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Abstract

In this work we present a 3D Finite Difference numerical method to model the dynamic spontaneous propaga-
tion of an earthquake rupture on planar faults in an elastic half-space. We implement the Traction-at-Split-Nodes
fault boundary condition for a system of faults, either vertical or oblique, using different constitutive laws. We
can adopt both a slip-weakening law to prescribe the traction evolution within the breakdown zone or rate- and
state-dependent friction laws, which involve the choice of an evolution relation for the state variable. Our nu-
merical procedure allows the use of oblique and heterogeneous distribution of initial stress and allows the rake
rotation. This implies that the two components of slip velocity and total dynamic traction are coupled together
to satisfy, in norm, the adopted constitutive law. The simulations presented in this study show that the rupture
acceleration to super-shear crack speeds occurs along the direction of the imposed initial stress; the rupture front
velocity along the perpendicular direction is slower than that along the pre-stress direction. Depending on the
position on the fault plane the orientation of instantaneous total dynamic traction can change with time with re-
spect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of initial
stress and on its distribution on the fault plane. They also depend on the curvature and direction of the rupture
front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near
the rupture front and within the cohesive zone.

Key words earthquake dynamics — numerical mod- and arrest as well as the comprehension of the
eling — friction laws — slip time history — rake rota- mechanisms controlling slip duration (i.e. heal-
tion ing of slip) and the earthquake energy balance.

This progress was possible because of the results
achieved in laboratory experiments on fault fric-

1. Introduction tion and rock mechanics, in direct observations
of earthquake and faulting episodes and in nu-

The understanding of earthquake rupture merical simulations of earthquake dynamics.
propagation and the seismic wave generation Stimulated by the collection of high-quality orig-
process is an important task that has focused sci- inal observations on these phenomena, further
entific research in recent years. Substantial investigations are needed to shed light on the nu-
progress has been achieved in this field, allowing merous remaining open questions. In this con-
the modeling of rupture initiation, propagation text, improving the capability to perform robust

numerical simulations of earthquake rupture dy-
namics represents a fundamental task that has to
be pursued to achieve a complete understanding
Mailing address: Dr. Andrea Bizzarri, Istituto Naziona- of the;leanhqugke lprlo CCS.SES. idel
le di Geofisica e Vulcanologia, Sede di Bologna, Via D. ) The numerical algorit ms widely afiqpted.to
Creti 12, 40128 Bologna, Ttaly; e-mail: bizzarri@bo.ingv.it simulate earthquake dynamics can be divided in-
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to three main groups: Boundary, Domain and
Hybrid methods. There are distinct advantages
and limitations on each of these numerical ap-
proaches and different opinions exist within the
scientific community on the choice of the best
numerical strategy to perform robust and accu-
rate simulations. Boundary Elements are certain-
ly more accurate than Domain methods; howev-
er, they are much less flexible to simulate medi-
um and source heterogeneities. In other words,
while in principle Boundary methods are appli-
cable to complex media, they are far from being
sufficiently computationally efficient; Domain
methods are not as accurate as the Boundary
methods in the case of relatively simple structur-
al models, but they are appropriate to simulate
complex and more realistic situations. The Do-
main methods include the Finite Element (FE)
and Finite Difference (FD) approaches. The FE
can account for complex boundary conditions at
the free surface or internal material discontinuity,
but the implementation of the complex boundary
conditions is not a trivial task in this context. On
the other hand, a clear advantage of the FD
method is its relative computational efficiency.
Different numerical algorithms have been pro-
posed to solve the elasto-dynamic equation in a
3D continuum medium and to simulate earth-
quake ruptures (Mikumo and Miyatake, 1978;
Day, 1982a,b; Virieux and Madariaga, 1982; Das
and Kostrov, 1983; Quin, 1990; Olsen et al., 1997;
Fukuyama and Madariaga, 1998, among many
others); they both belong to Boundary or Domain
methodologies. Some of them have the property,
like Finite Element and Finite Difference schemes,
that all components of displacement and displace-
ment rate (or (particle) velocity) are defined at the
same position in space. With the adoption of such
a conventional-grid scheme a fault surface can be
represented as by a class of split nodes, represent-
ed as disjoint grid points in contact. This approach
is called the Traction-at-Split-Nodes (TSN) Fault
Boundary Conditions (FBC) and it has been im-
plemented in 2D by Andrews (1973) and in 3D by
Day (1977, 1982a,b), Archuleta and Day (1980),
Andrews (1999). It will briefly be described in the
next section. An alternative is to represent a fault
as a yielding distributed through a region of finite
thickness; if the independent variables are dis-
placement rate and stress, rather than displacement
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and displacement rate, yielding can be treated with
the Stress-Glut (SG) FBC. Andrews (1999) tested
these two methods for a 3D fault without constitu-
tive laws and for a circular crack propagating with
an imposed and constant rupture velocity (equal to
the Rayleigh wave speed). The conclusion of that
paper is that for non-spontaneous models and for
adequately refined grid size, both TSN and SG
methods converge to the same results.

A main advantage of using the TSN FBC is
that it can easily allow the introduction of a con-
stitutive law relating the total dynamic traction to
fault friction. The possibility to compute fault
slip, fault slip velocity and traction at the same
grid point allows the specification of either slip-
or rate- and state-dependent constitutive laws, as
we will discuss in the following sections.

Another important assumption commonly re-
quired in numerical procedures is the choice of
the amplitude and the direction of the initial stress
on the fault plane. Many of the existing numeri-
cal procedures assume, for simplicity, that the ini-
tial stress is assigned only in one direction (Olsen
et al., 1997; Aochi et al., 2000); in this way slip
becomes automatically a scalar and only one
component is non-null. Other papers (Fukuyama
and Madariaga, 1998; Fukuyama et al., 2003)
consider the friction law in a vectorial formula-
tion, in the sense that the constitutive law is writ-
ten independently for each components of the so-
lution, but also in these models the initial stress is
non-null only in one direction.

In this study we present and discuss the main
features and several numerical simulations per-
formed with a fully (namely truly) 3D sponta-
neous dynamic rupture model in which the crack
propagation and the dynamic traction evolution
are governed by assigned constitutive laws. We
use the TSN FBC, which assumes an explicit dis-
placement discontinuity between the two-halves
of the fault, and the initial stress is a vector on the
fault plane. We therefore allow both components
of slip to be non zero; they are mutually coupled
by the assumed constitutive relation.

