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Abstract

Estimates of the fractal dimension of hypocentral distributions require evaluating the range of independent variables
in which fractal parameters exhibit a power law. Systematic and accidental errors are produced mainly by the
subjective selection of this range, the insufficiency of data sets as well as by hypocenter mislocations. Therefore
it is very important to determine the confidence intervals which are associated with fractal dimension estimates.
The effects of various sources of errors are studied using different geometric clusters of epicenters, which have
been synthetically generated using a multicluster algorithm with different hierarchical levels, so as to reproduce
some characteristics of the patterns typical of real epicenter distributions. Subsequently, groups of differently
sized subsets of synthetic epicenters were obtained by randomly sampling each distribution. Confidence intervals
of fractal dimensions were thus calculated using all the estimates obtained for the various subsets. This procedure
was also tested on real seismic data, consisting of epicentral distributions in three Sicilian areas and five clusters
of mining-induced seismic events (Wujek coal mine, Poland). In that analysis both correlation dimensions and
their confidence intervals were taken into account.

Key words correlation dimension — confidence ed areas. Therefore, it seems reasonable to try to
interval — seismicity differentiate seismic activity generated accord-
ing to different seismogenetic processes by eval-
uating their fractal dimensions in the domains

1. Introduction stated above. A complete fractal characterization
of homogeneous seismic areas must include es-
Statistical fractality has long been studied in timates of the fractal dimension confidence in-
connection with seismicity patterns (Turcotte, tervals in order to evaluate if fractal dimension
1992; Xie, 1993). This feature corresponds to a estimates of epicentral distributions located in
scale invariance of the spatial and temporal dis- distinct areas are significantly different.
tribution of earthquakes. The Gutenberg-Rich- So far, in the literature the uncertainty associ-
ter law is associated, according to Aki (1981), ated with fractal dimension estimates has been
with the scale invariance of the seismic phe- represented by that of the slope of the regression
nomenon with respect to fracture sizes in fault- line. Here, on the contrary, significant samplings

of the fractal dimension estimate distributions

are obtained from sets of synthetic epicenters
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In estimating the confidence interval of the
fractal dimension the following causes of errors
must be taken into account. First of all one has
to consider the effect of the finiteness of the
samples. Moreover, the evaluation of the range
in which fractal parameters exhibit a power-law
behavior is not, in general, based on an objec-
tive criterion. Typically that increases the vari-
ance of the estimates and such an increase is
certainly uncorrelated with the uncertainty of
the regression line slope. Finally, a further source
of errors in the estimates resides in hypocenter
or epicenter mislocations. Systematic effects on
the correlation dimension estimate arising from
random noise present in the data have been
studied by Moller et al. (1989). They observed in
sets of 20 000 values obtained from the Roessler
attractors an overestimation of the actual corre-
lation dimension, proportional to the ratio be-
tween the random noise variance and the square
of the selected average length scale.

The depth of seismic events was neglected in
this analysis since it is known that this experi-
mental parameter is not usually determined with
the same accuracy as the epicentral coordinates,
and thus could bring about a considerable dete-
rioration of the fractal dimension estimates. It
should be noted in this context that it could
prove interesting to investigate how the lack of
accuracy in determining depth can influence the
quality of fractal dimension estimates.

Here the correlation dimension D, has been
taken into account. It was defined using the
correlation integral method (Grassberger and
Procaccia, 1983) as the slope, in a log-log dia-
gram, of the function relating the correlation
sum C,(r) to the counting radius . The correla-
tion integral is

1 N D
C,(r)=——A— e —x [y = 2
, () N(N_Dj;;@(r x,-x.p=r

(1.1)

where © is the Heaviside function, N is the
number of points and |x; —x,| the distance be-
tween pairs (j, k) of points. The slope is calcu-
lated by least squares in the function linearity
range.

Synthetic epicentral distributions were cre-
ated by a multicluster generation with different
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hierarchical levels, in order to reproduce some
of the geometrical features which are evident in
real epicentral distributions.

