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ABSTRACT

It is proved that if A, is a countable elementary abelian p-group, then:
(i) The ring End (A,) does not admit a nondiscrete locally compact ring
topology. (ii) Under (CH) the simple ring End (A,)/I, where I is the
ideal of End (Ap) consisting of all endomorphisms with finite images,
does not admit a nondiscrete locally compact ring topology. (iii) The
finite topology on End (A,) is the only second metrizable ring topology
on it. Moreover, a characterization of completely simple endomorphism
rings of modules over commutative rings is obtained.
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1. INTRODUCTION

The notion of associative simple ring can be extended for associative topo-
logical rings in several ways:

(i) simple abstract ring endowed with a nondiscrete ring topology (for
instance, the classification of nondiscrete locally compact division rings,
see [25, Chapter IV] and [4, 15, 16]; we refer to some historical notes
about locally compact division rings to [29]);
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(ii) topological ring without nontrivial closed ideals (see [22, 31]).

(iii) topological ring R with the property that if f : R — S is a continuous
homomorphism in a topological ring S, then either f = 0 or f is a
topological embedding of R into S (see [24]).

In all cases it is assumed that multiplication is not trivial.

I. Kaplansky has mentioned (see [20], p. 56) that the classification of locally
compact simple rings in positive characteristic p is difficult. He proved that ev-
ery simple nondiscrete locally compact simple torsion-free ring is a matrix ring
over a locally compact division ring. However in [26] (see also [30]) has been
constructed a nondiscrete locally compact simple ring of positive characteristic
which is not a matrix ring over a division ring. Thereby the program of classi-
fication of nondiscrete locally compact simple rings was finished. Nevertheless
it is interesting to look for new examples of locally compact simple rings.

If A, is a countable elementary abelian p-group and I is the ideal of the ring
End (A,) consisting of endomorphisms with finite images, then the factor ring
End (A,)/I is a simple von Neumann regular ring. We prove that under (CH)
this ring does not admit a nondiscrete locally compact ring topology.

S. Ulam (see [23, Problem 96, p. 181]) posed the following problem: ” Can the
group S of all permutations of integers so metrized that the group operation
(composition of permutations) is a continuous function and the set So, becomnes,
under this metric, a compact space? (locally compact?)’. E.D. Gaughan (see
[10]) has solved this problem in the negative.

We study in §3 an analogous problem for the endomorphism ring of a count-
able elementary abelian p-group, namely: ” Does the endomorphism ring
End(A,) of a countable elementary p-group A, admit a nondiscrete locally
compact ring topology?’. Similarly to the Ulam’s problem we obtain a negative
answer to this question. Moreover, we prove that 7, is the only ring topology
T on End (A4,) such that (End (Ap),T) is complete and second metrizable.

We classify in §4 the completely simple rings (End (M), T:n) of vector spaces
M over division rings. Corollary 4.4 gives a characterization of semisimple left
linearly compact minimal rings. It should be mentioned that Corollary 4.4 is
related to a result from [3] stating that any semisimple ring admits at most one
linearly compact topology.

Furthermore, we obtain in §5 a description of completely simple rings of the
form (End (MRg), Tfin) of modules M over a commutative ring R. We extend
the result of [28] to topological rings (End (Mg), Tfin)-

2. NOTATION, CONVENTIONS AND PRELIMINARY RESULTS

Rings are assumed to be associative, not necessarily with identity. Topo-
logical spaces are assumed to be completely regular. The weight (see [8], p.12)
of the space X is denoted by w(X). The pseudocharacter of a point z € X
(see [8], p.135) is the smallest cardinal of the form ||, where U is a family
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of open subsets of X such that N/ = {z}. The closure of a subset A of the
topological space X is denoted by A and the interior by Int(A) (see [8], p.14).
A topological space X is called a Baire space (see [8], p.198) if for each sequence
{X1,X>5,...} of open dense subsets of X the intersection N2, G; is a dense set.

