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Comparison of different methods
of analysis of satellite geomagnetic
anomalies over Italy
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Abstract

Different methods of analysis have been ..pplied to satellite geomagnetic data that are claimed to be represen-
tative of the crustal geomagnetic field of the Italian area. The methods are compared with each other conclud-
ing that the SCHA is the best one. The downward continuation of the field by different methods gives differ-
ent results, the most realistic are those of SCHA and RHA methods. Some remarks about each method and

their results for the Italian area are presented.
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1. Introduction

There are several methods of analysis of
geomagnetic anomalies derived from satellite
data over a restricted area. In order to compare
the results of different methods for the Italian
area we applied the following methods:

1) The Equivalent Source Inversion (ESI)
using dipoles (Mayhew, 1979; Purucker, 1990)
or monopoles (O’Brien and Parker, 1994).

2) The Rectangular Harmonic Analysis
(RHA) (Nakagawa and Yukutake, 1985).

3) The Spherical Cap Harmonic Analysis
(De Santis et al., 1990; Haines, 1990).

For a certain data density, the smaller the
study area the less accurate the results of any
method are. In each method used we tried
many cases of different source distribution and
of different order of double Fourier series, in
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order to obtain the best accuracy of results un-
der the restriction of the small area. On the
other hand, in order to compare the results of
different methods in the same conditions, we
attempted to have roughly the same number of
calculated coefficients by the inversion of field
data.

2. Data distribution

The data, supplied by Istituto Nazionale
di Geofisica represent the residual data of AF
(total field anomalies) and AX, AY, AZ, (compo-
nent anomalies), when the IGRF (up to degree
Nmax = 10) of epoch 1980 was subtracted from
the original data acquired by MAGSAT. Dur-
ing this subtraction the contribution of spheri-
cal harmonics up to n,, = 10 of the core field
and crustal field is cancelled (Haines, 1990). As
the contribution of higher spherical harmonics
of the core field to the observed geomagnetic
field is negligible, we considered such a re-
sidual magnetic field as the field of crustal
origin.

The data points used for the analyses are
shown in fig. 1, the total number of data points
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being 4027. The area covered by data is
bounded by meridians 2.5°E and 21.5°E and
parallels 35°N and 49°N. The altitude of data
points ranges in the interval 300-510 km and
the altitude distribution are shown in fig. 2.
As it can be noted in fig. 1, the data distri-
bution is not uniform over the region, there are
places not covered by satellite paths and places
with too dense data point concentration. We
think that this nonuniformity is another reason,
apart from the small area, for the worsening
accuracy of the results. In order to obtain more
uniform data we followed two ways: a) the av-
eraging of data over altitude; and b) the inter-
polation of data. In the first way, for each field
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Fig. 1. Satellite data distribution over Italy.
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Fig. 3. Averaged satellite data distribution.

component we simply averaged all data inside
every 0.5° latitude x 0.5° longitude bin
(Haines, 1990), considering the averaged value
as the field value in the altitude equal to the
average of altitudes of data inside the bin. So,
we get 907 data points uniformly distributed
on latitude and longitude (as shown in fig. 3)
but having different altitudes. In fig. 3, there
are several «holes» in the bins where there are
no original data points. Such average produces
a significant deviation from the original field
(the rms of deviation between the original field
and averaged field was 1.01 nT for AF, 2.62
nT for AX, 2.39 nT for AY and 1.93 nT for
AZ). However, the anomaly map does not un-
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Fig. 5a-f. a) AF isolines of original data; b) AF isolines of averaged data; ¢) AF isolines of interpolated data;
d) AZ isolines of original data; e) AZ isolines of averaged data; f) AZ isolines of interpolated data.
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dergo great changes from the averaging, except
some smoothing of the field with cancellation
of some local small anomalies. Figure S5a-f
shows the isolines of AF and AZ component of
the data in the altitude interval 420-470 km,
cases (a) and (d) correspond to the observed
data (original data) and cases (b) and (e) corre-
spond to the obtained averaged data by the
above described way. The other components
not presented in fig. Sa-f have not significant
differences with the original anomaly maps. In
the second way, we applied a weighted averaging
of data inside every bin sized 1° latitude x 1° lon-
gitude x 40 km altitude. The field in the center of
every bin is interpolated using the formula

