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Abstract

The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various
time scales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many tech-
niques for modelling electron density profiles through entire ionosphere have been developed in order to solve
the «age-old problem» of ionospheric physics which has not yet been fully solved. A new way to address this
problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and
ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of
numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting
may proceed successfully applying the artificial neural networks. The performance of these techniques is illus-
trated with different artificial neural networks developed to model and predict the temporal and spatial varia-
tions of ionospheric critical frequency, f,F, and Total Electron Content (TEC). Comparisons between results ob-
tained by the proposed approaches and measured f,F,and TEC data provide prospects for future applications of
the artificial neural networks in ionospheric studies.

Key words electromagnetic waves — ionospheric below and strongly affected by such highly dy-
modelling — prediction — forecasting — artificial  pamic features as neutral winds, atmospheric
neural networks — time series analysis tides, motion due to electric and magnetic
fields, and auroral particles at higher latitudes,
1. Introduction it is only in principle possible to model the
very complex physical processes taking place
The history of ionospheric research, starting in the ionosphere. A number of studies have ad-
with the pioneering experiments by Appleton  dressed the well-documented problem of devel-
and Barnett (1925) and Breit and Tuve (1926), opment a completely physical ionospheric
is long and rich in physics and chemistry (e.g., ~ model (Schunk and Sojka, 1996a and refer-
Rishbeth ef al., 1996 and references therein). ~ ences therein). As all physical ionospheric
The Earth’s ionosphere is composed of space models depend on magnetospheric inputs such
cold plasma produced by a neutral atmosphere ~ as energy, momentum and ionisation sources
absorption of solar extreme ultra-violet and associated with substorm and storm dynamics,
X-ray radiations. Since the real ionosphere is a it seems that no major breakthroughs are proba-
dynamic system that is primarily coupled to the ~ ble in theoretically solving the coupled mag-
magnetosphere above and neutral atmosphere  netospheric — solar wind — ionosphere prob-
lems. Therefore, it is widely thought that theo-
Mailine add Dr. Liiliana R. Cander. 2.17. RS retical model results in real time specification
Ruthext'lflolritligAapplzetf)i L;Borglltcjy?;? Ra.dioaré):rrr;ml.lnic’ationé Ojf the. 1ogospher10 Str.ucu.qu and dynamlcs pro-
Research Unit, Chilton, Didcot, Oxon OX11 0QX, UK.;  vide significant but still limited success (Ander-
e-mail: l.cander@rl.ac.uk son et al., 1998).
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In most studies, the important ionospheric
parameters such as the electron density, neutral
and ion compositions and temperatures are
given empirically or semi-empirically based on
observations by world-wide ionosonde, rocket
and satellite experiments and radar (Cander
et al., 1996 and references therein). Models cal-
culate these parameters when the location (lati-
tude, longitude and altitude), time (month, local
or universal time) and solar-terrestrial activity
(sunspot number, solar flax F,,,, geomagnetic
indexes) are given as inputs. There are a variety
of empirical and hybrid techniques for using
the past history of a physical system to predict
its future response to changing conditions.
However, the quality of these techniques de-
pends very much on measurements and having
an adequate latitude-longitude distribution of
observations. Furthermore, a common problem
encountered in both the empirical and physical
ionospheric modelling was the dependence
upon solar-terrestrial indexes. Although various
techniques have different strengths and weak-
nesses, it seems that the best technique is to use
the data to obtain understanding of the system
and then derive somehow a model that predicts
the outcome of specific inputs.