2. Analysis of synthetic data

Synthetic sets of points were produced in
three stages. The first consists of a multicluster
generation of large sets (source samples) of
points P(&,7) on a plane. In the second the
points were randomly sampled, so that the sub-
sets extracted from them can represent, in terms
of numerosity, experimental epicenter distribu-
tions. In the final stage the points are orthogo-
nally projected onto a differently oriented plane
with respect to the generating one. The generat-
ed distribution proves to be increasingly elon-
gated in the direction of the intersection be-
tween the two planes, as the dihedral angle 6
between them is increased. A similar elongation
is commonly found in many epicentral distribu-
tions.

The source samples generated must reveal
the tendency of the point set to form clusters.
They must be large enough to be considered
sufficient to provide reliable estimates of the
geometric parameters which are being investi-
gated, in particular the resulting variance of the
estimates of D, should be very small with re-
spect to the resolution power required for this
parameter for the purpose of the investigation.

As to the first stage, a multicluster genera-
tion with L hierarchical levels was defined. Each
cluster of points of the i-th level was centered at
a point of the (i —1)-th level. Though a theoret-
ical proof of the possibility to provide the gen-
erated sets with scale-invariance properties by
the procedure here used has not been given,
they proved to behave like statistical fractals.

Fractal geometry is a tool for the reproduc-
tion of real very complex objects by the iterative
application of simple rules. These latter repro-
duce or characterize particular physical proc-
esses which act in the same repetitive way on
many different scales. The multicluster genera-
tion carried out can thus be seen as a good
representation of a seismogenetic phenomenon,
which is supposed to feature a statistical scale
invariance.
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At level i the points (r, ¢,) are generated
around each point of level i — 1, with azimuth 0,
uniformly distributed in the interval [0, 27] and
radial distance r, following the cumulative dis-

tribution law
r b
F(r,) = (;ﬁ) .

The set of values r, is in practice obtained by
generating uniformly distributed values of F in
the interval [0, 1], and finding through eq. (2.1)
the corresponding 7, in the interval [0, R].

The exponent b represents the reciprocal of
the clustering index k which can be differentiat-
ed for each hierarchical level. The maximum
clustering degree is achieved when b = 0, as the
points distribution collapses to a single point;
when b = 2 a two-dimensional uniform distribu-
tion is generated, while in the case b > 2 the
surface points density becomes an increasing
function of r.

This scheme was followed to generate a
number of source samples having different size
and complexity. The latter is related to the pos-
sibility to vary the number of hierarchical levels
and to differentiate b in each of them.

Two large source samples of ~10° points
were generated using a different number of hi-
erarchical levels. From each population eight
groups of two hundred subsets including from

(2.1)

100 up to 7000 points were extracted so as to
evaluate the effect of the sample size and of the
number of hierarchical levels on the correlation
dimension estimates. The mean value of D, and
its standard deviation as well as the sample
standard deviation were calculated for every
group.

Figure 1a,b shows, e. &., two small subsets of
synthetic epicenters extracted from two differ-
ent source samples. They evidence how their
geometric patterns reproduce some typical clus-
tering features of experimental epicentral distri-
butions.

To study the effect on the estimates of an
azimuth dependence of the points density, pro-
duced by their projection from the generating
plane onto a differently oriented one, three dif-
ferent rotation angles (8 = 0°, 6 = 45°, 0 = 90°)
were considered, for sets of points generated by
three hierarchical levels.

In order to carry out a statistically significant
test a very large number of sets of points had to
be analyzed. For this purpose, it was necessary
to automatize the calculation of the correlation
dimension, by determining the linearity range
in a log-log data representation by means of an
optimization procedure.

The algorithm used here consists of progres-
sively enlarging a logr interval centered on an
intermediate point between two extreme values
of r, determined from the coordinates of the set
points.

@

®

Fig. 1a,b. Two sets of synthetic epicenters: a) one hierarchical level: b, = 0.2; 6 = 0°; b) five hierarchical levels:

b,=0.5; b,=04; b,=0.3; b,=0.2; b,=0.1;0 = 0°.
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Fig. 2. Trend of the correlation coefficient for a 3000-point set. The estimated linearity range and the intermediate

point (r0) are indicated by the three vertical lines.