2. The numerical methodology

The numerical algorithm presented in this
paper is based on a 3D Finite Difference (FD)
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scheme written by J. Andrews. A grid of nodes is
introduced in the 3D space and the solution of
the fundamental elasto-dynamic equation is ob-
tained by stepping the main physical quantities
explicitely through time by calculating the net
force (formally the restoring force) acting at all
nodes. The discretization is made by using the
quadrilateral isoparametric elements (Hughes,
1987) with all edges parallel to the axes of the
Cartesian coordinate system; stress is not uni-
form inside an element and the fundamental
physical variables are displacement and force at
nodes. All components of displacement, dis-
placement rate, acceleration and nodal force are
defined in the same grid point; components of
displacement, acceleration and force are known
at integer time levels, while those of displace-
ment rate are known at half-integer time levels.
From the displacement components at each node
of the medium we compute the strain tensor
components at integration points and then stress
tensor (using the Hooke’s Law for an isotropic
medium with the small displacement approxima-
tion adopted) and net force components at nodes.
Local forces are calculated using the 8-points
Lobatto integration. Displacement, displacement
rate and the net force are iterated explicitly
through time. Particle acceleration is derived
from the net force acting on each node, simply
applying the second law of mechanics. Finite
differences in space are formulated to be equiva-
lent to finite elements and therefore the numeri-
cal algorithm can be considered either as a Finite
Element or as a Finite Difference scheme. This
formulation is mathematically equivalent to the
local stiffness matrix, but it is more efficient.

In fact the number of finite difference equa-
tions is 8 times greater than in a simple staggered-
grid scheme, in which the different components
of the fundamental variables (displacement rate
and stress) are defined in different points in
space. In the latter scheme it is very easy to in-
crease the order of accuracy to fourth-order in
space, while keeping it second-order in time.
There is no doubt that the fourth-order staggered-
grid method is the most efficient and accurate
scheme to propagate seismic waves through the
medium outside the fault plane. However, accu-
rate implementation of FBC is not simple with a
fourth-order staggered-grid scheme. In fact, in or-
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Fig. 1a,b. Schematic representation of geometry of
the 2D fault model (a) and of the 3D one (b). The stars
represent the points of the nucleation, blue arrows in-
dicate the local crack enlargement direction, while
red arrows indicate the direction of propagation. In
the 2D case (a) the rupture propagates only in the x;
direction and all solutions are independent on the x3
spatial coordinate. In both cases (2D and 3D) parti-
cles placed on the positive side of the fault plane, ori-
ented through the unit vector 7i// X,=(0,1,0), exert on
the particles on the negative side a normal traction
2,=-0, and a pore fluid pressure Z,qia=— piafl
(stresses are assumed to be negative for compres-
sion: o, and pmia are positive numbers). A particle
located on the negative side is therefore affected by
a total normal traction X, +2,q,q. Following the
Terzaghi effective stress law (Terzaghi et al., 1996;
Wang, 2000), the fault friction T is proportional to
the modulus o' of the effective normal traction
2=3, -2 fuia=— Oy i =— (0, — pria) Al . In this paper
we neglect pore fluid pressure changes and therefore
we consider constant normal stress. In the corner of
each panel are represented the fundamental building
elements: a equilateral triangle in 2D case and a par-
allelepiped in 3D one.
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der to simulate earthquake ruptures the FBC is
more important than propagation of seismic
waves to large distances. Our numerical simula-
tions show that this method is about 12 times
more expensive in time machine than the stag-
gered-grid scheme of Madariaga (1976).

The numerical algorithm presented here has
second-order accuracy in space and second-or-
der accuracy in time, except at the starting and
at the healing of slip, where it is first-order. The
geometric configuration is reported in fig. 1b for
a single vertical fault plane. Our numerical al-
gorithm allows the simulation of several faults,
including dip-slip faulting mechanisms. Solu-
tions depend on two spatial coordinates (along
strike and dip directions) and time [u(x, X3, 1),
u being the fault slip (i.e. the displacement dis-
continuity)] and it has two non-null components
(1 and u3); in this way we have a fully (namely
truly) 3D fault model. The medium is parame-
terized with rectangular box elements in the x;-
x3 plane (suitable for vertical faults, see fig. 1b)
and with right prisms having rectangular cross
section on the xj-x3 plane (suitable for dip-slip
faults). The x3=0 plane is the free surface.

All outputs of the code should be regarded
as average over an area centered on the point
that extends a half-grid interval in each space
dimension and extends in time a half time step
before and after the nominal time of the output.
The convergence and stability conditions of the
proposed numerical procedure are discussed in
detail in the Appendix.

3. The fault constitutive relations

In the case of constant sliding velocity on a
surface, we can define the coefficient of friction
u as the ratio between the lateral (shear) friction
force and the externally applied normal force
(e.g., Scholz, 1990). From the first Amonton’s
Law it is also the ratio of the modulus 7 of the
shear traction T (T = tT, where T is the unit
vector expressing the local direction of the
shear traction on the surface) and the modulus
0" of normal traction = (2 = — 03", i being the
unit vector normal to the surface). In our geom-
etry the fault is a plane perpendicular to the x»
axis of the Cartesian coordinate system Oxix2x3
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(see fig. la,b) and therefore 7 is collinear to
X2=(0,1,0), i.e. the second vector of the canon-
ical orto-normal basis. Indicating with symbol
02, the normal component of stress tensor, fol-
lows that = = 02,7 = — 6:"i. In this paper stress-
es are assumed to be negative for compression.
Moreover, if we denote with 02 and 023 the
shear components of the stress tensor applied
on the positive side of the fault surface, we can
write the fault shear traction modulus as

T=,/05;+0;.

In full of generality a governing law is the ex-
plicitation of the analytical dependencies of the
fault friction 7 (also called fault strength) on
some physical observables

3.1)

T= ﬂ (ua v, lII$ T5 H7 A’r ’ h? g’ C(l) ()-zerff(o-n ’pfluid)
(3.2)

where u and v are the fault slip (i.e. the dis-
placement discontinuity) and the fault slip ve-
locity modula, respectively; ¥ = (¥, ..., Wy) is
the state variable vector (Ruina, 1983); T is the
temperature, accounting for ductility, plastic
flow, rock melting and vaporization; H is the
humidity (Dieterich and Conrad, 1984); A. is
the characteristic length of the fault surface, ac-
counting for roughness and topography of as-
perity contacts (Ohnaka and Shen, 1999; Ohna-
ka, 2003) and eventually responsible of me-
chanical lubrication (Brodsky and Kanamori,
2001); h is the material hardness; g is the
gouge, accounting for surface consumption and
gouge formation during sliding episodes (e.g.
Marone et al., 1990; Marone and Kilgore,
1993; Mair and Marone, 1999; Mair et al.,
2002); C. is the chemical environment; o:" is
the value of the effective normal stress, that in
general may varies in time (Linker and Di-
eterich, 1992; Prakash, 1998) and is expressed
as the difference existing between the value of
the reference normal stress o, (due to the re-
gional tectonic loading) and value of the pore
fluid pressure pruia (Andrews, 2002; Bizzarri
and Cocco, 2004, 2005a,b).

