ANNALI DI GEOFISICA, VOL. XL, N. 4, August 1997

A revisitation of the triangular prism
surface area method for estimating
the fractal dimension of fractal surfaces

Angelo De Santis('), Maurizio Fedi(®) and Tatiana Quarta(®)
(Y Istituto Nazionale di Geofisica, Roma, Italy

(® Dipartimento di

Geofisica e Vulcanologia, Universita «Federico II», Napoli, Italy

() Dipartimento di Scienza dei Materiali, Universita di Lecce, Italy

Abstract

Fractal dimension is widely used to give a measure of variability and roughness of curves, signals, objects, sta-
tistical distributions, and so on. We found that an often used method, the so-called triangular prism surface-
area method, for estimating the fractal dimension of fractal surfaces possesses some intrinsic mistakes in appli-
cation. This note describes the misinterpretation and suggests the proper application, that we call Revised Tri-
angular Prism Method (RTPM). To show its feasibility we apply RTPM to some synthetic Euclidean and frac-

tal surfaces of known dimension.

Key words fractal dimension — self-affinity — self-
similarity — triangulation

1. Introduction

Everywhere Nature gives so many examples
of fractals that scientists finally realised that
fractal geometry can be of great utility to mea-
sure, classify and/or represent some properties
of objects, ensembles, or curves.

Estimating the fractal dimension is not a
sinaple problem, also because it is related to the
intrinsic difficulty to strictly define a fractal.
No clear and self-consistent definition really
exists. According to Mandelbrot, a fractal is
«a set for which the Hausdorff-Besicovitch
dimension D strictly exceeds the topological
dimension d» (Mandelbrot, 1983; p. 15). For
Russ (1994) fractals occupy a borderline be-
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tween Euclidean geometry and complete ran-
domness, whilst Kaye (1994), reviewing Russ’
book, more simply considers them as structures
of rugged systems.

Many standard algorithms have been devel-
oped for estimating the fractal dimension of
one-dimensional irregular curves. Some have
been proposed by Mandelbrot (1983) as ruler-
method (named also Mandelbrot-Richardson
Method), length-area relations (that Mandel-
brot extends also to volumes), and box-count-
ing methods. In particular, the former is essen-
tially based on the introduction of fractals with
the classic example of estimating the length of
a coastline (Mandelbrot, 1967). These are es-
sentially methods for self-similar fractals, i.e.
for curves with same units and same scaling of
variations along the two axes of the plane (in
contrast with self-affine fractals where units
and/or scalings are different). Other methods
like the rescaled range (e.g., Mandelbrot and
Wallis, 1969), the variogram (e.g., Herzfeld
et al., 1993) and the spectral methods (e.g.,
Hough, 1989) allow us to compute the fractal
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dimension also for self-affine fractals. Dubuc
et al. (1989) describe these and other one-dimen-
sional methods. Carr and Benzer (1991) and
Carr (1995; p. 512) show some cautions in
comparing the ruler method with the spectral
and variogram methods, affirming that the for-
mer yields a fractal dimension which is a mea-
sure of complexity of shape, while the latter in-
dicate similarity of the fractal curve to noise.
In our opinion, the most substantial difference
is that the self-similar methods (like the ruler
method) are sensitive to both the horizontal and
the vertical variations, while the self-affine meth-
ods depend only on vertical variations. In other
words, stretching or compressing a self-affine
curve does not change its affinity dimension
while a self-similar curve changes its characteris-
tic roughness and its similarity dimension.

When we pass to analyse the fractal dimen-
sion of fractal surfaces, the difficulties in-
crease. According to Feder (1988; p. 215): «the
question of how to deal properly with fractal
surfaces in practice has not been completely
resolved». However, the variogram and the
spectral methods, appropriately generalised
(e.g., see Turcotte, 1992), can be applied. An-
other method which is often used is the so-
called triangular prism surface area method
or, more briefly, the Triangular Prism Method
(TPM). This method strictly furnishes an esti-
mate of the fractal dimension of fractal self-
similar surfaces; nevertheless, it can be applied
to self-affine surfaces providing an objective
and quantitative measure of irregularity and
roughness classification.

This note is a remark on some systematic
mistakes which have normally been made
when this particular method was applied. We
will describe the revised TPM and its proper
application to some synthetic cases. The ap-
pendices A, B and C will be the necessary ba-
sis for the next sections.