Fi=2,a;F,

where F; is the value of the field (AF, AX, AY,
AZ) in the center of the ith bin and F; are the
field values data points inside the ith bin. The
weights a;; are chosen inversely proportional to
the distance between the bin center and the re-
spective data point

c
Ty

a,-j=

The constant ¢ of proportionality is found by
the relation Zj a;=1. If there is only one
data point inside the bin, then this point is in-
cluded in the data point grid (shown in fig. 4)
without doing the interpolation for the bin cen-
ter. After such averaging the rms of deviation
between the original (observed) field and aver-
aged (interpolated) field was 1.1 nT for AF,
2.61 nT for AX, 2.41 nT for AY and 1.98 nT
for AZ. The anomaly maps (represented in
fig. 5c for AF and fig. 5f for AZ) have almost
the same similarity with the original anomaly
maps as the data averaged by the first way. In
the following illustrations and tables the data
processed by the first way are named the aver-
aged data and the data processed by the second
way are named the interpolated data. All meth-
ods used here are applied on the three kinds of
data: the observed (original) data, the averaged
data and the interpolated data. In order to com-
pare the results of different methods graphi-
cally we will present only the original data and
averaged data.
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3. Dipolar Equivalent Source Inversion
(DESI)

In the DESI method the crustal anomalies
are approximated by a field of an array of
dipoles placed at the Earth’s surface (Mayhew,
1979). The dipoles were oriented along the di-
rection of the main field (IGRF). We have
placed the dipoles at a depth of 15 km like
Meyer et al. (1983) in their model of the
Earth’s crust, in which the crust is constructed
of two layers of spherical blocks with thick-
ness of 30 km and susceptibility selected from
a ten step classification of various crustal types
and the effect of each block has been approxi-
mated by a single dipole placed in the middle
of the block.

The data are stored in the vectors d% where
o =1, 2, 3, 4 represents the observed compo-
nent ie. for & = 1 we have the total field
anomaly data AF, for o = 2 we have the north
component anomaly AX, for o« = 3 the east
component anomaly data AY and for o = 4 the
vertical component anomaly data AZ. The
length of the vectors d“ is equal to the number
of data points.

Let m be the model vector, which contains
the yet to be determined values of dipole mag-
netic moments. Then the data vector d* and the
model vector m are related by the linear sys-
tem of equations

d*=Y G- m, (3.1)
j

where each element of the matrix G{ contains
the analytical expression of o-component of
the field of a particular selected dipole m; at a
particular point i where the observed o compo-
nent is df*. In the case of the total field (o = 1),
which is not linearly related with dipolar mo-
ments m; the element Gé» is approximated as

YIGRF + G4 . ZIGRF

XIGRF
Gi=G?- +G
Y y F L
IGRF

3.2)

Fowe " Fiore
i.e. each component of the dipole field is pro-
jected on to the direction of the main field
(IGRF).
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Table I. rms obtained by the Dipolar Equivalent Source Inversion (DESI).

Original data

Averaged data Interpolated data

Component
20 dipoles 49 dipoles 20 dipoles 49 dipoles 20 dipoles 49 dipoles
rms (nT) rms (nT) rms (nT) rms (nT) rms (nT) rms (nT)
AF 3.65 3.67 3.55 3.57 3.29 3.30
AX 3.41 3.37 2.25 2.19 2.14 2.08
AY 2.76 2.79 1.45 1.53 1.44 1.47
AZ 3.08 3.05 2.62 2.57 248 2.46

_ There is no exact solution to the eq. (3.1),
but we are looking for the best approximated
solution m’, in the sense of minimizing the L,
norm of prediction error:

1G*-m’—d*||, = min.

In our calculation of the model vector m’,
where the number of dipoles is less than the
number of data (the overdetermined problem in
eq. (3.3)) we have used the program ZAPP
(Malin et al., 1982). We have tried with differ-
ent sets of dipoles in order to obtain the best fit
between the observed data and the field calcu-
lated by eq. (3.1) (when instead of m we have
m’). We presented here two cases: a set of 20
dipoles placed in a grid of 3° x 2.5° and a set
of 49 dipoles placed in a grid of 1.5° x 1.5°.
Table I shows the rms deviation between the
input field and calculated field for two cases,
when the input field is that of original data
(two first columns) or averaged data (two sec-
ond columns) or interpolated data (two third
columns). In all cases the standard deviation of
the dipole moments is one order smaller than
the values of dipole moments.