In this study we implement either a Slip-
Weakening (SW) constitutive law (Ida, 1972;
Palmer and Rice, 1973; Andrews, 1976a,b) or a
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Rate- and State-dependent (RS) friction formu-
lation (Dieterich, 1979a,b; Beeler et al., 1994,
Bizzarri and Cocco, 2003 and references there-
in) under the assumption of constant normal
stress (i.e. 0= 0,). The fault friction is updat-
ed through time in any position during rupture
propagation in a way that depends on the adopt-
ed constitutive relation. In all cases we assume
that total shear traction is collinear with the
fault slip velocity at each time step at any point
on the fault during dynamic rupture propaga-
tion (i.e. T = v/v).

3.1. The slip-weakening law

We use in this study the linear SW law in
the linear, or classical, formulation proposed by
Ida (1972) and Andrews (1976a,b), in which the
dynamic traction (7) degrades linearly for in-
creasing slip («) from the maximum yield stress
(tu) to the kinetic frictional level (77) over a
characteristic slip distance (do)

T,—(t,— Tf)dl,u <d,
0

T= .
T, Ju=d,

(3.3)

The decrease of traction for increasing slip (the
slip-weakening behaviour) has been experimen-
tally observed by Ohnaka and Yamashita (1989)
and eq. (3.3) has been often adopted in numeri-
cal modeling of earthquake ruptures (Andrews,
1994; Olsen et al., 1997; Aochi et al., 2000,
among many others). Recently, several papers
have attempted to infer the critical slip-weaken-
ing distance from real earthquakes (Ide and
Takeo, 1997; Guatteri and Spudich, 2000; Miku-
mo et al., 2003): these studies propose values of
dy of the order of 0.1-1 m. According to this con-
stitutive law fault strength depends only on slip.

As stated before, we recall that Tin eq. (3.3)
is intended as the modulus of the dynamic shear
traction vector T. Because we assume that dy-
namic traction is collinear with slip velocity at
each time step, we derive the direction cosines
from slip velocity (see eq. (5) in Andrews,
1999) and use them to compute the two compo-
nents of the dynamic traction. Slip velocity and
dynamic traction have been updated through
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time following the numerical strategy described
in Andrews (1999). In other words, in our ap-
proach we associate the fault constitutive rela-
tion to the modulus 7 of the total dynamic trac-
tion T and from that we compute the two trac-
tion components from the direction cosines ob-
tained from fault slip velocity.

3.2. The rate- and state-dependent friction laws

Rate- and state-dependent friction laws as-
sume that the fault friction depends on the fault
slip velocity v and on one state variable W (Di-
eterich, 1979a,b). In this study we use the slow-
ness friction law (see Beeler et al., 1994),
which is defined as follows:

T= [,u*— aln <v7> +bln (WT‘})] o

d

dr

A =ao, B=bo" and L are the constitutive
parameters; the former accounts for the direct
effect of friction and the latter is the character-
istic length over which the state variable
evolves. v, and u. are reference values, v is the
modulus of slip velocity and o;" is the value of
the effective normal stress that in this paper is
assumed to be constant. In Bizzarri and Cocco
(2005a,b) we have generalized the method in
order to solve the problem with temporally
varying effective normal stress. The second
equation is currently named the evolution law.
Cocco and Bizzarri (2002) have shown that RS
constitutive laws yield the slip-weakening be-
havior; Bizzarri and Cocco (2003) have associ-
ated SW and RS frictional parameters and ex-
tensively discuss the relationship existing be-
tween the characteristic lengths of the two dif-
ferent constitutive laws.

Also in this case the constitutive law defined
in eq. (3.4) is associated to the modulus 7 of to-
tal dynamic traction T; it defines the frictional
behavior as a function of the state variable and
the modulus of slip velocity. We use a 3D gen-
eralization of the Rosembrok Stiff Integration
(Press et al., 1992), previously adopted in our
2D fault models (Bizzarri et al., 2001). This in-

p=1 W

- (3.4)
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tegration method performs better than the
Runge-Kutta algorithm also in 3D case. We
solve the following set of differential equations
to get the state variable and the two independ-
ent components of fault slip velocity (v and v3):

d*u, /d* = ot [L,— (n /v) (v, W) 0]
d*u,/d =0 [L3— W /Iv) L (v, W) O'Z"] (3.5)
d/dH¥=1—Pv/L

where u; are the components of the slip, a is the
differential acceleration for unit stress drop and
L; are the component of the dynamic load that
will give no change of differential acceleration.
We therefore calculate the director cosines from
slip velocity and, assuming that traction is
collinear to slip rate, we obtain the two compo-
nents of total dynamic traction.

As already stated above, our numerical proce-
dure allows the calculation of the two compo-
nents of slip, slip velocity and total dynamic trac-
tion at the same positions on the fault plane for
each time step. The two independent components
of the relevant physical quantities are coupled
through the adopted constitutive law. In this
study, the adopted constitutive law is considered
an analytical relation between the modulus of
traction and that of slip or slip velocity (and the
scalar state variable). This is different from the
assumption made by other authors (Fukuyama
and Madariaga, 1998, for instance), who specify
distinct constitutive relations independently of
each component of slip, and then consider for
simplicity only one non-null components of ini-
tial stress. In this study we use an initial stress de-
fined as a vector with two non-null components,
and our numerical strategy guarantees the possi-
bility to perform general 3D simulations which
allows the rake to rotate in time.