2. Triangular prism method

Although the method of triangulation to es-
timate a surface area is rather old, in recent
times for specific fractal purposes, Clarke
(1986) introduced the current version of TPM
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that was then applied also by other authors,
even recently (e.g., Jaggi et al., 1993). This
method is called the patchwork method by
Roach and Fowler (1993). The TPM is con-
sidered the two-dimensional extension of the
ruler method (e.g., Korvin, 1992, pp. 175-177),
where the surface ruler is the upper surface of
a series of triangular prisms. Since in the one-
dimensional case the fractal dimension is self-
similar and called ruler or divider dimension,
also here the fractal dimension provided by
TPM is a self-similarity dimension and not
a self-affine dimension. In this respect this
method usually differs from self-affine tech-
niques as the spectral and the variance methods
which estimate the self-affine dimension.

Let us consider a digital representation of
the fractal surface in the form of a square
nXn (= N) grid with the elevations of the in-
vestigated surface as z-values of the grid. Then
we may cover the surface with prisms of
square bases s which are, in turn, divided into
an even number of triangular prisms and then
compute the area, for instance, by means of
Heron’s formula (e.g., Clarke, 1986) or using
vector algebra (Creutzburg and Ivanov, 1989).
The use of even series of triangular prisms
should avoid the occurrence of the so-called
Schwarz paradox (e.g., Korvin, 1992, pp. 245-
249) where normal triangulation of simple geo-
metrical surfaces like, for instance, cylinders,
can give some absurd results (see Appendix B).

From a power-law relation between total
area A and projected surface ruler ¢’ = s
Clarke (1986) provided a way to estimate the
fractal dimension of the surface. The method

has been applied to topographic grids (Clarke.~

1986), remote-sensing data (Jaggi et al., 1993)
and image segments (Creutzburg and Ivaiov,
1989). In practice the evaluation of the fractal
dimension (with D in the range 2 to 3) is made
estimating the slope 8 in a plot with the loga-
rithm of the total surface as y-axis and the log-
arithm of the so-called surface file as x-axis.
The tile is the unit area 0’ used each time as
surface ruler. The value of D is estimated as
2 - (Clarke, 1986).

In the present application of TPM we dis-
close two specific problems that involved cor-
responding misinterpretations.
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Fig. 1a-d. Possible eclementary prisms used to
cover the investigated surface. a) Upper surface di-
vided in 4 triangles, with mean elevation as com-
mon central point E: common application of the Tri-
angular Prism Method (TPM; Clarke, 1986). b), c)
Upper surface divided in two triangles (e.g., Piech
and Piech, 1990). To distinguish (a) from (b) and (c)
we called the former TPM4 and the latter two
TPM2, in accordance with the number of triangles
used to compute the area of the iy, prism. d) We in-
troduce a virtual square with area o; equal _to the
area computed with TPM4 and side 5,~=\/ o; the
mean square ¢ among the all ¢; covering the surface
is the area tile considered in this paper for the re-
vised triangular prism method (RTPM).

Before describing these two points it is im-
portant to refer to the question of the possibly
different coverages of the surface under study.
The common procedure of TPM is to consider
four experimental points at a time forming a
quadruple. The quadruple can be either cov-
ered i) by 4 triangles with mean elevation of
the four vertices as a common central point
(fig. 1a; cf. Clarke, 1986), or ii) by just 2 trian-
gles (fig. 1b,c; ¢f. Piech and Piech, 1990). To
distinguish the two approaches, we now call
methods i) and ii) with TPM4 and TPM2, re-
spectively, where the final number indicates the
number of triangles used to split the top sur-
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face of each quadruple. It is easy to demonstrate
that, in general, the two coverages (fig. 1b,c)
of TPM2 give very similar surface area estima-
tions, but usually differ from the areas com-
puted with TPM4. With some numerical tests,
we found that most of the time, the TPM2
overestimates the expected areas, sometimes
also significantly; this fact is more evident
when the Euclidean surfaces contain abrupt
discontinuities. For instance, this can be seen
for the two Euclidean surfaces of fig. 2. Both
cases show 65 x 65 grids where a cube (top;
side = 32 units) or a half sphere (bottom:;
radius = 32 units) is placed at the centre of a hor-
izontal base. In each example the true total sur-
face area (indicated in the figure at the right of
each object) is the combination of the upper
surface of the geometrical object and the rest
of the planar base to complete the 65 x 65 grid.
Figure 2 also shows the corresponding total
area estimations given by the two methods
when the smaller tile is used. The values fur-
nished by TPM2 are larger than the theoretical
ones; this would imply, in case of subdivision
as TPM2, an overestimation of the fractal di-
mension. Only TPM4 is significantly close to
the true values. For this reason in the follow-
ing, even if we call it simply TPM (or subse-
quently RTPM) we will always make use of
the 4-triangle coverage of TPM4 (as in fig. 1a).

