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1. Introduction

1.1. Premise

Airborne spectroscopy perhaps needs to re-
discover one of its most important original as-
pects, and be regarded again as a scientific re-
search tool whose purpose is the measurement
of physical variables, the study of phenomena
and processes, the definition of calibration and
data analysis procedures, as well as the simula-
tion of specific characteristics for future space
borne systems. This perspective does not imply
a merely academic or philosophical exercise,
disregarding practical problems. On the con-
trary, it provides the very answer to the need for
establishing well grounded conceptual frame-

works for any kind of remote sensing applica-
tions requiring high resolution spectral data,
and it also provides the fundamental require-
ments that will lead the new technology for the
next generations of satellite sensors.

1.2. From qualitative to quantitative

Remote sensing image spectroscopy is a tool
for the measurement of physical quantities. It
represents an application, at various spectral and
spatial resolutions, of reflectance and emittance
laboratory spectroscopy. As such, laboratory
spectroscopy has accompanied remote sensing
data analysis from the outset, to aid interpreta-
tion of the spectral properties of rocks, soils and
sediments. Even though the low spectral resolu-
tion of multispectral remote sensors did not al-
low the exploitation of the spectral variability of
geologic materials, it was sometimes possible to
derive «second order» criteria, making it possi-
ble to discriminate groups of rocks beyond the
spectral resolution of the data. One example,
more extensively discussed later in this paper,
was the recognition of rocks with a different
metamorphic grade, based on the wavelength
shift, in the order of ten to fifteen nanometers, of
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the 2200 nm Al-OH vibrational band. First pro-
posed by Duke (1994), the relationship between
the Al-OH position and the metamorphic grade
was further discussed by Longhi et al. (2000), in-
cluding considerations relative to the rock bulk
composition. Moreover, it was observed that the
absorption peak wavelength shift in quartzites
was also associated with an increase in band in-
tensity, both variations being due to the same
compositional variation in the rocks. As a result,
the more intense absorption at wavelengths com-
prised within the TM band 7 allowed the dis-
crimination between low and high-grade meta-
morphic rocks, even with low-resolution data
(Longhi et al., 2000, 2001).

The advent of airborne high-resolution spec-
trometers provided new possibilities for mineral

identification and quantitative determination. At
the same time, it enhanced the importance of
specific problems, related to physical, miner-
alogical, geochemical variables and processes.

In this paper, we present an overview of the
problems commonly encountered in short wave
infrared (SWIR) remote sensing spectroscopy
for determining the mineralogical composition
of a surface, which is at the basis of any geolog-
ical and geo-environmental study. The most im-
portant problems in image classification in-
clude 1) the pixel heterogeneity and spectral
variability inherent to many rocks and soils,
both determining the choice of the sensor spec-
tral and spatial resolutions, and 2) the image da-
ta quality to which the sensor signal to noise ra-
tio makes a primary contribution.

Fig. 1a-e. a) Evaluation of the inherent dimensionality in the data for a MIVIS image of a sandy littoral area.
MNF transformation was applied to the 2-2.5 mm interval, where MIVIS sensor has spectral resolution adequate
for mineralogical analysis: b) MNF band 5, c) eigenvalue plot, and d) MNF band 5 and 6 scatterplot document
high noise content in the data; e) shows a comparison between one endmember and the MIVIS spectrum of a
pixel classified through SAM (cf. fig. 2a,b); spectral contrast is in the order of 0.05.
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Fig. 2a-c. a) SAM classification of the image of fig.1a, with 3 m ground resolution; b) endmember library:
white, green and blue: > 90% of light mineral fraction; composition: quartz, dolomite, calcite, feldspars, micas;
the spectrum coded white has the lowest carbonate content; red and yellow: about 70% of heavy mineral frac-
tion; composition: quartz, dolomite, calcite, hornblende, clinopyroxene, muscovite, biotite, feldspars; c) SAM
classification of the same image, with a degraded ground resolution of 9 m.