4. Simulations with different constitutive laws

4.1. Results with the slip-weakening
constitutive equation

In this section we compare different numeri-
cal simulations performed using our 2D and 3D

FD codes, both based on the TSN FBC. The
geometry of these configurations is represented
in fig. 1a,b (fig. 1a for the 2D case and fig. 1b for
the 3D one). Domain boundary conditions are the
same and the initial stress in the 3D model is ori-
ented along the x; axis (rake 0°); in this case the
initial component of the shear stress is non zero
only along the x; axis. The nucleation strategy is
in the same for both the configurations: we im-
pose an initial time-weakening friction, until the
rupture begin to propagate spontaneously (for
further details see Bizzarri et al., 2001). Medium
and constitutive parameters are listed in table I. In
fig. 2a we plot the slip obtained from the 2D nu-
merical simulation as a function of time and the
spatial coordinate along the fault. Figure 2b,c dis-
plays the total slip pattern obtained from the 3D
numerical simulation: fig. 2b shows the total slip
as a function of the x3 coordinate (taking x; equal
to the coordinate of the nucleation point), while
fig. 2c shows the slip as a function of x; (fixing x3
as the coordinate of the nucleation point). Figure
2b describes the anti-plane mode of propagation,
while fig. 2¢ identifies the in-plane mode.

Table I. Medium and constitutive parameters for
numerical experiments in figs. 2a-c, 3a,b and 4a,b
where a linear slip-weakening governing law has
been imposed on the fault plane. All quantities are in
non-dimensional units. The strength parameter S
(Das and Aki, 1977a,b) is 0.8.

Parameter Value
A=G 1
Vp 1.732
Vg 1
To 1
rll 1.8
Ty 0
d, 1.3
2D model
Ax 0.05
3D model
AX1 = AX2 = AX3 0.2
Initial rake 0°
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Fig. 2a-c. Slip obtained for simulations adopting the linear slip-weakening law for a 2D fault (a) and for a 3D
fault (b and c). All medium and constitutive parameters are listed in table I. Arrows identify the point where the
bifurcation occurs: a primary front propagate at the R-wave velocity and a secondary one accelerate from S- to
P-wave speed. The cohesive zone (where the traction degrades from the maximum yield stress 7, down to the
kinetic frictional level ty) is also indicated by a contouring in all plots.

As the strength parameter S (Das and Aki,
1977a,b) is lower than the critical value of 1.77,
the crack accelerates to super-shear velocity
and it bifurcates. This behavior was first ana-
lytically demonstrated by Burridge (1973) and
subsequently numerically modeled by Andrews
(1976b) for a 2D in-plane spontaneous dynam-
ic rupture. The crack tip bifurcation might not
be representative of most real-world observa-
tions, that show the prevalence of the sub-shear
ruptures in earthquakes. However, there are
some laboratory observations (e.g., Rosakis
etal., 1999) in which a super-shear crack tip ve-
locity was measured. Xia et al. (2004) enumer-
ates a series of earthquakes that exhibit super-
shear rupture speeds (1979 Imperial Valley EQ;
1992 Landers EQ; 2002 Denali EQ; Kunlun-
shan EQ, 14 November 2001). Additionally, the
interested reader can find a discussion in a re-
cent paper by Bouchon et al. (2001). Although
the crack tip bifurcation has already been mod-
eled in 2D numerical simulations of sponta-
neous dynamic rupture governed by different
governing equations (see for instance Bizzarri
et al., 2001), there are no truly 3D numerical
experiments showing this behavior with rate-
and state-dependent constitutive equations.
Moreover, it is important to emphasize that we
have chosen this set of parameters and modeled
super-shear rupture models because rake rota-
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tions are much more pronounced in these cases
(as we will discuss in Section 5). In fig. 2a we
clearly distinguish two rupture fronts: the first
traveling at Rayleigh-wave velocity and the
second one accelerating from S- to P-wave
speed. Also in the 3D simulation we observe the
crack tip bifurcation, but it occurs only in one
component (in-plane) and the distinction be-
tween the two rupture fronts is less evident. The
transition to super shear rupture velocity is
more gradual in the 3D simulations, as shown
in fig. 2c. Moreover, the 2D simulations show
that the cohesive zone thickness at the crack bi-
furcation increases; this behavior is not con-
firmed in our 3D simulations and the thickness
of the cohesive zone is different between the
two components plotted in fig. 2a-c.

In fig. 3a,b we plot the solutions for the 2D
and for the 3D models in a fault point located
on the x; axis 18 spatial steps from the nucle-
ation point. Figure 3a shows the traction versus
slip behavior, representing the imposed consti-
tutive law, while in fig. 3b we plot the phase di-
agram (i.e. the traction as a function of the slip
velocity). It is important to remark here that in
3D simulations we plot the modulus of the vec-
tors. The phase diagram shown in fig. 3b for the
3D fault is more similar to that obtained with
rate- and state-dependent friction laws (see next
section and Bizzarri et al., 2001).
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Fig. 3a,b. Solutions at the fault point located at 18 units form the nucleation point, along the x; axis: a) trac-
tion versus slip; b) phase portrait (or phase diagram), i.e. traction versus slip velocity. Solid square are obtained
form the 2D fault calculation, while open circles are obtained from the fully 3D calculation. All parameters are

the same as fig. 2a-c.
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Fig. 4a,b. Superimposition of the time histories of the solutions (total shear traction, fault slip velocity and fault
slip) for the 2D case (a) and for the 3D one (b). Time histories are computed in the same point of fig. 3a,b and
for the same configuration. The vertical grey line marks the time step at which the maximum of slip velocity is
attained, that coincide with the end of the breakdown process (when the traction is at the frictional level). The
horizontal grey line indicate the value of the characteristic slip-weakening distance dy. All quantities are nor-
malized with respect to their relative maximum within the chosen time window.

The temporal evolution of traction, fault slip
and slip velocity are shown in fig. 4a,b, for both
the 2D model (fig. 4a) and for the 3D one (fig.
4b). We emphasize that, for this particular value of
the strength parameter S, the peak of slip velocity
coincides with the minimum of total traction, in
agreement with Bizzarri (2003) and Tinti ef al.
(2004). For this particular configuration the value
of the characteristic slip-weakening distance (dp)
can be inferred form the slip at the time of slip ve-
locity peak, as proposed by Mikumo ez al. (2003).
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We also observe that for 3D simulations the slip
acceleration and the weakening phase in traction
evolution are shorter than that in 2D; this is due to
the difference in the dynamic load caused by the
fault points that are already slipping.