An abelian group A is called elementary abelian p-group (p prime) if pa =0
for all @ € A. Such group is a direct sum of copies of the cyclic group Z(p).
The subring of a ring R generated by a subset S, is denoted by (S). A ring R
is called locally finite if every its finite subset is contained in a finite subring.
A topological ring (R, T) is called metrizable if its underlying additive group
satisfies the first axiom of countability. A ring R with 1 is called Dedekind-
finite if each equality xy = 1 implies yx = 1. It is well-known that every finite
ring with identity is Dedekind-finite. Since every compact ring with identity
is a subdirect product of finite rings, it follows that every compact ring with
identity is Dedekind-finite. If A C R, then Ann;(A) :={z € R | A =0}. If
X,Y are the subsets of R, then X -Y := {ay | z € X,y € Y}. A topological
ring R is called compactly generated (see [27, Chapter II]) if there exists a
compact subset K such that R = (K). If (R,T) is a topological ring and I is
an ideal of R, then the quotient topology of the factor ring R/I is denoted by
T/I. If K is a subset of an abelian group A, then set

T(K) = {a € End (4) | a(K) = 0}.

When K runs over all finite subsets of A, the family {T(K)} defines a ring
topology Tfin on End (A). This topology is called the finite topology.

Lemma 2.1. For any abelian group A the ring (End (A), Tin) is complete.
Proof. See [27, Theorem 19.2]. O

Lemma 2.2 (Cauchy’s criterion). In a Hausdorff complete commutative group
G, in order that a family (za)acq should be summable it is necessary and
sufficient that, for each neighborhood V of zero in G, there is a finite subset Qg
of  such that Xpcxxo €V for all finite subsets K of Q) which do not meet 2.

Proof. See [5], p.263. O

Lemma 2.3. If (z4)acq s a summable subset in (End (A), Trin) then every
subset A of Q the family (xg)pen is summable.

Proof. Let V' be a neighborhood of zero of (End (A), T¢in). We can consider
without loss of generality that V is a left ideal of End (A). There exists a finite
subset Qg of € such that ¥,cxz, € V for every finite subset K of € for which
KNQy=@. Let F be a finite subset of A such that F'N(QyNA) = 2. If
a € F, then a ¢ Qq, hence Ypepzy € V. By Cauchy’s criterion the family
(x8)gea is summable. O

A topological ring (R, T) is called minimal (see, for instance, [7]) if there is
no ring topology U such that & < T and U # T. A topological ring (R, T)
is called simple if R is simple as a ring without topology. A topological ring
(R, T) is called weakly simple if R?> # 0 and every its closed ideal is either 0
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or R. A topological ring (R, T) is called completely simple (see [24]) if R? # 0
and for every continuous homomorphism f : (R,T) — (S,U) in a topological
ring (S,U) either ker(f) = R or f is a homeomorphism of (R,7) on Im(f).
Equivalently, R? # 0 and (R, T) is weakly simple and minimal. Let M be a
unitary right R-module over a commutative ring R with 1. The module M
is called divisible if Mr = M for every 0 # r € R. A right R-module M is
called faithful if Mr = 0 implies r =0 (r € R). A right R-module M is called
torsion-free if mr = 0 implies that either m = 0 or r = 0, where m € M and
r € R. Recall that a submodule N of an R-module M is called fully invariant
a(N) C N for every endomorphism « of Mp. We use in the sequel the notion
and results from the books [8, 27].

Remark 2.4. If R is a von Neumann regular ring, then R? = R.

Lemma 2.5. An ideal I of a von Neumann regular ring is von Neumann
regular.

Proof. Let ¢ € I. Thus there exists x € R such that izi = . It follows that
ixixt =1 and ziz € 1. O

Corollary 2.6. If I an ideal of a von Neumann regular ring R, then any ideal
H of I is an ideal of R, too.

Proof. RH = RH?> C IH C H. Similarly, HR C H. (]

If A, is a p-elementary countable group, then
I={ae€End(4,) | Im(a)| < Ro}.

Fix a linear basis {v; | i € N} of A, over the field F,,. Using this fixed basis,
we define the map e; : A — A such that

ei(vj) = 5ijvja (Za] € N)
where §;; is the Kronecker delta.

Lemma 2.7. We have for End (4,):

(i) I is a von Neumann regular ring.

(ii) I is a simple ring.
(iii) The factor ring End(Ay,)/I is simple von Neumann regular.
(iv) I is a locally finite ring.

Proof. (i): The ring End (4,) is regular (see [21, Theorem 4.27, p.63]), so I
is von Neumann regular by Lemma 2.5.

(i), (iii): The ideal T is the only nontrivial ideal of the ring End (4,) (see
[17, 817, Theorem 1, p.93]). This means that End (A)/I is simple. It is regular
by the part (i).