In order to compare graphically the input
field (interpolated data) and calculated field (in
the case of the model with 49 dipoles) we have
drawn the AX, AY, AZ isolines of the calcu-
lated field at altitude 350 km respectively in
figs. 6b, 7b and 8b and AX, AY, AZ isolines of
the input field (interpolated data) at altitude
interval 325-375 km respectively in figs. 6a, 7a
and 8a.
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According to (3.1) we can calculate the
field at any altitude. So we calculated the field
at the Earth’s surface, which is thought to be a
downward continuation of the observed field.
But the field values were so large that they
were not the downward continuation of the ob-
served field. The reason is that any model
formed by dipoles is not valid for an altitude
close to the dipoles emplacement.

4. The Polynomial Equivalent Source
Inversion (PESI)

We made a small change to the classical
ESI method, considering that the value of dipo-
lar moment in formula (3.1) can be expressed
as a polynomial of latitude 6 and longitude ¢

koo k
m®6, =2 DA, 059 -F6 ¢ (1)
k=01=0

where F(6, ¢) is the main field at the point
6, 9.

Substituting 6 = 0, and ¢ = ¢, into (4.1) and
then (4.1) into (3.1), we obtained a linear Sys-
tem of equations where the unknowns are the
Ay, coefficients. Then following the algorithm
of classical ESI we calculated the Ay, coeffi-
cients by the ZAPP program. The time spent
by the computer was 20 times greater than for
the DESI method. We tried many cases of dif-
ferent values of ky,, and different grid 6, ¢ in
the studied area. In the best case, when the
standard deviation of coefficients were one or-
der smaller than the values of coefficients, the
value of k,,, was 4 and the number of grid
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Table II. rms obtained by the Polynomial Equivalent Source Inversion (PESI).

Original data

Averaged data Interpolated data

Component
rms (nT) rms (nT) rms (nT)
AF 4.17 2.69 2.50
AX 4.13 2.26 2.09
AY 2.81 2.13 2.02
AZ 4.22 2.33 2.25

points, where the value of dipolar moment is
considered known, was 399 (a grid of nearly
0.9° % 0.9°).

The rms deviations between the input field
and the calculated field are presented in table II
both for the original data, the averaged data
and the interpolated data.

The isolines of calculated anomalies at the
same points as the input (interpolated data)
field are shown in fig. 6¢ (for AX), fig. 7c (for
AY), fig. 8c (for AZ).

For the same reason as for the previous
model of dipoles we could not do the down-
ward continuation of the field.

5. The Monopolar Equivalent Source
Inversion (MESI)

We did not apply a regularized geomagnetic
field modelling using monopoles like O’Brien
and Parker (1994), but a simple one as follows.
The reasons were not only the complication of
the regularized modelling, but firstly, we
wanted to compare different methods of mod-
elling in the same conditions and secondly the
results of O’Brien and Parker (1994) applying
the regularized modelling for the MAGSAT data
were not more accurate (the data are fitted to
an rms level of 3.62 nT; O’Brien and Parker,
1994) than the other methods.

In the source-free region we can model the
scalar potential of the geomagnetic field ®(r)
as a linear combination of potential sources
(O’Brien and Parker, 1994):

K
DE) =D, 0 (r) (5.1)
k=1
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where o, are the source strengths.

Supposing that the sources are monopoles
located at points s, on a sphere with radius s,
then:

1
|r—s; |

¢ (r) = (5.2)

The set of data {d;},j=1,2.. N (N 2K) are
measurements of the field strength B (r;) in di-
rections given by the unit vectors {e;} and ob-
tained at the positions r;, i.e. d; = e; - B(r;). Us-
ing B(r) = —~V® and relations (5.1)-(5.2), the
data are related to the source strengths as

K K
== 2, oy le;- Vo, ()] = kz o -G, (53)
k=1 =1

or more compactly

d=G -« 54
where d is the column vector of the data, « is
the column vector of the source strength and G
is the N x K matrix of Green’s function given
by formulas of O’Brien and Parker (1994, Ap-
pendix C, p. 578) (after correcting some print-
ing errors!).