Recently it has become clear that the tech-
niques derived from artificial intelligence re-
search and modern computer science provide
a number of system aids that can be used to
analyse and predict the behaviour of complex
solar-terrestrial dynamic systems (e.g., Joselyn
et al., 1993; Lundstedt and Wintoft, 1994; Hill
and Koschmieder, 1995; Galkin et al., 1996;
Sutcliffe, 1997; Wintoft and Lundstedt, 1997;
Conway et al., 1998). Methods of artificial in-
telligence have provided tools which poten-
tially make the task of ionospheric modelling
and forecasting possible. They can therefore be
used to assist ionospheric forecasters in making
highly accurate long-term predictions and short-
term forecasting. One of them, the artificial
neural network, in essence a non-linear predic-
tion filter, provides means of encapsulating em-
pirical knowledge about relations in data. It al-
lows experimentation with different architec-
tures and paradigms to prototype solutions to
real scientific problems. Methods of data analy-
sis for testing the usefulness of non-linear tech-
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niques in space plasma physics have recently
been examined by Wernik (1996 and references
therein). It is shown that non-linear processes
play an important role in irregular behaviour
of the measured ionospheric parameters (e.g.,
Wernik and Yeh, 1996; Dominici et al., 1997
and references therein). One can argue that arti-
ficial neural network models lack the physical
interpretation that is provided by physical or
hybrid ionospheric models. This difficulty can
be easily removed in the light of more recent
studies which focus on extracting information
on physical processes by suitable data analysis.

This paper presents the first review of the
results received by different groups in the artifi-
cial neural network applications in ionospheric
prediction and forecasting studies. In the next
section, structure determination of a neural net-
work is discussed. Real examples are employed
to demonstrate the application of the proposed
methods. Section 3 deals with prediction of the
monthly median and forecasting of daily hourly
JoF, values while section 4 is concerned with
the role of neural networks in one hour in ad-
vance TEC prediction. In the concluding sec-
tion the main results of this paper are discussed
and summarised while relevance to ionospheric
modelling is briefly outlined.

2. Artificial neural network

A simple way to introduce a basic idea
about artificial neural network in ionospheric
studies is to use a schematic description as in
fig. 1. A neural network is composed of several
layers of neurons: an input layer, one or more
hidden layers and an output layer. Each layer of

Fig. 1. A schematic diagram of an artificial neural
network.
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neurons receives its input from the previous
layer or from the network input. The output of
cach neuron feeds the next layer or the output
of the network. The first layer is always an in-
put layer that distributes the inputs to the hid-
den layer. The unknown parameters of any neu-
ral network arc the weights which can be found
through training with different algorithms on
the known input-output patterns. Therefore,
training a neural network involves a data base
of examples which are values for the input and
output. The neural networks would learn by ad-
Jjusting the weights connecting neurens in dif-
ferent layers to minimise the error of outputs.
These algorithms try to minimise the error be-
tween the desired output and the network out-
put by adjusting the weights according to gradi-
ent descent. The functionality of different neu-
ral networks is described in detail by Haykin
(1994) and Swingler (1996 and references
therein).

3. f,F, modelling

A long time series of scaled data sets from
routine ionospheric sounding records has be-
come an excellent example of time series data
with which to test the abilities of neural net-
works in ionospheric studies (Williscroft and
Poole, 1996; Altinay et al., 1997; Cander and
Lamming, 1997; Poole and McKinnell, 1998;
Cander et al., 1998a). This study is focused on
one ionospheric characteristic, £F, (in MHz),
the F, layer ordinary critical frequency which is
directly related to the maximum F, layer elec-
tron density NmF, (in electrons/m’) by the well
known relation

NmF, = 1.24)<1()m[fn E 1%
The f.F, parameter is measured unambiguously
at ground ionospheric sounding stations distrib-

uted globally and has an important role in both
ionospheric physics and high-frequency com-
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Fig. 2. The modular neural network (from Lamming
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munication. However, the proposed approaches
can be applied to any other £ and F regions
standard ionospheric characteristics.

3.1. Prediction of the monthly median f,F,

For monthly median f,F, prediction a modu-
lar architecture of the neural network has been
introduced by Lamming and Cander (1998a,h).
This architecture is composed of 12 nelworks,
one for each month of the year which solves the
problem independently. Figure 2 illustrates the
general idea of implementing a modular archi-
tecture in two different applications: i) single
station modelling with three inputs: hour,
month and solar activity index, and ii) 2D mod-
elling over Europe with two additional inputs:
geographical latitude and longitude.