A defining criterion for these values, which
proved effective for the location of the interme-
diate point within the linearity range, was
based on the choice of the maximum r as half
the smaller between the x and y ranges and
the minimum r as one quarter the side of
the average square occupied by each point,
Fon = V0~ X,) Vo —Yu)/N, Where N is the
number of points. These limits should lie re-
spectively in the depopulation and the satura-
tion zones, so as to make it possible to disclose
the whole linearity range in the subsequent ana-
lysis.

The intermediate point was defined as the
logarithm of the geometric mean between the
two limiting values of r.

For each point added to its right or left the
correlation coefficient p(r) between log C,(r)
and log r in the new interval is calculated, until
a decrease of p(r) is observed consecutively for
more than a number 5 of points. The value of %
must be large enough to allow possible p(r)
relative minima to be included in the linearity
range, but small enough to render unlikely to
find an increase in p(7) in the nonlinearity zones;

that would in fact bring about an undesired
widening of the interval sought and a conse-
quent underestimation of D,. A typical plot of
p(r) is shown in fig. 2.

The function log C,(r) versus logr was sam-
pled in the fixed range of r by setting a constant
step O either on a linear or on a logarithmic scale.
Estimates obtained using both criteria showed a
remarkable consistency within their confidence
intervals, no systematic effects in their trends with
respect to each other and the tendency of their
differences to decrease as the subset size increas-
es. The first criterion was used for all the syn-
thetic tests shown in this paper.

3. Results of the tests

The synthetic tests carried out show a sys-
tematic effect of the sample size on the estimat-
ed value of the correlation dimension, as well as
a dependence of it on the different parameters
involved in the generating procedure, i.e. the
number of hierarchical levels, the clustering in-
dex and the number of points for each level.
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The complex dependence on the generating
parameters was not modeled here. The correla-
tion laws D,(N) versus N expressed in fig. 3
indicate that the estimates have on average bias-
es greater than 5% for a size lower than 3000
points and greater than 10% for a size lower
than 1000 points, while samples with size great-
er than 8000 points are needed to obtain a bias
lower than 1%.

The asymptotic values (when the subset size
approaches infinity) are about 1.65 and 1.59 for
two source samples of 606060 and 521050
points respectively. The first was generated by
three hierarchical levels with b = 0.5 and number
of points in each cluster of the first, second and
third level equal respectively to 60, 100 and
100; the second source sample was generated
by four hierarchical levels with » = 0.5 and
number of points equal respectively to 50, 20,
20 and 25.

The underestimation of D,, evidenced in all
tests carried out, must probably be attributed to
a slope decrease which can be observed in the

plot log C,(r) versus log r both for low and high
values of r, these effects being known respec-
tively as depopulation and saturation (Neren-
berg and Essex, 1990). Both of them appear for
every limited data set and affect the estimates
more heavily as the number of points in the data
set decreases, since the saturation and depopu-
lation effects tend to become evident also in the
intermediate zone. _

The effects on the bias of D, due to the
different orientation between the generating and
the analysis planes was observed for rotation
angles of 0°, 45° and 90°. In the first two cases
nearly coincident trends of D, versus N were
obtained (fig. 4). In the third case samples made
up by few hundreds points allow estimates of D,
with a negligible bias, their asymptotic value
being lower than one, which is the actual em-
bedding dimension of the set.

An empirical dependence law for D, on the
parameter b was investigated by extracting
groups of 7000-point subsets from three-level
source samples with different values of b kept

D, =165 (1-0.47¢ 2 ’)
R* =099

1.6

]

A

D, ~1.59(1-0 360"

0 2000 4000 6000

Othree levels
R*=0.99 A four levels
X three levels-perturbation
8000 10000

Fig. 3. Dependence of (D,) on size for subsets extracted fr
levels. The equation on the top is referred to the three-le
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Fig. 4. Dependence of D, on the rotation angle between the generating and analysis planes.

constant in all generating levels. The relation-
ship used to fit the experimental data is ex-
pressed as

D,=2(-e) ' (1-e™)

3.1
with parameters ¢ and f3 to be statistically esti-
mated.