By the ZAPP program we calculated the o;
(i=1,2... K) source strengths. The data were
AX, AY, AZ components of anomaly field of
MAGSAT over Italy. In order to obtain the best
fit between the input field and calculated field
we tried many cases of different distribution
and depth of the monopole sources.
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Fig. 6a-f. AX isolines of input field (a) and of calculated fields: DESI (b); PESI (c); MESI (d); RHA (e);
SCHA ).
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Fig. 7a-f. AY isolines of input ficld (a) and of calculated fields; DESI (b); PESI (c): MESI (d); RHA (e);
SCHA (D).
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Fig. 8a-f. AZ isolines of input field (a) and of calculated ficlds: DESI (b); PESI (c); MESI (d); RHA (e);
SCHA (f).
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Table III. rms obtained by the Monopolar Equivalent Source Inversion (MESI).

Original data

Averaged data Interpolated data

Component
16 monop. 100 monop. 16 monop. 100 monop. 16 monop. 100 monop.
rms (nT) rms (nT) rms (nT) rms (nT) rms (nT) rms (nT)
AX 4.06 3.08 2.60 2.01 2.52 2.11
AY 3.55 2.76 1.72 1.68 1.61 1.59
AZ 2.13 2.07 221 1.53 2.08 1.70

In table III, we present the rms of fitting be-
tween the input field and output field for two
sets of monopoles, one with 16 monopoles
placed in a grid of 4.5°x3.5° at a depth of
80 km and another with 100 monopoles placed
in a grid of 1.2°x 1.2° at the same depth of
80 km.

For the same reasons as for the model of
dipoles we could not do the downward contin-
vation of the field, although the field of
monopoles increases with the decreasing of
distance from source more slowly than the
field of dipoles.

The isolines of calculated field (for the set
of 100 monopoles) at the altitude 350 km are
shown in figs. 6d (for AX), 7d (for AY), 8d (for
AZ).

6. The Rectangular Harmonic Analysis
(RHA)

The RHA is applied to AX, AY, AZ data
over the area of Italy following the way treated
by Nakagawa and Yukutake (1985).

In the local Cartesian coordinates (x, y, z)
with origin at the center of region (42°N, 12°E)
the magnetic potential is expressed in double
Fourier series

V=X x+Y y+Zg-2+ 2 DA,
6.1)

o (22 (22). o (25

where L is the length of the studied area and

2mimx 2miny
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> = m*+n®. Introducing a normalization pa-
rameter N and the variables

_N-x

N-y
L'"

“ L

6.2)

9W=

L

then the magnetic potential becomes

V'=X0u+Y0v+Z0w+%- ZZA,M-

6.3)
- exp (‘Zm%)-exp( )-exp(

)

Each component of the magnetic field is ex-
pressed

2w
N

2miny
N

oV’
v

oV’
ow

Y=

, Z=-— (6.4)

as a linear function of unknown coefficients
Xo, Yo, Zo, Ay, (A, being a complex num-
ber).

After transforming the geocentric coordi-
nates of satellite positions into normalized lo-
cal Cartesian coordinates (u;, v;, w;) and the
anomaly values of observed field into the local
Cartesian coordinates (X;, Y;, Z;), we applied
the ZAPP program in order to obtain the coef-
ficients Xo,Yo, Zy, AR™, AL™P* To run the
program well, we have to take only the inde-
pendent coefficients as between them there is
the relation:

real _ preal complex __ complex
Am, n= A—m, Am np = _A—m -n -

(6.5)

—ns

In order to avoid the edge effect, the data were
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weighted to a 10 bell (Nakagawa and Yuku-
take, 1985).

Taking N =2 and L = 1600 km for our area,
we tried different maximum values of m,n. We
noticed a deterioration of accuracy with in-
creasing harmonics. In the best case the series
were terminated at n = 1, m = 1. where the
standard deviation is one order smaller than the
values of coefficients. But in this case there are
a small number of independent coefficients
(only 11 of 21 coefficients). In order to compare
the results with those taken from other methods
we chose the maximum order n = m = 3. In this
case we have 57 independent coefficients from
101 coefficients. Some coefficient values are in
the same order as their standard deviation and the
accuracy. of fit between the input field and the
output field deteriorated especially for the Z com-
ponent (see table IV).