The result of the single station application is
given in fig. 3 for a typical mid-latitude Euro-
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pean ionospheric station Poitiers (46°N, 00°E).
The comparison between predicted and ob-
served f,F, values is in good agreement through-
out most of the months at high levels of solar
activity in 1990. The only discrepancy between
predicted and observed fF, occurs in some
cases at night hours, as expected since solar ac-
tivity index R, is used as an input parameter. In
the 2D application it is found that the neural
network model can very well interpolate spa-
tially f,F, values between the ionospheric sta-
tions in a restricted area and generates the f,F,
maps. An example map is shown in fig. 4. It is
clear from the data and the simulation that the
neural network 2D regional model gives a very
realistic f,F, representation over the geograph-
ical area considered. The success of the pro-
posed neural network technique has also been
tested by using results from the classical ITU-R
and PRIME models (see Lamming and Cander,
1998b).
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Fig. 3. A comparison of f,F, predicted by neural network with the observations at Poitiers during all months of
[990. Solar activity index R, variations are also shown (from Lamming and Cander, 1998a).
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Fig. 4. Monthly median fF, (
Cander, 1998b).

3.2. Forecasting of the daily hourly f,F,

During fast changes in ionospheric condi-
tions, monthly median prediction is not suffi-
cient and daily hourly fF, forecasting is re-
quired. Successful attempts to build different
artificial neural network models for one hour
ahead prediction were made by a few authors
(Altinay er al,, 1997; Poole and McKinnell,
1998; Cander er «l., 1998h; Wintoft and Cander,
1998). One approach that uses the hybrid
time-delay multi-layer percepton neural net-
work with twelve input parameters including
among others f.F, values at particularly selected
hours (1, 11, +-23, 1-47), daily sunspot number
R, and geomagnetic ring current index D, to
produce one output f,F, value at hour ¢ + 1 has
been illustrated here by examples in figs. 5 and
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MHz) over Europe at 1200 UT in January when R, = 150 (from Lamming and

6. A detailed description of this type of neural
network as far as its architecture, first and sec-
ond hidden layers, learning and test data scts
are concerned can be found in Cander er al.
(1998b). Close examination of fig. 5 shows that
there is an excellent agreement between mea-
sured fif, values at Rome ionospheric station
(41.9°N, 12.5°E) during high solar activity pe-
riod of five days on 1-5 December 1990 and
onc hour ahead predicted fF, values. It should
be emphasised that this comparison is given for
an easy case of mid-latitude station during quiet
geomagnetic activity.

This agreement is not so good at fig. 6
where disturbed ionospheric conditions at low
level of solar activity were in progress during
six days on 4-9 December 1995. In comparing
the neural network results shown in fig. 6 with
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Fig. 5. Hourly f,F, values at Rome ionospheric station as measured on 1-5 December 1990 (dashed line) and
predicted by neural network one hour ahead (solid line).
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Fig. 6. Hourly f;F, values at Rome ionospheric station as measured on 4-9 December 1995 (dashed line) and
predicted by neural network one hour ahead (solid line). Monthly median f,F, variation is given by dotted line.
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Fig. 7. Hourly f,F, values at Rome ionospheric station as measured on 8-14 April 1990 (black line) and pre-

dicted by neural network one hour ahead {red line). Monthly median f,F,

observations, attention must be paid to the fact
that there were a number of phenomena which
cannot be related to any typical day-to day ion-
ospheric variability. The differences between
daily hourly fF, values and their corresponding
monthly median values are especially pro-
nounced at night. However, the predicted fF,
values still follow the measured fF7, values at
Rome much more closer than monthly median
values.

3.3. Forecasting the daily hourly f,F, during
ionospheric storms

To study the forecasting capabilities of the
neural network method during ionospheric
storms an experiment was done resulting in
fig. 7. The test was based on April 1990 (mean
monthly sunspot number R, = 140.3) data for
Rome station. Figure 7 gives results for one
hour ahead fF, forecasting over a seven day pe-
riod, 8-14 April 1990. A great geomagnetic
storm occurred on 10 April when A, reached

variation is given by the blue line.

the value of 124. During this period. observa-
tions at Rome exhibit a lasting and smoothly
varying negative storm effect when the f,F, val-
ues were depressed significantly below the
monthly median values which represent here
the quiet ionospheric conditions. Again, the
agreement between predictions and observa-
tions is very good. These results clearly imply
that artificial neural network techniques are
particularly robust during ionospheric storms
when reliable quantitative forecasting one hour
ahead can easily be obtained.