Equation (3.1) is such that D, is equal to 0
when b = 0, i.e. the point distribution collapses
into a center, and equal to 2 when b =2, i.e. the
point distribution becomes uniform. Figure 5
shows the best-fit curve, in which « = 3.8 and
B = 1.2. An evident narrowing of the 95%-
confidence intervals is observed while b increases.

Some tests were carried out to study the
dependence of the confidence interval of D, on
sample size. Since the standard deviation of D,
also depends on the genetic process of the ex-
perimental data for any fixed sample size, an
analysis was conducted to find a correlation
between it and some parameters connected with

916

the experimental data distribution. Finally the
effect was investigated of data accidental errors
on the bias and the standard deviation of D,.
The 95%-confidence interval of (D,), repre-
sented in fig. 3, shows a decreasing trend as the
subset size increases. A quantitative relation to
describe this was obtained extracting from a
three-level source distribution sets of two hun-
dred samples of different size. Figure 6 shows
that, with 0.95 probability, the standard devia-
tion of D, ranges from about 0.5 for small sam-
ple sizes to about 0.15 for 7000-point subsets. A
significant correlation between the 95%-confi-
dence interval S, and the subset size N was
found, expressed by the empirical law
S =0.54¢°"""7, (3.2)
This significant loss of efficiency of the estima-
tor D, as N decreases will be clearly understood
observing fig. 7. The graphics show two plots of
the function log C,(r) versus log r which refer to
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Fig. 8. Dependence of D, on the perturbation standard deviation.

918



Fractal dimension confidence interval estimation of epicentral distributions

100-point and 6000-point samples. They stress
how the choice of the linearity range becomes
critical in the case of small-sized samples. Evi-
dent irregularities affect the tail of the function
near the depopulation zone in the 100-point
sample; conversely, an almost perfect linearity
is visible in the other plot.

The 95% probability level confidence inter-
vals prove to be almost independent of the rota-
tion angle between the generating and analysis
planes, up to 6 = 90°, where they decrease by
a factor ranging from 0.4 down to 0.1 when
the subset size rises from 100 up to 7000 points
(fig. 4). ~

Another source of error on D, is given by the
inaccuracy of experimental points coordinates.
In order to evaluate the effect of such errors on
the estimates, the planar coordinates of the an-
alyzed sets of synthetic epicenters were ran-
domly perturbed. The perturbations Ar were
uniformly generated in a considerably larger
range than typical epicenter mislocations of lo-
cal or regional seismic networks.

In a first test samples of 500, 1000, 2000,
3000, 4000 points, characterized by average
interdistances between close points equal to 3.1,
2.2,1.6,1.3,1.1 km, were perturbed with errors,
uniformly distributed both in azimuth and am-
plitude, having a standard deviation 0.=0.9 km.
No particular effect on the standard deviation of
D, was observed after the perturbation, as shown
in fig. 6. In fig. 3 it is possible to note how the
perturbations produced a slight tendency to over-
estimate D,.

The effect of different values of o, was also
tested on D, (fig. 8). The o, were fixed from
~ 0.4 km up to ~11.4 km for groups of subsets
containing 1000 points and » = 0.5 in each of
the three hierarchical generating levels. The av-
erage interdistance between close points in the
several sets is approximately equal to 2.2 km.
From the plot D, versus o,, shown in fig. 8, it
can be observed that D, is incremented of a
bias ~15% in the case of the largest perturba-
tion applied, and could possibly tend to 2 as
0, — oo,

—
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Fig. 9. Dependence of 95%-confidence interval of (D,) on the perturbation standard deviation.
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In the interval 0-5 km the experimental points

can be fitted by a function

D, = 1.439 (1+0.003507) (3.3)
which is very similar to that proposed by Moller
et al. (1989).

The test also showed that the standard devi-
ation of D, regularly decreases as 0, increases
(fig. 9). The same trend had been observed in
the remaining tests, in which it could not be
related to a simple increase of D,, since generat-
ing parameters and sample size had been varied.

4. Estimate of confidence intervals of D,
from sets of experimental data

The analysis described above to estimate the
correlation dimension confidence interval of
surface point distributions cannot be directly
applied to experimental epicentral distributions
because of the tiny number of seismic events

generally present in seismic clusters. It is in fact
impossible to extract an appropriate number of
independent subsets from the data set having a
sufficient size to allow a statistically significant
estimation of D,.

