they badly reach maxima
and minima. High exponents tend to emphasize
the extremes better. Therefore, the velocity in-
tervals (palettes of colour) are not exactly the
same.

Results obtained applying the lowest expo-
nents are highly biased in favor of average
values per layer (fig. 2a,b). As the exponent
increases, distinct structures start to appear
with each layer (fig. 2¢,d), which means that
the variability in the property under study,
between data point locations, is more accu-
rately displayed. As expected, the vertical het-
erogeneity is very similar for the cases in
which we choose a lower exponent. A rela-
tively high exponent (for example 4.0) displays
not only the lateral variations supplied by the
data, but also the vertically heterogeneous
structure.

3. Method of projections onto convex sets

The main drawback of any of the methods
described in the last section is that none of
them guarantees the absence of velocity fluctu-
ations between two points belonging to the
same trajectory. This led us to propose another
method of volumetric reconstruction based on
the orthogonal projection theorem for convex
sets, which yields more accurate solutions for
path-averaged data and is well aimed to volu-
metric reconstruction of dispersion results. As
we will see later, this tecnique is a different ap-
proach to inverse problems, carried out by iter-
ation.

As is well known, a set of possible underly-
ing (or images) {u} is said to be convex if for
any two elements in the set all the interpolated
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combinations are also in the set:

A=V)u,+v u, e {u},

Yu,, u,c {u}, 0<v<i. @30

Many deterministic constraints that one might
want to impose on the solution u of an inverse
problem, in fact define convex sets; for exam-
ple, positivity of the solution (x > 0), compact
support (u(x) = O outside of a certain region),
or known bounds (u;(x) < u(x) < uy(x) for
specified upper (uy) and lower (u;) bounds)
that may be connected with an initial estimate
of the solution: uy(x) * yo(x). These and other
restrictions can be accomplished either in the
image space or in the space given by any linear
transformation of u.

On the assumption that C; is a convex set,
P, is called a nonexpansive projection operator
onto the set if: i) P; leaves unchanged any ele-
ment already in C;, and ii) °; maps any ele-
ment i outside C; to the closest element of C;,
in the sense that

| Pia—i| <|u,—id| VugeCr. (3.2)

This definition sounds complicated, but exam-
ples of such operators are quite simple. A non-
expansive projection onto the set of positive
w’s is: a) set all negative components of u
equal zero; b) set zero the values outside the
region support; c¢) set all values less than a
lower bound equal to that lower bound and set
all the values greater than an upper bound
equal to that upper bound. The usefulness of
these definitions consists in the following theo-
rem:

— Theorem: let C be the intersection of m
convex sets C, C,, C3, Cy, ..., C,,. Then the
iteration

M(k+1) = (’-Pl 7)2 Pm) l/t(k) (33)

will converge to C from all starting points as
k — oo If C is empty (there is no intersection),
then the iteration will have no limit point.
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The application of this theorem is called the
method of projections onto convex sets or
sometimes POCS by its acronym (Biemond
et al., 1990). We can generalise by replacing
any operator P; by

T~ 14B,(P=1), 0<Bi<2. (34

An adequate choice of the parameters f3; allows
to increase the convergence.

It is to be noted that some inverse problems
can be completely solved by iteration alone. It
is a question of determining the solution
through a POCS algorithm. In our case and op-
erating with seismic wave velocities, the
method is equivalent to projecting iteratively
the velocity image onto the set of all such im-
ages that satisfy Laplace’s equation and the set
of all such images that have the observed path-
averaged layer velocities. As such, its conver-
gence properties can be understood through ap-
plication of the orthogonal projection theorem
for convex sets. This is equivalent to discretis-
ing the following boundary condition problem
referred to inverted (shear wave) velocities:

Au =0, Yue Q 3.5)
Ur; = u;
Uy = u

where Q represents the domain in which the
velocities to be interpolated are defined (a sur-
face at a reference depth); T; is the great circle
path corresponding to the i-th trajectory; u; is
the path-averaged velocity for the i-th trajec-
tory; and i is the initial velocity value adopted
to start the process, which is taken as the mean
velocity at a reference depth.

3.1. The algorithm

We use a particular method of mapping, ac-
cording to an iterative method based on Lapla-
cian interpolation, for obtaining a 3D picture of
the Iberian continental domain. As before, our
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starting data are path-averaged shear wave ve-
locities at different depth intervals (Badal
et al., 1996), and we want to interpolate these
ray path velocity values to a volume repre-
sented by discrete cubic elements (voxels) each
with a particular velocity value.

The first step is to construct a matrix having
grid point velocity values as elements for each
top layer depth where we have only ray path
velocity data. This can be made by assigning
grid points to the locations of the stations by
means of a single transformation of coordi-
nates and a single velocity value along each
seismic path. A mean value can be assigned in
the intersection of two paths. Next, the other
elements of the matrix can be defined taking
an initial velocity value for all them. We take
as initial velocity the (constant) averaged ve-
locity data for all the paths. These operations
do not restrict the generality of the procedure
at this step of beginning of the procedure.