4.2. Results with Dieterich-Ruina Law

Figure 5a-c illustrates the comparison be-
tween 2D and 3D simulations performed by us-
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Fig. S5a-c. The same as fig. 2a-c, but adopting the Dieterich-Ruina governing equation. All parameters are listed
in table II. Also with the rate- and state-dependent friction law we observe that the crack tip accelerate asymptot-

ically up to the P-wave velocity.

Table II. Medium and constitutive parameters for
numerical experiments in figs. 5Sa-c, 6a,b and 7a,b
where a Dieterich-Ruina Law has been adopted. All
quantities are typical of a laboratory scale.

Parameter Value
A=G 27 GPa
vp 5196 m/s
Vs 3000 m/s
W 0.56
a 0.008
b 0.016
L 1x10” m
o 100 MPa
Vinit 1x10° m/s
Wit 1x10"'s
Woutside the nucleation W (Vinit)
T 7% (Vinit )
2D model

Nucleation region ~ Segment [-1.5 m, 1.5 m]
Axi 0.0l m

3D model

Nucleation region Circular region

(radius of 1.5 m)
AX1 = AX2 = AX3 0.0l m
Initial rake 0°
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Traction versus Slip
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Fig. 6a,b. The same as fig. 3a,b, but for the case
shown in fig. 5a-c. Solutions are plotted at a fault
point located at 2.0 m from the nucleation point.
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Fig. 7a,b. The same as fig. 4a,b, but for the Dieterich-Ruina Law. All parameters are those of figs. 5a-c and
6a,b. The fault point is the same as fig. 6a,b. The vertical grey line marks the time step at which the friction is at
its final level (the equivalent frictional level); this instant does not coincide with the time step at which the slip
velocity is at its maximum value. See the text for a detailed discussion of physical implications.

ing the Dieterich-Ruina constitutive law (eq.
(3.4)). Medium and constitutive parameters are
listed in table II. For particular configurations, the
dynamic propagation of a rupture obeying to RS
friction laws is also characterized by a crack tip
bifurcation, with a secondary front that accelerate
up to the P-wave velocity (Okubo, 1989; Bizzarri
et al., 2001). This is represented in fig. Sa for the
2D fault model and in fig. 5b,c for the 3D simu-
lation. In the figures the black arrow identify the
point at which such a bifurcation occurs. We em-
phasize that in the case of Dieterich-Ruina Law
the transition from sub- to super-shear velocity is
gradual in both fault model. These calculations
confirm the results of the comparison between
2D and 3D simulations with the SW law, point-
ing out that the rupture propagation along the di-
rection of imposed initial traction (in-plane in the
simulations here discussed) is more similar to the
2D solution than the rupture propagation in the
anti-plane direction (shown in figs. 3b and 5b).
As done in fig. 3a,b, we plot in fig. 6a,b the
behavior of dynamic traction as a function of
fault slip (fig. 6a) and slip velocity (fig. 6b).
Both the slip-weakening curve and the phase
diagram obtained with the rate- and state-de-
pendent law defined in eq. (3.4) does not
change substantially between 2D and 3D calcu-
lations. The equivalent SW distance d ;' (Cocco
and Bizzarri, 2002) is the same for 2D and 3D
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simulations. These results corroborate and gen-
eralize the conclusion of Bizzarri and Cocco
(2003), who used a 2D fault model obeying to
RS constitutive laws.

In fig. 7a,b we show the temporal evolution
of dynamic traction, slip and slip velocity, sim-
ilarly to what illustrated in fig. 4a,b for the SW
model. These calculations corroborate and gen-
eralize the results of Tinti et al. (2004), ob-
tained with 2D fault model, according to which
for a crack obeying to rate- and state-dependent
friction laws the maximum peak slip velocity
does not correspond in time to the minimum
value of the traction; in this case if we measure
the equivalent slip-weakening distance d;* from
the slip at the time of slip velocity we can un-
derestimate it up to the 50%.

5. Temporal rake rotations during dynamic
rupture propagation

In this section we present the results of sever-
al simulations performed by assuming an oblique
initial stress direction. The sketch depicted in fig.
8 illustrates a general configuration of a 3D sim-
ulation in which the crack is propagating on the
fault plane and, at a selected time step, the rupture
propagation direction does not coincide with the
slip velocity orientation at the same time step.
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Anti-plane
component

u Local slip

velocity direction

In-plane
component

enlargement direction

Fig. 8. Sketch representing a time snapshot of the
positive quadrant (with respect to the nucleation point)
of the fully 3D fault. The star indicates the nucleation
point, as in fig. 1a,b; the solid red line identifies the in-
stantaneous position and shape of the crack tip, that de-
fines the contour of the broken area (gray region). In a
generic point of the tip a blue arrow indicates the local
crack enlargement direction, that in general does not
coincide with the local slip velocity direction (red ar-
row), that is collinear with the dynamic traction. Black
arrows represent the local in-plane and the local anti-
plane modes of propagation, that in our fault model are
coupled through the constitutive law. These modes are
not always coincident with the components along the
x1 and x3 axis.

The direction of crack growth at any point on the
fault plane (solid blue vector in the figure) deter-
mines the local in-plane and anti-plane compo-
nents of motion, which in general do not coincide
with the strike- and dip-slip components (#1 and
3 in fig. 8 and shown with solid green vectors) of
sliding. Slip and slip velocity vectors are collinear
with dynamic traction, because this is imposed in
the solution of the elasto-dynamic equation.

We have performed several 3D dynamic sim-
ulations using the parameters listed in table III
and assuming an initial stress oriented at 45° on
the fault plane. We solve the elasto-dynamic
equation using both a slip-weakening and a rate-
and state-dependent friction law. In fig. 9a-f we
present the results of the simulation performed by
using the SW law: we show the slip velocity and
the total dynamic traction evolution on the fault
plane at three different time steps. Figure 10a-f
shows a similar calculation obtained using RS
and a slowness evolution equation. As expected,
these simulations show that the rupture propa-
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Table III. Medium and constitutive parameters for
3D numerical simulations shown in figs. 9a-f, 10a-f,
11a-d and 12a,b. Configuration for the slip-weaken-
ing law (figs. 9a-f and 11a-d) refers to a real-world
fault, while input parameters for the Dieterich-Ruina
Law (figs. 10a-f and 12a,b) are typical of a laborato-
ry experiment.