2. Image classification and sensor spatial
resolution

Generally, the spectrum of a heterogeneous
pixel is assumed to result from a linear combina-
tion on a macroscopic scale of the spectra of the
materials occupying distinct areas within the pix-
el (Singer and McCord, 1979). The classification
of multicomponent pixels is based on unmixing
techniques, assuming that the degree of the
match between unknown and reference spectra is
indicative of the apparent fractional abundance
of the component materials (Boardman, 1993).
As such, these techniques are particularly sensi-
tive to the noise level in the data requiring an ac-
curate evaluation of the inherent dimensionality
of the image data. Figure 1a-e shows the results
of the evaluation of 2-2.5 nm (SWIR) Multi-
spectral Infrared and Visible Imaging Spectrom-
eter (MIVIS) data, with sensor mean signal to
noise ratio of 130 (after pre-flight calibration) in
the 2-2.5 nm region (fig. 1a), where important
diagnostic absorption bands of several minerals

are present. Noise dominated Minimum Noise
Fraction (MNF) band 5 (fig. 1b), eigenvalue plot
(fig. 1c) and MNFs 5 and 6 scatterplot (fig. 1d)
give evidence that these data are not suitable for
mineral quantitative abundance determination
through unmixing methods for surfaces with low
spectral contrast (fig. 1e).

A qualitative classification procedure is
shown in fig. 2a,b, using ancillary field data. Re-
flectance laboratory spectra were measured on
samples of the endmember materials recognized
in the area (sand samples with different miner-
alogical composition, mollusk shells, and algae).
Linear combinations of endmember spectra were
calculated, to obtain mixed spectra simulating
pixels with different area percentages of the end-
members. Both original endmembers and calcu-
lated spectra were used for a Spectral Angle
Mapper classification (SAM) of MIVIS data
with a 3 m ground resolution. The colored pixels
densely assembled in the inner part of the beach
(fig. 2a) indicate a concentration of sands with a
high content of heavy minerals, as well as sand
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mixed with winter vegetation in correspondence
of dune deposits. White pixels rather homoge-
neously distributed in the largest portion of the
beach represent high reflectance, quartz rich
sands (Crotti et al., 2002). 

SAM classification of data with simulated 9
m ground resolution, using the same end-mem-
ber library as above, would result in a signifi-
cantly different classification of the beach com-
ponents both for pixel assignment and for spa-
tial distribution (fig. 2c).

3. Mineral identification and spectral
resolution

Mineral identification by means of hyper-
spectral data analysis is based on the recogni-
tion of absorption band associations, diagnostic
of mineral species. However, a mineral is not

univocally determined by a general crystal
chemical formula, inasmuch as many ionic sub-
stitutions in the crystal lattice occur, leading to
continuous variations in the lattice physical
properties. On the other hand, spectroscopy is
highly sensitive to these variations. As such, it
is particularly useful for the recognition of the
geochemical processes responsible for the min-
eral composition changes and, integrated with
data of different nature, for the interpretation of
the geologic environment in which the rock or
sediment formed (Longhi et al., 2000, 2004). A
shift in the absorption peak wavelength was ob-
served, for example, in muscovite. The Al-OH
vibrational occurs at shorter wavelength when
the AlVI content increases, and this composition
variation can be due to geologic processes such
as metamorphism (fig. 3a-d; Longhi et al.,
2000), or hydrothermal alteration (Swayze et al.,
1992).