The second step consists of the calculation
of new velocity values for each reference depth
by means of a linear interpolation algorithm
like Laplacian interpolation. As is well known,
this algorithm involves four values in the cal-
culation of a particular velocity. Likewise, it
can be extended without difficulty to the deter-
mination of velocities in the border of the grid.
Of course, there is no problem in using another
type of interpolation. After this, it is obvious
that various velocities emerge instead of the
constant velocity corresponding to a two-sta-
tion velocity estimate, which results very prob-
ably in a mean value different from the ob-
served one. However, the Earth models ob-
tained by inversion, and consequently the dis-
tributions of path-averaged shear wave velocity
at different depth intervals, are the only avail-
able information that we have to try a 3D pic-
ture. Therefore we must recover the previous
two-station velocity measurements.

The third step of the process consists in the
restitution only of the velocities supplied by in-
version for all the seismic trajectories studied.
This task is very simple and can be carried out
by readjusting only those elements of the ma-
trix involved by a proper factor of conversion.
Small differences in the averaged-path veloci-
ties can appear due to rounding-off errors and
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the application of two distinct factors in the
points where two paths pass each other, but
these differences are practically negligible
(close to zero). The procedure is restarted, and
the solution can be obtained by successive iter-
ations. The procedure is repeated until the dif-
ferences in velocity converge to a solution
which reduces the residuals to a satisfactory
minimum (less than 1.0%).

In summary, the iterative method applied
here generates different velocity values along
the trajectory travelled by the waves between
two stations, though the mean velocity is al-
ways kept equal to the previously determined
ray path velocity. The method allows one to
obtain interpolated velocity values in such a
way that there are no jumps in the cutoff points
between seismic paths, the seismic wave veloc-
ities varying with smoothness.

Once the matrices have been calculated at
particular depths, the next and last step is to
compute the data planes which make up the 3D
data matrix for the real volume that we use for
3D representation. Each one of these reference
horizontal planes is between two nearby matri-
ces, one above and one below. Finally, the data
upon these planes which are uniformly dis-
tributed along the total depth of the Earth
structure can directly be calculated by linear
interpolation by considering the respective
above and below matrices. Figure 3 shows a
flowchart of this volumetric visualisation algo-
rithm.

3.2. Results

The 3D mapping of shear wave velocity that
we have performed, which is based on the
method explained above, allows us to obtain
tomographic images of the subcrustal litho-
sphere and asthenosphere of Iberia. As before,

Fig. 3. Flowchart of the POCS algorithm used in
this work for 3D visualisation.

ISt step: A single velocity value
along each seismic path and an

initial velocity value

other elements of the matrix

20d step: Laplacian i

3nd step: Restitution

velocities supplied by inversion

Earth models
Path-averaged shear wave velocities
at different depth intervals

for the >

Matrix of velocity values for a layer
(at a particular depth)

nterpolation — .|

Matrix of new velocity values —l

only of the

Matrix of readjusted velocity values ]

Con vcb

(are the differences in N
velocity really small,
less than | per cent)?

Matrix with the layer's raypath velocities
equal to the previously detemined ones
(smoothed shear wave velocity field)

Linear interpolation

—_— ]

Computation of reference
horizontal data planes

Three-dimensional data matrix
for the real volume

‘ Solid earth structures
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(b}

Fig. da,b. An overall view of the deep velocity structure of the Iberian peninsula (a) and one image as
defined by a characteristic shear wave velocity range, 4.65-4.85 km s~', which represents the highest shear
velocities in the lithosperic mantle and in the upper mantle under the asthenosphere (b). This last structure is
solid for velocity values belonging to the prefixed interval and transparent for any values outside this interval,

the outputs can be shown as coloured solid
structures in the form of 3D blocks. Thus, a se-
quence of horizontal slices at gradually in-
creasing and characteristic depths, cross-sec-
tions and 3D structures which are solid for ve-
locity values belonging to prefixed intervals
and transparent for any values outside these in-
tervals, can be displayed in order to emphasize
various patterns. Some details of computation
are mentioned as follows. Any squarc matrix
calculated by Laplacian interpolation contains
62500 grid point velocity values. There are
150 reference horizontal data planes which are
built by linear interpelation from as many ma-
trices previously determined as information at
depths of reference we have, If so, the total
number of elements (voxels) of the 3D data
matrix, which is representative of the seismic
velocity field in the real volume, exceeds
9% 10° elements (exactly 250%250x250).
Figure 4a,b shows two examples of the re-
sults obtained using the POCS algorithm pro-
posed here. The main difference with respect
to results obtained with the TWD algorithm is
the distinction between images at the same ref-
erence depth. The imposition of a hard restric-

204

tion in order to preserve the path-average ve-
locity value along each path, results in models
with strong variations in velocity due to the ve-
locity restitution process named as the third
step of the mapping method. The border effects
are now clear in comparison with those ob-
tained with IWD interpolation giving rise to
sharply contrasting lateral heterogeneity as a
consequence of the irregular path coverage
(northern peninsular third). Of course, this type
of ancmalies can be removed or better
smoothed alterwards by a smoothing technique
applied to the results obtained from the volu-
metric reconstruction.