(iv) Since I is simple (see [17, §12, Proposition 1]), it suffices to show that
I contains a nonzero locally finite right ideal.

Let us show that the left ideal Te; of I is locally finite as a ring (equivalently,
as a Fp-algebra). We have 0 # e; € Ie;. If H is the left annihilator of Ie;, then,

© AGT, UPV, 2018 Appl. Gen. Topol. 19, no. 2 | 226



Completely simple endomorphism rings of modules

obviously, H is a locally finite ring, hence it is locally finite as a [Fp-algebra.
We claim that ITe;/H is finite. Define 8, € H (n > 2) in the following way

Vn, for i=1;
B”(“")_{o, for i+ 1.

Let us prove that Ie; = Fper + X5 ,F,6,.
If « € I, then a(v1) = riv1 + - - - + 1 Uy, where r; € Fp and n € N, so
aei(vi) =rer(v) +refe(v1) + -+ + 1o fBn(v1)
= (re1+refe+ - +rnfn)(v1);
aei(vj) = (rier +rafa+ -+ rmfbu)(v;) (G #1).
This yields
aer =rier +rafot -+ rnf
and so Ie; = Fpe; + X020, 6,.
In particular, Ie; = Fpe; + H, and so H has a finite index in fe;. Clearly,

Ie; is a locally finite F,-algebra (see [17, Proposition 1, p.241]) and I is a
locally finite [F,-algebra (see [17, Proposition 2, p. 242]). O

The next result can be deduced from [27, Lemma 36.11].

Lemma 2.8. Let A be a locally compact, compactly generated, and totally
disconnected ring. If A contains a dense locally finite subring B, then A is
compact.

Proof. Let A = (V), where V is a compact symmetric neighborhood of zero.
Since V is compact, the subset V' 4+V +V -V also is compact. Since B is dense,
A = B+V. By compactness of V4+V +V -V there exists a finite subset H C B
such that V+V +V .V C H+4+V. Since B is a locally finite ring, we can assume
without loss of generality that H is a subring. Let H\ {0} = {hq,...,hx}. The
subset
H+mV+. - +hV+V
is an open subgroup of R(+). Indeed, this subset is symmetric and
H+hV+- -tV V)+(H+MV+-+ iV +V)
CH+MVAV)+- 4+ h(V+V)+V+V
CHA+MVA+---+hV+V.
We prove by induction on m that
VI CH+ MV 4+ + V4V, (m € N)

where VI =V and V™ = VIm=11. v for all m.
The inclusion is obvious for m = 1.
Assume that the assertion has been proved for m > 1. Clearly,

vl vyl v CH V4 (V- V)4 4+ (V-V)+ V-V C
PVt oot hgVAh(H+V)+ -+ h(H+V)+ H+V C
HA+hV 4+ hV+ V.
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Consequently, A= H + h1V +--- 4+ hiV + V, therefore A is compact. O

An element = of a topological ring is called discrete if there exists a neigh-
borhood V of zero such that zV = 0 (i.e., the right annihilator of z is open).

Lemma 2.9. The set of all discrete elements of a topological ring is an ideal.
A simple ring with identity does not contain nonzero discrete elements.

3. LOCALLY COMPACT RING TOPOLOGIES ON End (A) OF A COUNTABLE
ELEMENTARY ABELIAN p-GROUP A

Theorem 3.1. Let R be a simple, nondiscrete and locally compact ring of
char(R) = p > 0 and 1 € R. If V is a compact open subring of R and
{ea | a € Q} is a set of orthogonal idempotents in R, then

Q] < w(V).

Proof. The ring R does not contain nonzero discrete elements by Lemma 2.9.
Since R is locally compact and char(R) = p, it is totally disconnected. Ad-
ditionally, R has a fundamental system of neighborhoods of zero consisting of
compact open subrings by [19, Lemma 9].

If V is a compact open subring of R, then by continuity of the ring operations
for each o € €2 there exists an open ideal V,, of V such that eV, C V. Clearly,
there exists y, € V, for which ey, # 0 since R has no nonzero discrete
elements.

We claim that hold the following two properties:

(1) eaya & {epys | B # a} for each a € Q;

(ii) the set X = {eqya | @ € Q} is a discrete subspace of V.