One of the two points that all previous
works missed is that the small triangular tiles
considered as surface rulers are not in a simple
relation with the cross sections ¢’ (or corre-
sponding sides s) of the base of the prisms, but
also depend on the properties of the surface it-
self. In our following approach for the iy
prism, instead of the base cross section o}, we
will _consider a virtual square with side & =
= \/ o; (fig. 1d) where ©; is the real upper surface
of the iy prism (see Appendix B). Then we
will assume 0 = < §; > as mean ruler. It is clear
that 6 is different from s used by previous au-
thors.

The second point regards the improper for-
mulation that previous authors used to deter-
mine D.

Following the theory expressed in Appendix
A, we will apply it to the case of the TPM. Let
us cover the fractal surface with N prisms of
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1020 30 40 50 60

10 20 30 40 50 60

Cube

AREA= 8192

A(TPM4)= 8165
A(TPM2)= 9152

Half Sphere

AREA= 7313

A(TPM4)= 7268
A(TPM2)= 9453

Fig. 2. Two examples of Euclidean surfaces (a 65 x 65 grid base with a cube or a half sphere) of given sur-
face areas to test the methods TPM4 and TPM2. TPM4 provides better estimations of the surface areas while
TPM2 has the tendency to overestimate them in cases with abrupt changes, as shown here where planar bases
suddenly change to a cube or a half sphere. The cube and the half sphere have 32 units of side or radius, re-
spectively. The surface areas include also the remaining base to complete the 65 x 65 grid.

mean upper surface o= §° = < §;>? (fig. 1d). For
60— 0, we can write (Appendices A and C):

A() o« §@D = §7 2.1)
or, in terms of o = &%
A(0) = 0c* P2 =0of  (22)

for o0 — 0.

Equations (2.1) and (2.2) imply that the
fractal dimension can be evaluated from the
slope y of the linear part of log A vs. log &:

D=2-y (2.3)
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or from the slope 8 of the linear part of log A
vs. log o graph:

D=2(1-5) 2.4)
which are quite different from the relations
given by Clarke (1986) and by Creutzburg and
Ivanov (1989). We call the corrected way to
apply TPM the Revised Triangular Prism
Method (RTPM). Our expressions are also
partly confirmed by Russ (1994; p. 61) for
tessellation with equilateral triangles and by
similar expressions shown by Korvin (1992;
p. 245), although they do not mention the mis-
take explicitly. Piech and Piech (1990) use the
correct relation (their eq. (3) at p. 465) among
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A(9d), D and the ruler (the latter two called by
Piech and Piech (1990) « and s respectively),
but it is not completely clear which & they ac-
tually used. Moreover, they applied the TPM2
which, as shown before, usually gives overesti-
mated values of fractal dimension.

To make the results obtained by previous
authors using original TPM more compatible
with the equation (2.2), their estimations D’ of
the fractal dimension can be used to deduce a
lower bound D; of the correct D as:

D, =2(D'-1). 2.5)

Note that D, is a lower bound of the true di-
mension, i.e., it is less than or equal to D, since
6>s5%0.

3. Application to synthetic cases

To test and verify the RTPM, we synthe-
sized some surfaces of known dimension (Eu-
clidean or fractal surfaces) in 65 X 65 square
grids. In particular, the Euclidean surfaces con-
sisted of cylindrical surfaces of different sizes
(lower left of fig. 3 shows an example; we
chose this particular kind of surfaces to numeri-
cally check that the Schwarz paradox did not
occur) and the 2D function:

z(x,y) =y cos (7 x/40)

(upper left of fig. 3). On the other hand, the
fractal surfaces were expressed as Weierstrass-

y cos (nx/40)

60
40
10 20 30 40 50 60
Half cilinder
60
40

1020 3040 50 60

Log (Area or Variance)

Log (Area or Variance)