4. Concluding remarks

— IWD approach is especially useful for an-
alyzing short range variability between scat-
tered data points. The technique is easy to un-
derstand mathematically, requires short calcu-
lation times and is a tool which gives reliable
values. For all these reasons, it can be consid-
ered a good estimator and can be used to «test»
ideas.
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~ POCS algorithm generates an unique esti-
mated surface since a partial differential equa-
tion with boundary conditions is satisfied.
However, those boundary conditions may
cause artifacts, such as edge effects. The esti-
mate is independent of the data distribution.
The irregular pattern of data points may cause
lack of homogeneous convergency over the
global domain.

— The methods of mapping can be applied
to both deep velocity structure and near-sur-
face velocity structure in order to highlight
large-scale or small-scale features of the struc-
ture.
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Appendix. Data and dispersion methodology.

The Iberian Lithosphere Heterogeneity and Anisotropy (ILIHA) project was aimed at increasing the
knowledge of the Iberian peninsula lithosphere and asthenosphere structure by means of seismological studies.
The ILIHA project contributed in this way to the European Geotraverse (EGT) project, which had as its main
objective the investigation of the nature, dynamics, and evolution of the continental lithospere beneath Europe.
As part of the ILIHA project (Paulssen, 1990), 13 broadband stations of the portable Network of Au-
tonomously Recording Stations (NARS) (Nolet ez al., 1985) were installed in Spain and Portugal. Most of
these stations operated for one year (February 1988 to March 1989) and recorded body and surface waves gen-
erated by distant and local earthquakes. The installation of the TLTHA array in Iberia provided a large set of
digital data and substantially increased the path coverage for two-station Rayleigh wave dispersion measure-
ments.

Starting from ILIHA data sets, we recently performed several dispersion analyses of Rayleigh waves prop-
agating across the Iberian peninsula (Badal et al., 1992, 1993). While off-azimuth arrivals are known to cause
bias in dispersion curve estimates, first of all we applied methods to test whether the observed wave fields ar-
rive in the great circle direction to minimise errors due to multipathing effects (Al-Khatib and Mitchell, 1991).
We evaluated the accuracy of this approximation for our particular data set and found no significant (< 2°) de-
partures from the expected great circle. In any case, from ILIHA data in the 20-100 s period range, it emerges
that the relative error in the value of the phase velocity is less than 1% when calculating path-averaged phase
velocities ignoring the deviation of the arrival of the wave from the great circle direction. Figure 1 shows the
geographical locations of the NE (NARS Europe) stations on a map of the Iberian peninsula. We found 64
events which met our criteria and were well recorded at two stations. Epicentral locations of these earthquakes
correspond to different source regions (fig. 5). Because of the lack of useful data for some of them, a total of
53 pairs of stations was used.

As far as the methods to minimise errors due to higher-mode interference (modal contamination) are con-
cerned, we used moving-window analysis on the signal to obtain approximate group times and then carried out
a correction of the waveform using a time-variable filter (Cara, 1973) in order to measure with least possible
bias the dispersion of the wavetrain (Badal et al., 1990; Badal et al., 1992). After isolating the fundamental
mode from Rayleigh wave trains, we used the multiple filter technique (Dziewonski ez al., 1969) to obtain
group velocity dispersion. The determination of phase velocity dispersion was performed by applying the stan-
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Fig. 5. Epicentral locations of the seismic events used in this study.
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dard frequency-domain Wiener deconvolution (Hwang and Mitchell, 1986). We simultaneously inverted phase
and group velocities in order to place tighter constraints on possible models (Al-Khatib and Mitchell, 1991).
We performed inverse modelling by stochastic inversion (Aki and Richards, 1980) for the determination of the
theoretical shear wave velocity models according to the generalised inversion theory (Menke, 1984; Tarantola,
1987). Details of this stochastic inversion approach were given by Badel et al. (1992). Such an inversion
method requires a proper initial Earth model. To build up the starting Earth model, we considered the P and S
velocity-depth functions as derived from travel time and amplitude interpretations for the crust by Banda ez al.
(1981) and the Iberian (IBE) model based on surface wave dispersion measurements for the upper mantle by
Payo (1970).

We estimated the reliability of the inversion results using different methods; first, by calculating the resolv-
ing kernels at various reference depths for each solution obtained by the generalised inversion approach; sec-
ond, by means of forward modelling and comparing solutions of forward problems in terms of phase and
group velocity dispersion curves predicted by the respective Earth model obtained by inversion, with the deter-
mined dispersion data. A good agreement does not necessarily ensure the uniqueness of the results, but it does
indicate that the models obtained from inversions agree well with the velocity measurements. In all cases, in-
versions were redone by considering the nonuniqueness of the solution and possible effects of a priori model
parameters. Unrealistic or poorly defined solutions were rejected.

The velocities supplied by linear inversion for all the seismic trajectories studied here are path-averaged
shear wave velocities at different depth intervals. The inversion results obtained for each of the 53 paths anal-
ysed are shear wave velocity distributions with depth (Badal et al., 1996). Velocity uncertainties are less than
1.4%. This uncertainty figure refers to the maximum uncertainty of any of the velocities per layer, and is a 10
value.
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