From X,, Yy, Z,, A,,, coefficients defined
by RHA (for n = m = 3) we can calculate
the AX, AY, AZ at any altitude. Figure 9a-c
shows the isolines of AX, AY, AZ respectively,
calculated by RHA at the Earth’s surface
(altitude 0), that can be compared with the iso-
lines of AX (fig. 6e), AY (fig. 7e), AZ (fig. 8e)
calculated by RHA at the altitute 350 km.

7. The Spherical Cap Harmonic Analysis
(SCHA)

We followed the modelling procedure de-
scribed by De Santis et al. (1990) for the same
data (these data are those we used in each
method), for the same spherical cap with the
center at 42°N, 12°FE and the half-angle 7°, and
the same number of coefficients kinax = 9) giv-
ing a model of 100 coefficients in the expres-
sion of magnetic potential

Knax K
V= (g)nk(m)+l.
akg() mgo r

- (g1 cos(m@) + hy sin(ma)) - P

T amy

7.1
(cos 6)

with noninteger harmonic degree n,(m) and
Kmn Schmidt normalizing constants given in
table I of De Santis et al. (1990, p- 1032).
By the inversion procedure we calculated
the g, and A} coefficients, but we have to say
that for some coefficients the standard devia-
tion were in the same order as the values of co-
efficients. The rms of the fit between the input
field (for the original and averaged data) and
calculated field are presented in the table V.

Table IV. rms obtained by the Rectangular Harmonic Analysis (RHA).

Original data

Averaged data Interpolated data

Component
rms (nT) rms (nT) rms (nT)
AX 4.13 2.26 1.88
AY 2.81 2.13 1.32
AZ 4.22 2.33 1.81

Table V. rms obtained by the Spherical Cap Harmonic Analysis (SCHA).

Original data

Averaged data Interpolated data

Component
rms (nT) rms (nT) rms (nT)
AX 2.66 0.97 1.14
AY 245 0.86 1.02
AZ 1.82 0.65 0.87
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Fig. 9a-f. a) AX isolines at altitude 0 (RHA); b) AY isolines at altitude 0 (RHA); ¢) AZ isolines at altitude
0 (RHA); d) AX isolines at altitude O (SCHA); e) AY isolines at altitude 0 {SCHA); f) AZ isolines at altitude
0 (SCHA).
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Figures 6f, 7f and 8f show the isolines of
calculated field at the altitude 350 km and
fig. 9d-f shows the isolines of the calculated
field at the Earth’s surface (altitude 0).

8. Discussion

Comparing figs. 6a-f, 7a-f and 8a-f we no-
ticed that the calculated fields are similar to the
observed field for all cases and all components.
But the best similitude is for the total field and
Z component anomalies and the best case is
that of the SCHA method. Also numerically
the best fit in each method is for the Z compo-
nent and best fitting is for the SCHA method
(the rms values are smaller than those from
other methods). Almost all methods provide
smooth fields with a tendency of isolines fol-
lowing the parallels for the X and Z compo-
nents and following meridians for the ¥ com-
ponent. Another common feature shared by all
methods is that the calculated field has the
strongest gradients on the edges of the chart.
Presumably all methods are affected by edge
effects.

We can find many models which fit well the
data on the satellite altitude, but when we do
the downward continuation of the field from
the satellite height to the Earth’s surface we
find different results, in some cases unrealistic
as in the cases of the DESI, PESI and MESL.
In the case of PESI, the results depend too
much on the order of polynomial (Malin ef al.,
1982), and for the polynomial of order greater
than 4 the running time of the computer pro-
gram is extremely long.

The most realistic results of downward con-
tinuation of the anomalies are those of the
RHA and SCHA methods. For the RHA
method the attenuation of the harmonics with
the increase in altitude depends on the wave-
length so that for n = —1,0, +1; m = -1,0, +1
(wavelength greater than 1600 km) this attenu-
ation is negligible, while for n = 3, m=3
(wavelength nearly 500 km) the attenuation is
about 100 fold. The picture of the field does
not change much during the downward contin-
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uation except that some new anomalies with
short wavelength appear.

Using the SCHA method for the downward
continuation of the field, the values of the field
are increased of about 100 fold and some local
short wavelength anomalies appear. Some of
those anomalies are due to the edge effect
which is more evident in the SCHA method.

The interpretation of MAGSAT anomalies of
Italy was not the subject of this work. There
are two different works by Nolte and Hahn
(1992) and Taylor and Ravat (1995) on the in-
terpretation of MAGSAT anomalies of Central
Europe.
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