T T T

-2 3
Log s

Fig. 3. Examples of fractal dimension estimation for Euclidean surfaces (lower left: half cylinder with height

H = 64 and radius R = 32 units; upper left: y cos (7x/40) with

RTPM and variance method. Graphs at the right

are the corresponding generalised Richardson-Mandelbrot plots.
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Mandelbrot (WM) functions W(x,y) of the fol-
lowing form:

W(x, y) =

cos (\27bix + o) cos (\V2mbly + ¢))
JXEERY;

=KZ

Jj=ja, jb

3.1)

where o; and ¢; are pre-chosen (deterministic
or random) phases and b = 1.5. K is a normal-
ization constant and ja and jb should be theo-
retically —oo and oo, respectively. W(x,y) is
a self-affine function with fractal self-affine
dimension D, comprised between 2 and 3.
Unfortunately, since RTPM is a self-similar
method, we cannot directly compare its fractal
dimension D with D,. We could scale the WM
functions differently in accordance with their
D,; however this procedure could become par-
ticularly complicated. On the other hand, we
recall that if the vertical profile of a random
surface is self-similar with fractal dimension
D then the fractal dimension of the surface it-
self is Dy = D1 +1 (e.g., Korvin, 1992; p. 256).
This property will allow us to test the feasibil-
ity of our method. We produced many unidi-
mensional 1024-point realizations of expres-
sion (3.1) at fixed x or y, using ja = — 16 and
jb =—1 as summation limits, in order to select
significant samples of WM surfaces of given
dimension D at steps of 0.1 between 2 and 3.
These series of unidimensional functions were
analysed with a divider technique (in particular
that given by Russ, 1994) and the correspond-
ing estimated fractal dimensions, D), increased
by 1, were used to test the results given by
RTPM when applied on the corresponding
fractal WM surfaces. We found a one-to-
one linear relation between D, and D,. Since
RTPM is the two-dimensional version of the
divider method, we would expect good agree-
ment between the values of our method and those
deduced from the unidimensional analyses.
Therefore we synthesized 9 series of ran-
dom WM surfaces (i.e., with random ¢ and ¢))
such that D; = 2.1, 2.2, ..., 2.9, normalising
each function in order to let its larger z-devia-
tion be the same as the larger horizontal extent
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(this was the rule applied by the 1-d divider
technique). Figure 4 shows two examples with
D, =23 and D, = 2.8.

On the synthetic cases, we also applied an-
other method called bidimensional variogram
method or simply variance method (e.g., Tur-
cotte, 1992, chapter 7), in order to verify the
self-affine dimension of each selected WM
function. This method is based on the follow-
ing relation between the variance of the experi-
mental function Z(x,y) = Z(x) and the corre-
sponding fractal self-affine dimension D,:

dlog < [Z(xy)—Z(x —xp)]* >
dlogx

=6-2D, (3.2)

which is the 2D extension of the 1D expression
(e.g., Korvin, 1992, p. 262).

In the following applications of the methods
for estimating D we used the rulers: 1, 2, 4, 8,
16 and 32 units (we preferred to exclude the
larger ruler of 64 units to avoid possible edge
effects; see also Appendix B). Two generalised
Richardson-Mandelbrot log-log plots are pre-
sented in fig. 4 at the right of the correspond-
ing analysed surfaces. All results are summa-
rized by fig. 5, where the errors have been esti-
mated as the larger half deviation among the
results of several cases (at least 5) for each D,;
the dashed line represents the theoretical ex-
pected relations for D, or D,. Within the errors,
RTPM always agrees with D, = D;+1 while
TPM, as introduced by Clarke (1986), provides
lower values especially at higher values of true
D. On the other hand, as expected, the variance
method furnishes values close to the self-affine
dimensions of the WM functions.

Further confirmation is given for the experi-
mental images named as examples A and B
by Clarke (1986). Applying the RTPM and
the variance method to these 17x17 square
matrices we found good agreement with simi-
lar values (D = 2.8 £ 0.1 for example A and
D = 24 £ 0.1 for example B), although we
used four rulers for RTPM and only three for
the variance method. Since the variance
method is for self-affine fractals, the coinci-
dence of results between the two methods can
be explained by an almost self-similarity of the
two digitised images.
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Fig. 4. Asfig. 3 but for fractal surfaces: Weierstrass

(bottom).