Indeed, if were eqya € W for some « € §2, then

Calla = €aala € alesys | B # af
C {eaepys | B# a}
= {0},
80 eqYo = 0, a contradiction. The part (i) is proved.

(if) Now, for each o € Q we have V' \ {egys | S # a} is open and, conse-
quently,

(V \ {eﬁyﬁ | B # a}) nNX= {eaya}a
by (i). Therefore the point eqyo (e € ) of X is isolated. In other words, the

subspace X of V is discrete.
Since X is discrete, |2 = |X| = w(X) < w(V) (see [1, Exercises 98-99,

p.72]). O

Theorem 3.2. Let A, be a countable elementary abelian p-group. Then the
ring
I={a€End(4,) | Im(a)| < Ro}

does not admit a nondiscrete ring topology U such that (I,U) is a Baire space.
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Proof. Put S,, = {a €I | a(A) CFpvq + - +Fpv,}, where n € N. Clearly,
I = UpenSy, and
Spy={a€l|ea=0 for i>n}=Ann,({ex | k>n}).
This yields that the subset S, is closed due the continuity of the ring operations.
Since I is a Baire space, there exists n € N such that Int(S,) # &, hence S,

is an open subgroup.
Set B € I such that

N ) Unti, for i=1,....m

Alv) {0 , for i>n.

Let W C S,, be a neighborhood of zero of (I,U) such that gW C S,. If
w € W\ {0}, then there exist a € A and r1,...,r, € F, such that

0fu@=rw  and  Buwa) =3 res
=1 =1

There exists j € 1,...,n such that r; # 0. Then

entjfw(a) =rjvny; # 0,

hence e+ ;6w # 0 and so fw ¢ Sy, a contradiction. (]

Corollary 3.3. Under the notation of Theorem 3.2 the ring I does not admit
a nondiscrete locally compact ring topology.

Proof. This follows from the fact that each locally compact space is a Baire
space (see [6, Theorem 1, p. 117]). O

Our main result is the following.

Theorem 3.4. The endomorphism ring End (A,) of a countable elementary
abelian p-group A, does not admit a nondiscrete locally compact ring topology.

Proof. We use the notation and results from section 2. Denote R = End (4,).
Assume on the contrary that there exists on R a nondiscrete locally compact
ring topology 7.

Fact 1. The ring (R, 7T) has a fundamental system of neighborhoods of zero
consisting of compact open subrings.

Since the additive group of the ring R has exponent p, it is totally disconnected
(this follows from [12, Theorem 9.14, p.95]). By I. Kaplansky’s result (see [19,
Lemma 9]), the ring (R, T) has a fundamental system of neighborhoods of zero
consisting of compact open subrings.

Fact 2. The group Re; is countable for each ¢ € N.

We claim that Re; is infinite. Indeed, for each j € N put ; € R such that

4 vy, for k=1
BJ(W)_{O, for k#1i.

If j # s, then Bjei(v;) = Bj(vi) = v; and Bse;(vi) = Bs(v;) = vs, hence
Bjei # Bses, so Re; is infinite.
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. . . . Fpv;
The ring Re; is countable. Indeed, consider the mapping ¢ : Re; — Appv ,
where

P(ae;)(rv;) = alrv;) for all r e,

If ae; # Be; (o, 8 € R), then there exists an element z = Zj rjv; € Ay such
that ae;(x) # Be;(x), hence, a(r;v;) # B(r;v;). Thus

Y(ae;)(rivi) = alriv;) # B(rivi) = ¥(Bei)(rivi).

The latter means that 1 is an injective mapping of Re; into AF»¥. Since AFrvi
is countable, Re; is countable, too.

Fact 3. I is a closed ideal of R. We claim that I is not dense in the topological
ring (R, T). Assume the contrary. Since I is locally finite and is a maximal
ideal, (R, T) is topologically locally finite by Lemma 2.8. The ring R contains

two elements x,y such that xy = 1 and yz # 1. The subring (x,y) is com-
pact, hence Dedekind-finite, a contradiction. We obtained that (R/I,T/I) is
a nondiscrete metrizable locally compact ring.

Fact 4. I is a discrete ideal of R.

This follows from Theorem 3.2.

Fact 5. Re; is a discrete left ideal of R for every i € N.

Indeed, Re; C I and [ is discrete by Fact 4 for every i € N.