Parameter Value
A=G 27 GPa
vp 5196 m/s
Vs 3000 m/s
Initial rake 0°

Slip-weakening law (figs. 9a-f and 11a-d)

To 2 x 10’ Pa
Tu 2.8 x 10’ Pa
T 1 x 10" Pa
do 0.1 m
Ax1 = AX2 = AX3 50 m

Nucleation point (5000 m, 5000 m)

Dieterich-Ruina Law (figs. 10a-f and 12a,b)

o 0.56
a 0.0085
b 0.016
L 1 x10°m
oet 100 MPa
Vinit 1 x 107 m/s
LIInuc] 1 x 1041 S
Woutside the nucleation W (Vinit)
To T (Vinit)

Nucleation region Circular region

(radius of 1.5 m)
(5m, 5m)
0.02 m

Nucleation point
Ax1 = sz = A)C3

gates faster in the direction of the initial stress
(45° for these calculations) and slip velocity is
largest in this direction. The two constitutive laws
yield similar results and the main difference con-
cerns the nucleation duration and therefore the
dynamic propagation is not synchronous. In both
cases we observe that the crack tip bifurcation
(with a primary front traveling at the Rayleigh
wave velocity and a secondary one traveling at
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Fig. 9a-f. 3D snapshots of the solutions of an enlarging crack with an initially oblique pre-stress vector (45°). a),
b) and (c): slip velocity snapshots; d), ) and (f): total dynamic traction. The slip-weakening law has been adopted

and the constitutive parameters are listed in table III.
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Fig. 10a-f. The same as fig. 9a-f, but using a Dieterich-Ruina governing law. Medium and constitutive param-

eters are reported in table III.
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the P-wave velocity) and the acceleration to su-
per-shear rupture velocity occurs only in the local
in-plane direction, that corresponds to the direc-
tion of the imposed initial traction (see also Biz-
zarri, 2003). We have plotted the rake variations
on the fault plane in figs. 11a and 12a for the two
constitutive behaviors here considered; the rake
variation is measured with respect to the initial
orientation of the initial stress, that for these sim-
ulations is taken equal to 45°. These figures rep-
resent the changes in slip velocity directions
(which correspond to the orientation of the in-
stantaneous dynamic traction) in the positive
quadrant of the fault plane x;-x3 at a fixed time
step. Figure 1la-d shows the results obtained
with the slip-weakening law, while fig. 12a,b
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shows similar calculations for the Dieterich-Ru-
ina (ageing) Law. These simulations show that
within the broken region (the area inside the
crack tip) there is no spatial variation of the rake
in both cases, which means that the dynamic trac-
tion is always collinear with the initial stress. The
rake rotation occurs mostly within the cohesive
zone and in correspondence of the rupture front
bifurcation. We emphasize that this behavior is
general and independent of the particular value of
the initial stress orientation (Bizzarri, 2003). We
plot in fig. 11c.d the corresponding cases shown
in fig. 11a,b, but assuming an initial pre-stress di-
rected along the x| axis (i.e. initial rake of zero
degrees). We can observe that the behavior is
quite similar. We would emphasize, however, that

——Location #1
- Location #2
Location #3

®

10E+00

Time (s)

~#-Location #1
- Location #2
Location #3

Y

7.00E-01 9.00E-01
Time (s)

1.10E+00

Fig. 11a-d. a) Time snapshot in a positive quadrant of the fault of the rake variation with respect to the initial
value of 45° corresponding to the numerical simulation reported in fig. 9a-f. The black lines represent, for this
particular time step, the spatial extension of the cohesive zone. b) Time history of the rake in three different po-
sition marked by black stars in the fault quadrant of panel a (see text for details). The two vertical lines indicate
the temporal extension of the breakdown zone, in which the traction degrades from the upper yield stress (first
vertical line) down to the kinetic frictional level (second vertical line). ¢) and (d) are the same as panels a) and
b), but for a configuration in which the initial stress is directed along the x; axis only (zero initial rake).
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Fig. 12a,b. The same as fig. 11a-d, but assuming a Dieterich-Ruina Law. Vertical lines in panel b) have to be
regarded as the time step at wich are reached the equivalent yield and kinetic levels (for a detailed discussion
about the correspondence of frictional parameters of different governing laws see Cocco and Bizzarri, 2002 and

Bizzarri and Cocco, 2003).

simulations performed with an initial traction
having an arbitrary orientation with respect to the
x| axis are not simply a Cartesian rotation on the
fault plane of the solutions obtained for a case in
which the initial stress is directed along the x; ax-
is, because of the presence of the free surface.

In figs. 11b and 12b we plot the time history
of the rake (formally the dynamic traction ori-
entation at different time steps) for three posi-
tions indicated in panels (a) of each figure by the
stars. These fault positions are located at a dis-
tance of 2 and 3 km from the nucleation point in
figs. 11a-d and 12a,b, respectively. For both the
figures, point #1 is located along the x; axis, #2
is located in the direction of the initial stress and
#3 lies on the x3 axis. The vertical grey lines in
panels (b) indicate the duration of the break-
down process. We emphasize that we do not
have any temporal variation on the rake in posi-
tion #2: this confirms the previous findings that
along the direction of the initial stress the slip
velocity does not change its orientation. This
position corresponds to a case in which the rup-
ture front is perpendicular to the initial stress di-
rection (or equivalently the local rupture propa-
gation direction is collinear with the initial
stress, see fig. 8). We can clearly observe that
the temporal variation of the rake is concentrat-
ed in the cohesive zone, but also before a varia-
tion occurs (see locations #1 and #3). In partic-
ular, we observe for location #1 that the compo-
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nent 3 decreases before the breakdown process,
then it begins to increase inside the cohesive
zone and reaches its maximum in correspon-
dence of the end of breakdown process; it there-
fore decreases again and reaches a final value
that is equal to the initial one. This is a general
behavior, numerically modeled both with the
slip-weakening law (fig. 10b) and with the Di-
eterich-Ruina constitutive equation (fig. 12b).
We emphasize, however, that the variation of the
rake is more evident in the case of the slip-
weakening law.