We cannot check our method RTPM di-
rectly on data of previous works which are not
available to us, but the correction (2.5) would
imply, for instance, that the example of Bell
Canyon DEM of Clarke (1986; his fig. 5) pos-
sesses a value greater than 2.38 which seems
more consistent with the rugged aspect of the
digitised image. Even the recent work of Jaggi
et al. (1993) presents the same misinterpreta-
tions as Clarke (1986) and Creutzburg and
Ivanov (1989); this can also justify why their
example with the uncorrected version of this
method gives a rather low estimation for a
fractal surface representing remotely sensed
data (their value of 2.2 would change to an-
other greater than 2.4).

As all fractal methods, also the RTPM must
be used with some caution when applied to
real data; careful investigation of the log-log
plots is always necessary in order to clearly as-
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-Mandelbrot functions with D, = Dy+1=2.3 (up) and 2.8

sess the possible fractality of the surface under
study.” Moreover, RTPM is typically for self-
similar, monofractal and isotropic surfaces
when real data are often self-affine fractals or
multifractals (e.g., Feder, 1988; chapter 6) and
anisotropic, therefore the method provides the
correct fractal surface dimension only for self-
similar surfaces. Nevertheless, even in case of
no self-similar surfaces, the results given by
RTPM represent an objective measure of the
tendency of the surface itself to occupy the
volume at its disposal; this can be particularly
useful when there is the need to classify sur-
faces belonging to the same homogeneous set
of two-dimensional experimental data. Finally,
there are also situations where, although the
surfaces under study are probably self-affine,
the divider technique is more suitable than
other self-affine methods. This is, for example,
the case of rock surfaces for which it has been
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Fig. 5. Comparison of the RTPM, TPM and variance method for estimating fractal surface dimension.
Dashed line represents the theoretical expected relations for D, or D,. Within the estimated errors, RTPM and
Variance method provide always correct values. On the contrary, for high values of true D, TPM saturates at
around 2.5. The errors have been estimated as the larger half deviation among the results of several cases
(at least 5) for each Dy: in order to avoid confusion the errors associated with TPM have not been indicated,
however they are of the same order of the corresponding RTPM case at the same D,.

found that the fractal dimension provided by
the divider technique is a better descriptor of
their roughness, than the self-affine dimension
(Carr, 1995, p. 518).

4. Conclusions

Generally, the triangular prism area method
appears to be a reliable and reasonably fast
method to compute the fractal dimension of
fractal surfaces. The RTPM, as here applied,
results in easier computer implementation and
shorter computation time than other bidimen-
sional fractal methods, especially if compared
with variogram and spectral methods.

Systematic conceptual mistakes in: a) the
use of the appropriate ruler; b) the kind of cov-
erage and c) the basic relation between fractal
dimension and slope of the log-log plot, regu-
larly led to wrong results, most of the time
lower than expected. In this note we have de-
scribed the proper application, verified its po-
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tentiality on many synthetic surfaces and given
also a simple way to define a lower bound of
the true fractal dimension from results esti-
mated by authors of previous works. The new
assessment of the method may give further
help when the evaluation of the surface fractal
dimension is of vital importance. This is the
specific case of geology and geophysics, where
generally the fractal dimension has been esti-
mated along the corresponding profiles instead
of considering, more appropriately, the whole
surfaces (e.g., clouds and mountains, fractures
and faults, topography and bathygraphy, etc.).
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Appendix A. Fractal dimension and Hausdorff measure.

Given a geometrical object (e.g., a curve, a surface, etc.) with topological dimension d (with d = 1, d = 2,
etc., respectively), let us cover it by N d-dimensional rulers with characteristic length 8. We get:

N(8) o< 6P (A.1)

(e.g., Meakin, 1991, eq. (21), and Peitgen et al., 1992, p. 218). If D > d then the object is fractal and D is
called its fractal dimension; in this sense D is a critical value (e.g., Feder, 1988, p. 14). Technically D is a sim-

ilarity dimension (Russ, 1994, p- 55).
Let us define the Hausdorff measure M(3) as:

M(3) = N(6) - 6% o< 54D
(e.g., Feder, 1988, p. 14; Peitgen er al., 1992, p. 218).