4. Forecasting TEC

In this section, experimental TEC data are
compared with one hour ahead TEC predicted
by the neural network. lonospheric TEC is the
total electron content (in electrons/m®) of a ver-
tical column of 1 m’ cross section. The TEC
data were determined from Faraday rotation ob-
servations at Florence (43.8°N, 11.2°E) using
the signal of the OTS-2 satellite (Ciraolo and
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Fig. 8. The diurnal variation of the observed (dashed line) and one hour ahead predicted (solid line) values of
TEC (Total Electron Content) for Florence on 1-5 December 1990.

Spalla, 1994). The fF, neural network fore-
casting model was modified to introduce the
TEC prediction one hour ahead. Extensive
comparisons were made between observed val-
ues of TEC and those calculated using neural
networks. Figure 8 illustrates a very small sub-
set of the comparisons which could be made us-
ing the available TEC database. As in the case
of f,F, prediction at Rome ionospheric station
for the same five day period (fig. 5), the agree-
ment between model and observations gener-
ally ranges from good to very good. Some
discrepancies occur only during the early morn-
ing hours and at the peak daily values on 4 De-
cember.

5. Discussion and summary

In reviewing the artificial neural network
applications in ionospheric studies, the first
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concern that one may have is the advantages of
these new approaches. Real time ionospheric
specification and forecasting has important im-
plications for ionospheric weather and time de-
lay corrections of the Global Position System.
If ionospheric modelling is to progress from the
climatology level to the weather level (Schunk
and Sojka, 1996b) then: i) key observation data
must be moved into the forecast environment in
real time; ii) multi-site data taken in real time
are needed. Results in previous sections de-
scribed how the artificial neural networks can
improve the ionospheric long term prediction
and short-term forecasting at the single iono-
spheric stations as well as at restricted area of
Europe.

In all examples given, different neural net-
works have been trained to model and predict
the f,F, and TEC, measured at mid-latitude iono-
sphere during different solar and geomagnetic
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conditions. Comparisons with the local monthly
median and daily hourly £F, and TEC values
enable an optimum set of data and prediction
efficiency for different neural network architec-
ture to be determined. Numerical experiments
extensively conducted also confirm that apply-
ing the different methods many input units and
hidden units can be removed without affecting
the prediction accuracy, making the whole
computing procedure much simpler (Wintoft
and Cander, 1998). It is apparent from the rep-
resentative examples in figs. 3, 4, 5, 6, 7 and 8
that the neural networks yield results that are
generally just as good as those observed. More
importantly, however, is the fact that the most
significant input in any of those neural network
architectures is a time-series of f,F, or TEC it-
self which is able to describe most of the solar
cycle, seasonal, daily and hourly variations of
relevant parameters. This is certainly not the
case during the ionospheric storm periods al-
though the new methods yield values of I,
and TEC that are much closer to observations
than any other known traditional techniques
(Cander, 1998).

Indeed, it seems that the neural network ap-
proach can be an alternative to classical meth-
ods of ionospheric prediction and forecasting
because the artificial neural networks are: i)
empirical models that can describe ionospheric
non-linear phenomena; ii) learned on measured
JoF,, TEC or any other standard ionospheric
characteristic from which they extract the un-
derlying functional relationships, and iii) fast
enough, if the architecture is properly designed,
to be used in many different applications in-
cluding real-time ionospheric specification and
prediction. It is expected that future progress
will be soon accomplished in neural network
applications in ionospheric studies by recent
research projects which are already underway:
among others, the COST 251 project on «Im-
proved quality of ionospheric telecommunica-
tion systems planning and operation». Progress
can be expected in short-term forecasting of
daily fF, and TEC variations 24-h ahead,
a few hours ahead during ionospheric storms
and developing regional models of long-term
ionospheric changes.
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