6. Dependence on the absolute level
of stresses

Andrews (1994) simulated the mixed-mode
dynamic propagation of an earthquake rupture
using a Boundary Integral Equation method in
which the crack tip is an infinite line (not closed)
propagating in the x; direction; the solutions of
the dynamic problem depend only on the x; co-
ordinate but have two non-null components (1
and 3). Simulations were done using an initial
stress oriented at 45°. Although in these calcula-
tions the cohesive zone is not well resolved (on-
ly three points within the breakdown duration),
he found that the two components of slip veloc-
ity (in-plane and anti-plane) interact with each
other and the rake changes with time; he sug-
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gested that the variation of slip direction de-
creases with increasing the absolute initial stress
level. Our simulations, performed with a better
resolution of the cohesive zone, confirm the re-
sults of Andrews (1994) and generalize them be-
cause we consider a more complex coupling be-
tween the two local components of slip velocity,
having a fully 3D dynamic rupture propagation

Table IV. Medium and constitutive parameters for
3D simulations plotted in fig. 13 where a linear slip-
weakening law has been assumed. All quantities are
in nondimensional units. The strength parameter S is
0.8 for all numerical experiments.

Parameter Value
A=G 1
vp 1.732
Vs 1
Test #26 Test #30 Test #34 Test #35
To 1 3 4 10
Ty 1.8 3.8 4.8 10.8
T 0 2 3 9
do 1.3
AX1=AXZ=A)C3 0.2
Initial rake 45°

Rake versus Time
dist=r, +18.0
Location #1

700
65.0
60.0

g 550
5 50.0
3 4501
£ 400

3]
& 35.0

—- Test#26
—+— Test#30|
Test#34,
Test#35)

30.0
250
20.0

2.00E+01

T : -
220E+01  2.30E+01
Time (s)

T
2.10E+01

T
240E+01 2.50E+01

and we consider also what happens before the
rutpure onset.

We performed several simulations using the
initial and constitutive parameters listed in table
1V, an initial stress direction oriented at 45° (as in
previous calculations and in Andrews, 1994) and
a strength parameter S always equal to 0.8. The
strength excess and the dynamic stress drop is the
same among the four simulations performed with
the parameters listed in table IV. We measured
the rake variation as a function of time in a fault
position located on the x; axis and at a distance of
18 steps form the nucleation point. We show in
fig. 13 the rake variations as a function of time.
This figure clearly shows that the amount of rake
variation depends on the absolute values of stress
parameters: the change in direction of slip veloc-
ity is larger for smaller values of initial stress. In
particular, we observe that the rake variation de-
creases as the ratio of the breakdown stress drop
(defined as the difference between the upper
yield stress and the kinetic frictional level) and
the initial stress decreases. The same direct pro-
portionality exists between the ratio of the dy-
namic stress drop (defined as the difference be-
tween the initial stress and the kinetic frictional
level) and the initial stress. This is in agreement
with the results of Spudich (1992) and with Guat-
teri and Spudich (1998). We point out, however,

Test # 26 30 34 35

T —T 0.8 0.8 0.8 0.8
u 0

Breakdown
stress drop 1.8 1.8 1.8 1.8
Ar=1,-7)
Dynamic
stress drop 1. 1. 1. 1.
(At,=1,- 1)
ATb/tO 1.8 0.6 0.45 0.18
A’L'd/ 7 1. 0.3 0.25 0.1

Fig. 13. Temporal rake evolution (in a fault point located at 18 units from the nucleation point and along the x;
axis) during the propagation of different cases where the slip-weakening law has been adopted. For each color,
representing a different numerical simulation, the vertical lines marks the start and the end of the breakdown

process. The parameters are listed in table IV.
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that in our simulations the variation of these
stress ratios are determined by variations of the
initial stress amplitude. Increasing the initial
stress amplitude by a factor 10 reduces the rake
rotation from 44% to 11% of the initial direction.
For all these simulations the largest rake change
occurs within the cohesive zone, in agreement
with previous results.

7. Heterogeneous distribution of pre-stress
on the fault plane

All the simulations presented and discussed
in previous sections were performed in a ho-
mogeneous configuration: all medium and con-
stitutive parameters are uniform. In this section
we will present a result obtained by imposing a
SW law and a distribution of initial stress high-
ly heterogeneous (fig. 14), characterized by a
high initial stress patch in the central portion of
the fault plane that corresponds to the nucle-
ation patch. Such a distribution is obtained by
interpolating a slip distribution of the 1999
ChiChi, Taiwan, earthquake proposed by Yagi
(http://www.eic.eri.u-tokyo.ac.jp/yuji/taiwan/

z direction (m)

X direction (m)

5.0e+006 2.0e+007 3.5e+007
Initial shear stress (Pa)

B

5.0e+007

|

Fig. 14. Initial shear stress distribution (component
along x;) on the fault plane for a numerical experi-
ment with spatial heterogeneity. This map refer to the
inferred distribution for the 1999 ChiChi, Taiwan
earthquake.
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Table V. Medium and constitutive parameters for
simulation results reported in figs. 15a-f and 16. The
fault is governed by a linear slip-weakening law. All
quantities refer to a real-world fault.

Parameter Value
A=G 27 GPa
vp 5196 m/s
Vs 3000 m/s
0 Distribution shown in fig. 14
T 2.8x10 Pa
7 0.2x10" Pa
do 0.1 m
Axi = Axz = Ax3 250 m
Initial rake 0°

taiwan.html). In this case the initial stress is di-
rected only in the x; direction. The other con-
stitutive and model parameters are listed in
table V. Figure 15a-f shows the 3D snapshots
of slip and slip velocity calculated at three dis-
tinct time intervals. This figure points out that
both the slip and the slip velocity distributions
on the fault plane are heterogeneous. Rupture
is arrested by areas of very low initial stress
and accelerates in areas of high pre-stress.

We plot in fig. 16 the rake variation, with re-
spect to the initial value of 0°, on the fault plane
at a fixed time. We can observe that the main
variations of the slip direction are concentrated
in the rupture front, and near the barrier around
6875 m, where the rupture propagation is in-
hibited due to a very low value of the initial
stress. We conclude that both the heterogeneity
of initial stress and its absolute amplitudes con-
trol the complexity of the crack propagation
causing local rotations or deviations of the slip
direction from the initial stress orientation.

8. Discussions and conclusive remarks

In this study we have presented a fully
(namely truly) 3D Finite Difference method to
solve the elasto-dynamic equation in order to
simulate the spontaneous rupture propagation of
an earthquake rupture obeying to different con-
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Fig. 15a-f. Slip (panels a, b and c) and slip velocity (panels d, e and f) time snapshots obtained for a numeri-
cal simulation in which the pre-stress is that plotted in fig. 14 and the fault is governed by a slip-weakening law.