Fig. 3a-d. a) Reflectance spectrum of a quartzite, showing the muscovite absorption band association; AM: Al-
OH vibrational; FE: Fe-OH vibrational; b) detail of the 2000-2500 nm interval, showing the wavelength shift of
the Al-OH absorption peak toward shorter values, associated with band depth increase; both variations are relat-
ed to increasing metamorphic grade of the rock; y axis: continuum removed reflectance spectra displaced for
clarity, 10% increment; c) and d) simulation of the spectral response of two hyperspectral sensors, both discrim-
inating the absorption peak shift.
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These considerations apply to the particular
case of monomineralic rocks or sediments, or, at
least, those containing only one spectroscopically
active mineral. In a mineral association or mixture
in which more than one spectroscopically active
mineral is present, the identification of the differ-
ent mineralogical phases is further complicated
when different minerals have partly overlapping
absorption bands. Even neglecting the grain size
effects, the result is a composite band representing
a non-linear combination of the original bands.
One example is represented by the shape variation
of the carbonate absorption band in a suite of mar-
bles, superimposed on the overall wavelength
variation due to chemistry variation (fig. 4a,b).
The presence of accessory minerals such as phlo-
gopite (Phl) increases the left-hand asymmetry of
the CO3

–2 band in calcitic marbles (CA), whereas
the presence of chlorite (Chl) and anorthite (An)
reduces the asymmetry in calcitic-dolomitic (CI)
marbles (Longhi et al., 2001). 

4. Mineral abundance quantitative
determination

In SWIR spectroscopic analysis, the absorp-
tion peak wavelength is related to the energy of a

transition between vibrational energy levels,
whereas the intensity of a given absorption band
can be indicative, with suitable calibration, of the
absorbing species concentration (McMillan and
Hofmaister, 1988). A quantitative analysis is
however possible solely in the case of adequate
particle separation, where the radiation is pre-
vented from going through adjacent grains in its
path back to the spectrometer. When the grains
are close to each other, both the interference
among absorption features pertaining to different
minerals and the scattering effects combine to
give fairly unpredictable results (Nash and
Conel, 1974; Singer, 1981; Clark and Roush,
1984; Clark, 1995).

One example is the mixture shown in fig. 5,
consisting of several spectrally different miner-
als, with grain size varying over a wide range
including also very small particles in which the
band depth is not representative of the mixture
composition. The iron about 1300 nm band
dominates the spectrum of a mixture of heavy,
iron bearing minerals (about 50%) and light
minerals, overestimating at 70% the heavy min-
eral abundance. 

This phenomenon represents one of the most
critical topics for the remote sensing spec-
troscopy community, in its attempt to establish

Fig. 4a,b. a) Reflectance spectra of an impure marbles suite, showing the asymmetry variation of the CO3
–2

band (in the box); b) CO3
–2 band wavelength variation due to marble chemistry variation from calcite (CA) to

dolomite (CI), and asymmetry variation due to accessory minerals (see text for discussion); bold circles: marble
samples with spectrofacies, i.e. associations of absorption bands due to the sample component minerals (FE: Fe-
OH vibrational; HF: H2O and OH– vibrationals in feldspars); open symbols: accessory minerals.
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et al., 2001), according to the Bouguer-Beer-
Lambert Law (fig. 6a,b).

5. Noise level in the data and spectral
feature recognition

Figure 1a-e shows how the presence of noise
in the data might hinder the recognition of rela-
tively weak absorption bands. Noise generating
factors include sensor electronics and atmospher-
ic and scene scattering, interacting with sample
characteristics. Sensor noise, expressed by the
Signal to Noise Ratio (SNR), has a component
represented by a normally distributed noise su-
perimposed on the sample spectrum. An algo-
rithm, slightly modified after Oking and Roberts
(2000), was used to add noise to the data as a
function of wavelength (Sgavetti et al., 2001)

where Snoisy is the noisy spectrum, Esolar the so-
lar irradiance, G and O the sensor gain and off-
set, N(0,1) a random number with a Gaussian
distribution with mean equal to zero and stan-
dard deviation of 1, and SNR the sensor SNR
derived from pre-flight calibration (all parame-
ters being a function of wavelength). Sensor
contribution to noise in the data is determined
by varying the sensor SNR and assuming a per-
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Fig. 6a,b. Relationship between 2200 nm Al-OH band of muscovite in quartzite, and muscovite grain size (a)
and abundance (b). The relationship is linear in these rocks, where muscovite is the only spectroscopically ac-
tive mineral.