In order to define reliable estimators S, two
different approaches were followed. The sample
variances of the distributions of D,, evaluated
extracting several subsets of size N from very
large sources of size N(N > 1000N), were relat-
ed in the first approach to the 95%-confidence
intervals S, of the regression line slope comput-
ed for each subset, while in the second approach
they were related to the sample variances eval-
uated extracting the subsets of size N from a set
of size N typical of experimental data sets, thus
not much larger than N. Obviously, in the sec-
ond case the subsets of size N cannot be regard-
ed as mutually independent.

In fig. 10 the estimates of several S obtained
from homogeneous sets of two hundred sam-
ples characterized by different size and generat-
ing parameters are plotted against 67%-confi-
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Fig. 10. Relation between S, and S, for subsamples extracted from source samples generated with three levels
and various rotation angles between the generating and analysis planes.
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dence intervals of S, centered on the mean val-
ues S, of the two hundred estimates relative to
the corresponding sets.

A nonlinear least squares regression between
S and S, led to the relation

SV - 1.250.25

rm

“4.1)

obtained generating points directly on the ana-
lysis plane or on a 45° rotated plane, and to
S — S0.4

rm

4.2)

when the generating and the analysis planes are
orthogonal.

The high amplitude of the error bars related
to the estimates S, suggests determining a con-
servative relation between the two parameters
(method A).

This was defined by the regression law be-
tween S, and the lower bounds of the 67%-
confidence intervals of S. In this way, for a
given S, there is an ~84% probability that the
actual 95%-confidence interval amplitude of D,
is lower than the S, corresponding to S .

The regression laws, obtained generating
points directly on the analysis plane or on a 45°
rotated plane, turned out almost coincident and
are expressed as

S =1.978". 4.3)
For the case of orthogonality between the
generating and the analysis planes the relation
found is

S =0.785". (4.4)
A strong difference is evident between S, and S,
therefore it is misleading to use S as an estimate
of the uncertainty of D,, a practice commonly
followed in many applied researches.

In the case in which N < 10N, N being
larger than the smallest acceptable sample size
N, to obtain a reliable estimate of D,, the mu-
tual dependence between the extracted subsets
leads to an underestimation of the sample stand-
ard deviation of 152, with respect to that cal-
culated in the condition of complete independ-
ence.
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It was proved that, given a set of N, experi-
mental points, it is possible to estimate a cor-
rected value of standard deviation of D, calcu-

NlOl
lated from a given number M S( N ) of

samples, multiplying it times an underestima-
tion coefficient (method B).

This underestimation effect was analyzed
against the parameter d = N/N, , which provides
a measure of the samples mutual dependence, d
approaching 0 in the case of complete inde-
pendence and 1 in the case of complete depend-
ence.

A synthetic test was made extracting M = 100
samples of varied size N both from the source
set, in order to realize the condition of full
independence, and from a subset of it with size
N,,. Different combinations of subset sizes N
and N, were used in order to have values of d
equal to 0.1, 0.2, 04, 0.6, 0.7, 0.8 and 0.9.
To verify that the underestimation coefficient
r=S/8,, S, and S being respectively the stand-
ard deviations of D, when d — 0 and when d
assumes any of the other fixed values, mainly
depends on d rather than the single values N and
N, each d was obtained setting N equal to 200,
600 and 1000 points.

The results of the test are shown in fig. 11.
For d < 0.8 a good consistency between the
three obtained estimates of r, the regularity of
their trend versus d and the lack of a constant
order between the estimates of r for the three
different values of N makes significant a fit of
all experimental data with the curve expressed
by

r=14d’+0.1d+1
(4.5)
d<0.3.

The high dispersion of the three estimates and a
likely sharp trend variation would require a great-
er number of synthetic tests to be carried out to
extend the correlation interval to d > 0.8.
Thetest suggests that, though the greatest
possible subset size is needed to give an esti-
mate of D, with a minimum bias, there is a
maximum number N of points which can be
extracted from a set of experimental data such
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Fig. 11. Relation between the underestimation coefficient and parameter d.