Parameters are listed in table V.
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Fig. 16. Spatial distribution of the rake variation (with
respect to the initial value of 0°) resulting at the end of
simulation corresponding to the results shown in fig.
15a-f. The black contour lines superimposed to the rake
variation represent the traction values at the same time
step at which the rake variation is calculated.
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stitutive laws. We use the Traction-at-Split-
Nodes technique which allows the evaluation of
slip, slip velocity and total dynamic traction at
the same position on the fault plane. We use
both a slip-weakening and a rate- and state-de-
pendent constitutive laws to model the dynamic
rupture propagation on an assumed fault plane
with an oblique orientation or a heterogeneous
distribution of the initial stress. Our numerical
procedure allows the adoption of heterogeneous
distribution of constitutive parameters on the
fault plane. We will not present here the results
of simulations with heterogeneous distribution
of frictional; we will discuss in Tinti et al
(2005) for a 2D fault model.

The 3D simulations of dynamic rupture prop-
agation performed in this study by using either a
slip-weakening or a rate- and state-dependent
constitutive law confirm the results presented in
previous investigations which used 2D dynamic
solutions of the elasto-dynamic equation: in par-
ticular, the scaling relation between the two
length-scale parameters of the adopted constitu-
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tive formulation (dy and L, see Bizzarri and Coc-
co, 2003, and references therein) as well as the
temporal evolution of dynamic traction and slip
velocity (Tinti et al., 2004). However, our simu-
lations generalize these results and point out that
the rupture front acceleration to super-shear
speeds occurs along the imposed direction on
initial stress and the crack velocity is slower in
the perpendicular direction. Simulations per-
formed with an oblique direction of initial stress
confirm this conclusion. Depending on the posi-
tion on the fault plane the direction of instanta-
neous dynamic traction can be different from the
imposed direction of pre-stress. Because we as-
sume that total dynamic traction is collinear with
slip velocity, this variation of the instantaneous
orientation is associated to a rake change. These
rake rotations are localized in the proximity of
the rupture front and within the cohesive zone.
Our calculations show that the amount of
rake rotation depends on the absolute value of
initial stress: for a constant dynamic or break-
down stress drop, larger amplitudes of initial
stress yield smaller rotations of instantaneous
dynamic traction around the initial imposed di-
rection. Thus, in general we expect that rake
rotations might depend on the ratio between
breakdown (or dynamic) stress drop and initial
stress. Preliminary simulations with heteroge-
neous pre-stress on the fault plane suggest that

in non-uniform conditions the temporal rake
rotation might be more diffuse on the fault.

This study aimed to show the applicability
and the flexibility of our 3D Finite Difference
numerical approach to simulate the nucleation
and the dynamic propagation of an earthquake
rupture as well as to investigate the constitutive
behavior. The possibility to include the hetero-
geneity of constitutive parameters allows the
modeling of the healing of slip and the dynam-
ic traction evolution. The adoption of the Trac-
tion-at-Split-Nodes technique allows further
implementations aimed to include the effects of
variable normal stress perturbations and pore-
fluid effects on the friction coefficient.
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Appendix. Convergence and stability conditions.

In this Appendix we summarize the convergence and stability relations that have to be satisfied in
order to correctly resolve the dynamic traction and the slip velocity evolution during the dynamic
processes.

The first condition that has to be satisfied is the temporal and spatial resolution of the cohesive
zone where total friction decreases from the maximum yield value to the kinetic level. For a 2D case
the requirement of resolution of this characteristic time duration and spatial scale consists to impose

At << T, or, alternatively, Ax << X, (A1)
that for the actual 3D case can be re-written as
At <<Min{T,(7,),T,(T,)} or, alternatively, Ax << Min{X,(7,),X,(T;)} (A.2)

where Tj(1)) and Ty(13) are the breakdown zone times calculated for the time evolution of the com-
ponents 1 and 3 of traction, respectively. We refer to a vertical fault, as depicted in fig. 1b. The break-

296



3D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed

down zone times in a fixed fault point (xj, x3) can be expressed as (see eq. (A.5) and its analytical der-
ivation in Bizzarri et al., 2001)

T,(T)) = d,cos gb/(v)mm (A.3a)
T,(T)=d,sing /), (A.3b)

where ¢ is the rake calculated in the actual fault point. These relations are true both for the slip-weak-
ening law (eq. (3.3)) and for the rate- and state-dependent friction laws (eq. (3.4)). In the latter case
quantities 7 and X, have to be regarded as equivalent breakdown zone time and as equivalent break-
down zone extension, respectively, in the sense discussed in Cocco and Bizzarri (2002) and in Biz-
zarri and Cocco (2003).

The second condition that have to be considered states that the spatial and time steps are coupled
by the general condition (Andrews, 1985; Fukuyama and Madariaga, 1998; Bizzarri et al., 2001,
among many different others)

d>v,At (A.4)

where d is the maximum distance between two neighboring nodes [d = (Ax} + Ax3 + Ax3)"*]. In oth-
er words eq. (A.4) requires that no coupling exists between first neighbors. This condition is common
to Boundary Integral Equation methods and to Finite Difference approaches (Bizzarri et al., 2001).

In the case of rate- and state-dependent friction laws there is an additional requirement, intro-
duced by Rice (1993), that in full of generality it can be expressed as kgiag >> ker, Where kqiag 18 the di-
agonal term of stiffness matrix and k. is the critical stiffness. The condition kgiag >> ker corresponds
to impose that locally each single element of the discretized fault is conditionally stable (Scholz,
1990). This avoids that a single node may fail independently of the neighbors (numerical noise and
artificial complexity) and guarantees that the discrete medium can be considered as a continuum.

In our 3D fault model, the local stiffness is expressed as kaiag = 1/C = (0Ax2)/(4At?), where C is
the local compliance (Andrews, 1985; Bizzarri et al., 2001; Bizzarri and Cocco, 2003) and represents
the proportionality constant between instantaneous traction and dynamic slip. The critical stiffness
can be expressed as (b — a)o;"/L (Ranjith and Rice, 1999), where the constitutive parameters a, b, 05"
and L have been assigned. When kgiag = kcr, we have the critical grid size

vs pL ) V2oL
P o Of, alternatlvely, Ax"= 5P

A= 0o

Wer (b — a) O_fo (A-5)

because the time step and the spatial grid size are related by the Courant-Friedrichs-Levy (CFL) ra-
tio wer (Werr = vs At/Ax, see Fukuyama and Madariaga, 1998; Bizzarri et al., 2001). The Rice’s con-
dition can be therefore expressed as

At << At" or, alternatively, as Ax << Ax” . (A.6)
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