Fig. 5. Measured spectrum of a sand sample from
the area of fig. 1a (bold line), relative light and heavy
mineral fractions (thin lines), and calculated spec-
trum (dashed line) with weighted light and heavy
fractions corresponding to the original sample com-
position. The measured sample overestimates the
heavy mineral abundance.

criteria for the quantitative analysis of mineral
mixtures. Indeed, in nature there are cases in
which a simple relationship between absorption
band intensity and both mineral abundance and
grain size can be recognized. In a suite of
quartzites, where muscovite is the only spectrally
active mineral, the 2200 nm absorption band of
the Al-OH vibrational is linearly related to both
muscovite abundance and particle size (Longhi 
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fect correction of the atmospheric effects. The
noise threshold in the data that can be accepted
for mineralogical analysis is determined by an-
alyzing the noisy spectra with reference to sam-
ple characteristics, such as the mean reflectance
of the spectrum, the spectral reflectance con-
trast and, for individual absorption bands, the
band depth (fig. 7a-c). The data noise reported
in the diagrams was calculated for the SWIR re-
gion, considering a solar irradiance with a mean
of 9.25 W∗m–2∗nm–1∗sr–1, measured at the
ground in the area of fig. 1a-e, during a MIVIS
flight. Sensor average SNR was equal to 130
(actual sensor SNR) and 325 (simulated). The
critical values of sample reflectance contrast
and band depth are about 0.06 and 0.11 respec-
tively (arrows in fig. 7b,c). Below these values,
the noise is above 50% of the reflectance con-
trast for SNR=130 and 20% for SNR=325, and
is above 17% and 7% of the band depth for the
two SNRs respectively. Using standard classifi-

cation methods, such as Spectral Analyst, the
average goodness of fit is 0.656 and 0.852 for
the two SNRs respectively, and the average
probability of correct classification of the noisy
spectra is below 40% for SNR=130 and about
60% for SNR=325.

Radiometric evaluation includes the incre-
ment, due to noise, of output radiance with re-
spect to input radiance for individual samples,
and the radiance variation due to atmospheric
scattering. In fig. 8, for SNR=130 and input ra-
diance between 4.9 and 5.8 (relative sample re-
flectance between 0.34 and 0.4, cf. fig. 7a) the ra-
diance equivalent to noise in the data (NERdata)
exceeds the sensor noise equivalent radiance
(NERsensor) by about 10%. For radiance between
3.5 and 4.4 W∗m–2∗nm–1∗sr–1 (sample re-
flectance between 0.24 and 0.3), NERdata ex-
ceeds the NERsensor by up to 40%. Sample no. 10,
with radiance above 7.5 W∗m–2∗nm–1∗sr–1 and
reflectance above 0.5, represents an exception.

Fig. 7a-c. Noise content in the data as a function of sample mean reflectance (a), reflectance contrast (b), and
CO3

–2 band depth (c), for two sensor SNRs. Noise in the data is expressed as the root mean square of the ratio
between noisy and original spectra (rms); in (b) and (c) is expressed as percentage of reflectance contrast and
2.3 nm band depth, respectively. Goodness of fit for SNR 130: 0.656; for SNR 350: 0.852. Correct classifica-
tion for SNR 130: 40%; for SNR 350: 60%. Arrows: spectral contrast and band depth threshold values.
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Fig. 8. Radiance equivalent to the noise in the data (NERdata) for two sensor SNRs; the samples are ordered ac-
cording to increasing reflectance. Sensor NER (NERsensor) is the mean, for all sensor channels, of the NER de-
termined during the sensor calibration. See the text for explanation.