Table I. Results of the comparison between 95%-confidence intervals of D, estimated by methods B and C; the
§, are the average values obtained on sets with each element characterized by a different d.

Method C Method B
N S, a(s) S a(s)
200 0.374 0.081 0.389 0.081
600 0.301 0.057 0.327 0.118
1000 0.271 0.028 0.283 0.058

that a reliable confidence interval of D, can be
found by eq. (4.5).

To assess the congruence of the two approach-
es in estimating the standard deviation of D,
and to supply a third method to that purpose
(method C), from the M subsamples of each set
of size N, the M uncertainties of the regression
line slopes were estimated, and their mean value
used in eq. (4.1) to calculate S,. This was later
compared with the corresponding sample confi-
dence interval, computed for the same M sub-
samples by eq. (4.5).

Table I summarizes the results of the test,
which showed a satisfying congruence between
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the two analysis techniques and a high efficien-
cy of the two estimators of S. An optimum
way of obtaining point estimates of S, consists
in an integrated application of methods B
and C.

5. Experimental data

The first scope of the determination of D,
and its relative confidence intervals from exper-
imental data (natural and induced seismicity) is
to find out, at least from a qualitative point of
view, how the generating procedure affected the



Fractal dimension confidence interval estimation of epicentral distributions

results obtained from synthetic data, therefore
to validate the method of simulation used.

The second scope is to test the possibility of
differentiating, using these two parameters, the
seismicity relative to volumes characterized by
different seismogenetic conditions.

As regards natural seismicity, the analysis
was carried out using four sequences of earth-
quakes (fig. 12) which occurred respectively:

— In the Aeolian Islands area (Sicily) be-
tween 1988 and 1992.

— In the area of Mount Etna (Sicily) be-
tween 1989 and 1991 (file 1, table II).

— In the area of Mount Etna between 1988
and 1992 (file 2, table II).

— In the area of Pollina (Madonie Moun-
tains - Sicily) between 1993 and 1994.

Five clusters of mining-induced events
(Cosentino er al., 1997) which occurred in Wu-
Jek coal mine (Poland) in the period 1988-1993
have also been analyzed. These clusters are lo-
cated in different areas of the mine: two groups,
identified as 501_CS and 501_SW, are related
to the exploitation carried out at mining level
501; three other groups, 510_NE, 510_NW and
510_SE, refer instead to a work which took

place at the deeper level 510.

Table II shows the total number N, of seis-
mic events, the number M of extracted subsets,
the number N of events in each subset, the esti-
mate D, for the whole data set, the mean value
(D,) of the M estimates of D, and its 95%-
confidence intervals resulting from methods B
and C.

It is possible to observe that the correlation
dimension for the epicentral distribution of the
Aecolian Islands earthquakes is approxima-
tely 1.38, significantly lower than the values
estimated for Mount Etna and the Pollina
zone, which are, respectively, about 1.72 and
1.79.

These differences could hardly be imputed
to the estimate bias connected with the lower
number of events in the Aeolian Islands data set,
as indicated by the very small differences be-
tween the estimates found for the Pollina and
Etna zones by setting N respectively equal to
100 and 300. They proved in fact to be on
average less than 0.1 times those found between
the same areas and the Aeolian Islands.

In accordance with eq. (3.1), this probably
indicates that the clustering of events in the case
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Fig. 12. Map of epicenters: circles = Pollina; triangles = Etna; squares = Aeolian Islands.
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Table II. Results of the analysis on the experimental data.

Area N, M N d D, D,y  Method C  Method B
Pollina 557 100 300 0.538 1.675 1.789 0.039 0.012
Etna File 1 607 100 300 0.494 1.780 1.734 0.038 0.016
File 2 461 100 300 0.650 1.767 1.721 0.041 0.013
Aeolian Islands 170 100 100 0.588 1.380 1.382 0.042 0.021
501_CS 1572 100 500 0.318 1.616 1.601 0.035 0.009
501_SW 4816 100 1500 0.311 1.617 1.550 0.037 0.007
510_NE 360 100 100 0.277 1.430 1.402 0.045 0.025
510_NW 272 100 100 0.367 1.630 1.587 0.053 0.031
510_SE 1682 100 500 0.297 1.567 1.555 0.044 0.010

of the Aeolian Islands area is significantly more
intense than that observed in areas character-
ized by volcanic seismicity or seismic swarms
(Pollina).