(A2)

This implies that the object is not fractal when its Hausdorff measure is finite and does not depend on §,
i.e., when D = d. Otherwise, M = M(§), S0 M — oo for D > d and & —s 0, which is the typical property of a
fractal. M is defined as a measure because it generalizes the proper measure of the corresponding d-dimen-
sional case, i.e., for d = 1 it is the length L(J) of a curve, for d = 2 it is the area A(J) of a surface, and so on.
When considering a fractal, M is often said apparent because it changes with the § that is used (e.g., apparent

length).
In particular, for a fractal curve we have:

N(8) o< 5P

(A.la)
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with 1 < D £ 2, and

M(8) = L(8) o 8D (A.2a)
while for a fractal surface we can write:
N(8) & &P (A.1b)
with 2 < D < 3, and
M(8) = A(S) o< @D, (A.2b)

Appendix B. Against the Schwarz paradox.

Consider the surface of the half cylinder of fig. 6. If R and H are its radius and height, respectively, then its
area A is 7RH. Divide the entire surface into m X n sectors, with a side parallel to the cylinder axis. In this sim-
ple case, each sector is characterized by the four points at the vertices of the square A, B, C and D (this is the
typical way of applying TPM or RTPM). Since the central common point E will be always on the same plane
containing all the other four vertices of the square, here, instead of considering the 4 triangles o, 0,, 03 and
0y, we can consider just the entire square with area o. The total surface area A is mXxXnXx o.

Straight trigonometry shows that

o=RH gin (zim)
and
A=m-n-o=nRHsin (/n). (B.1)

For n — oo, sin (7/n) tends to 7/n, therefore A becomes, as expected, TRH.
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_ _HR . 7
o= (01+02+03+ql) = SIn T

A=omn=nHRsin™ —3 HR~«w

n—0

Fig. 6. Covering a cylinder to avoid Schwarz paradox. The use of an even series of triangular prisms coupled
as in TPM (or RTPM) does not give the absurd results of other common triangulations.
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Although for grids with other orientations with respect to the cylinder axis, the four points of each sector
could be no longer in the same plane, the above described results can be generalised to any situation. This was
confirmed by numerous applications of RTPM on cylindrical surfaces at different orientations and with differ-
ent rulers providing always the correct dimension D = 2. An example is shown at the bottom of fig. 3.

The sine term in RH side of (B.1) implies the underestimation of the area of cylinders at larger rulers. This
situation mimics what happens in the 1-d analogous case of circles (e.g., Russ, 1994; his fig. 3 at p. 28). It is
expected that this effect might generally be present, therefore it is always better to exclude larger rulers (i.e.,
those comparable with the larger size of the analised signal) when estimating the fractal dimension with 1-d or
2-d divider methods. The possible presence of this effect could make erroneous the interpretation of the
smaller and larger ruler bands of the Richardson plot in terms of structural and textural regions, respectively
(e.g., Kaye, 1989, p. 288).

Appendix C. Formulations for RTPM.

Let us consider the case of fig. la. After some simple algebra (see e.g., Creutzburg and Ivanov, 1989) we
have that the surface areas of the small triangular prisms o;, 03, 03 and o are:

0, = (s/4) N(b-a)+ (e —a—b) + 5

0, = (/) - \N(c—bY2 +(2e—b—c) + 52

Oy = (s/4) - Nd=c+QRe—c—dP + 5

and

0, =(s/4) - N(@a—d’+Q2e—d—a) + 5
where a, b, c, d are the z-elevations of the corresponding prism vertices A, B, C, D and ¢ is the mean elevation

(point E), i.e., ¢ = (a+b+c+d)/4; s is the base side of the prism.
We can now consider the value o; = (0, + 0+ 03+ 0y) as the area of the iy, prism upper surface. Then we

introduce the mean side &; = \/ 0; for which the upper surface of the prism corresponds to the surface of a vir-
tual square of side &; (fig. 1d). Consequently, we can take the mean side of each upper prism surface § = < §; >
as the best estimate of the 1-d ruler (< > denotes expected value). '

Hence, taking into account of (A.2b) we can write:

A(8) = N(6)- 6% o« @D = §7
or, in terms of o = &%
A(0) o« 6@ D2 = 5P (.1
since N(8) < 872 (see (A.1)).

It is straightforward to show that the fractal dimension D can be found from the slope y of the linear part of
log A vs. log 6 (this is the relation we used in our examples):

D=2-y (C2)
or from the slope f of the linear part of log A vs. log o graph:

D=2(1-p. (C3)
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