Fig. 9a-c. a) Total and diffuse atmospheric irradiance measured in the field during a MIVIS overflight on the
area of fig. 1a. Diffuse irradiance contributes to NERdata up to about 190% of the NERsensor. b,c) Increments of
NERdata (Noise Equivalent Radiance) calculated with total at sensor radiance, i.e. including the diffuse atmos-
pheric component (squares) with respect to NERdata calculated without diffuse atmospheric component (trian-
gles), for b) SNR=130 and c) SNR=325. See the text for discussion.
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For SNR=325, the radiance increment due to
noise would be reduced to less than one half. 

All the topics discussed above and in the pre-
vious sections assume the absence of atmospher-
ic scattering. Given an amount of diffuse radi-
ance directly reaching the sensor, the noise in the
data and the corresponding NERdata can be calcu-
lated

where Diff is the wavelength dependent diffuse
radiance component. Figure 9a shows the total
and diffuse solar irradiance measured in the field
during a MIVIS flight in the area of fig. 1a. Dif-
fuse irradiance interacts with the noise in the da-
ta, and as such, even when totally removed from
output data during transformation to reflectance,
it also affects the NERdata, with significant incre-
ments compared to the NERdata without diffuse
radiance. For a sensor SNR=130 (fig. 9b), the
NERdata with diffuse radiance component is
from 27% to 37% higher than the NERdata with-
out scattering, and it can be more than twice the
sensor NER for low radiance samples. The NER
increment due to scattering is almost negligible
for a sensor with SNR=325 (fig. 9c). 

6. Discussion and conclusions

New generations of sensors for remote sens-
ing have increasingly higher spectral and spatial
resolutions, and consequently remote spec-
troscopy will be more and more comparable to
laboratory spectroscopy. The advent of new im-
aging interferometer systems will probably over-
come the intrinsic physical constraints of the op-
tical dispersion sensors (e.g., Otten, 1997; Bar-
ducci et al., 2001). 

Nevertheless, a few questions remain open.
A first question is to what extent the measuring
precision is congruent with the «determination
degree» of the target, where this term expands
the concept of detection limit for individual ab-
sorption features, taking into account the inher-
ent variability of the geologic materials. In fact,
high spectral resolution allows us to identify the
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processes associated with the mineralogical
composition, as long as it reveals chemical and
crystal structure characteristics. However, the
rock-generating geologic processes, involving
first order variables such as pressure, tempera-
ture and time, often result in continua between
two or more endmember minerals or mineral
associations. As discussed in this paper, some
of these variations are systematically related to
genetic processes, and in this case they can be
modeled and, to some extent, predicted. Other
variations, particularly those deriving from sed-
imentary and alteration processes, can be ana-
lyzed and, in some cases, even modeled, al-
though rarely predictable. Although many stud-
ies have already been carried out to determine
the spectral properties of geologic materials for
both mineral identification and abundance de-
termination, further work is needed in the fields
of laboratory spectroscopy, petrographic and
geochemical analyses of both natural and pure
mineral synthetic mixtures, and radiation trans-
fer theory for particulate materials.

A second question is to what extent the exper-
imental conditions are under control, i.e. whether
and to what extent the remotely sensed data are
correlated with the target. As discussed in this pa-
per, sensor radiometric calibration is of primary
importance for noise minimization, the presence
of which makes ambiguous any mineral identifi-
cation and abundance quantification. No less im-
portant is the suppression of atmospheric effects.
The several atmospheric models and inversion
routines (MODTRAN, 6S, ATCORR, among
others) can probably be improved to get more re-
liable results, but more important, as many at-
mospheric parameters as possible have to be ac-
curately measured on the ground concomitantly
with data acquisition, to provide the physical con-
straints for the correction procedure.

The future of high resolution remote sensing
thus relies upon a close collaboration among en-
gineering designers, spectroscopy physicists, at-
mosphere and radiometry physicists, and geolo-
gists.
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