Godano et al. (1996) analyzed a set of earth-
quakes which occurred in the Aeolian Islands,
the Messina Strait and Mount Etna, evaluating
the complete spectrum of the generalized fractal
dimension (Grassberger and Procaccia, 1983)
after splitting the whole set of events into five
differently located clusters. The authors found a
D, equal to ~1.2 in the zone of the Aeolian
Islands, for a sample similarly sized to that used
here and for events which occurred in about the
same time interval, though ten years before.

The two estimates seem significantly differ-
ent considering both their respective standard
deviations and the almost coincident sample
size. Their differences might be due to the pres-
ence of low-magnitude events (M < 3) in the
analysis carried out by Godano et al. (1996),
which determined an increase in clustering, typ-
ical of aftershock sequences. However, they
could also be related to a non-stationariness of
the phenomenon on the temporal scale of obser-
vation and to a better localization of seismic
events in that analysis, since a local velocity
model and data recorded by local seismological
networks had been used.

Epicentral distributions Etna file 1 and Etna
file 2 were referred to the same area, but the

924

Etna file 2 earthquakes occurred in a longer
period of time. The Etna file 1 earthquakes were
also integrated with recordings made by the
Calabrian Regional Seismic Network and local-
ized using a different pseudo 3D-velocity mod-
el. The results indicate that the clustering prop-
erties evidenced by the two sets of epicenters do
not significantly differ from each other.

Table II also reports the results of the analy-
sis relative to seismic events induced by mining.
Though a considerable homogeneity in the val-
ues D, is indicated by the analysis results, the
estimate obtained for data set 510_NE is signif-

icantly lower than those obtained for the other

data sets. Though this difference could be as-
cribed to an underestimation effect due to the
lower N by which the test had been carried out,
it can be observed that, since a lower fraction of
high-magnitude events is present in the set, such
a low value could be related to the actual geo-
metric features of the distribution.

A similar statement can be made for data set
501_CS, for which the highest D, was obtained,
probably connected with the higher fraction of
high-magnitude events present in the set.

6. Conclusions

In order to carry out quantitative evaluations
of the uncertainties which are associated with
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the study of the fractal properties of epicentral
distributions, multicluster point distributions
generated on planes differently oriented with
respect to the analysis plane were studied. These
distributions have statistical fractal features and
match seemingly with clustering characteristics
of seismic epicenters.

Although the evaluations made so far do not
yet have satisfying statistical significance, as
the large number of parameters controlling the
phenomenon requires processing a very large
amount of data, the simulation and analysis tech-
niques which have been described enable some
useful conclusions to be drawn.

Some effects of the generating parameters
on the estimation of D, were clearly observed, at
least in a qualitative way.

An empirical law was determined, relating b
to D, when the latter has the same value in each
level of generation.

The effect of greater concentration along
particular directions present in the data was also
studied. This could be related to the average
orientation of fault planes in a seismogenetical-
ly homogeneous volume. _

The systematic effects on the estimates D,
and on their uncertainties by the sample size
and the random errors in points determination
were analyzed in relation to different combina-
tions of parameters b, 6 of the generating algo-
rithm.

The application of the same methodology of
analysis to experimental data sets and the com-
parison of the results with those obtained from
synthetic distributions have shown both the va-
lidity of the simulation carried out as well as the
capability of the fractal parameters to character-
ize different kinds of seismic activity.

The possibility of integrating the characteri-
zation of seismogenetically homogeneous areas
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with the fractal dimension and its confidence
interval seems to be proved, provided that ex-
perimental data are not affected by too large
localization errors and that the sets are large
enough to allow the extraction of subsamples of
equal size, i.e. affected by a similar bias, from
sets relative to different areas, such that signif-
icant estimations can be made.

Under these circumstances even small dif-
ferences between the (D,) can be interpreted as
an effective genetic heterogeneity. On the con-
trary, evaluation and interpretation carried out
on the basis of estimates made using data sets
containing only a limited number of points can
lead to erroneous conclusions.
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