Fact 6. Anny(e;) is open in R for every ¢ € N.

Indeed, the group homomorphism ¢ : R — Re;,r — re;, is continuous. Since
Re; is discrete ¢71(0) = Anny(e;) is open.

Fact 7. N;Anny(e;) = 0.

Obvious.

Fact 8. T > Tfin.

We notice that Ann;(e;) = T({v;}) for every i € N. For, if ae; = 0, then
a(v)) = aei(v;) = 0, e, a € T{v;}). Conversely, if a € T({v;}), then
ae;(v;) = a(v;) = 0. If j # i then ae;(v;) = 0. Therefore ae; = 0. Moreover

T({vi,...,on}) =M T({v}) =N Anny(e;) € T (Vn € N).

Since the family {T'({v1,...,v,})} forms a fundamental system of neighbor-
hoods of zero of (R, Tfin), we get that Tr, < T.

Fact 9. The ring (R, T) is metrizable.

Since N;enAnn;(e;) = 0, the pseudocharacter of (R, T) is Rg. If V' is a compact
open subring of (R,7T) (see Fact 1), then the pseudocharacter of V also is Ny.
However in every compact space the pseudocharacter of a point coincides with
its character. Therefore (R, 7)) is metrizable.

Fact 10. (R/I,T/I) has an open compact subring.

Indeed, it is well-known (see [19]) that every totally disconnected ring has a fun-
damental system of neighborhood of zero consisting of compact open subrings.
Henceforth V' is a fixed open compact subring of (R/I, 7 /I).

Fact 11. R/I contains a family of orthogonal idempotents of cardinality 2%°.
Indeed, the family {e;}ien of idempotents of the ring (R, 7Tn) is summable
and 14 = ¥X,cnen, where 14 is the identity of R.
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The first ordinal number of cardinality ¢ of continuum is denoted by w(c).
Let {N(c) | a < w(c)} be a family of infinite almost disjoint subsets of N (see
(8, Example 3.6.18, p. 175-176]). Put fy) = Yien(a) e for each a < w(c). The
element fy(q) exists by Lemma 2.3. Then:

(i) faa) ¢ I for every a < w(c);
(i) fr(a)fres) € I for each o, B < w(c) and o # B.
If go = f(a) + I for each o < w(c), then {go | o < w(c)} is the required
system of orthogonal idempotents.
The subring V' is metrizable (by Fact 9). Since V' is compact and R/I is a
simple von Neumann regular ring by Lemma 2.7 and w(V) < Xy, we obtain a
contradiction to Theorem 3.1. O

Theorem 3.5. (CH) Under the notation of Theorem 3.4, the ring R/I does
not admit a nondiscrete locally compact ring topology.

Proof. Assume on the contrary that the factor ring R/I admits a nondiscrete
locally compact ring topology T, so (R/I,T) contains an open compact subring
V. Since the cardinality of R/I is continuum and V' is infinite, the power of V
is continuum. Since we have assumed (CH), the subring V' is metrizable, hence
second metrizable (see [14, 18]). However we have proved in Theorem 3.4 that
the ring R/I contains a family of orthogonal idempotents of cardinality ¢, a
contradiction with Theorem 3.1. O

Theorem 3.6. The finite topology Trin is the only second metrizable ring topol-
ogy T on R for which (R, Tfin) is complete.

Proof. Let K = (F), where F is a finite subset of A. Clearly, there exists a
subgroup A’ of A such that A = K& A’. Choose er € R such that ep [g=idg
and ep(A’) = 0. Clearly,

T(K)=R(1—ep)
and oK =0 if and only if « € R(1 — eF), so the family {R(1 — ep)}, where F’
runs over all finite subset of A, forms a fundamental system of neighborhoods
of zero for (R, Tyin)-

There exists an injective map of Rer to Hom(K, A), so the left ideal Rep is
countable, due to countability Hom(K, A). Since €2 = e, the Peirce decom-
position

R=Rer ® R(1 —eF)
of R with respect to the idempotent er is a decomposition of the topological
group (R, +,T). It follows that Re is discrete, hence R(1—ep) is open (in the
topology 7). Hence T > Ttin, 850 T = Tyin (see [9, Theorem 30] or [11]). O

4. COMPLETELY SIMPLE TOPOLOGICAL ENDOMORPHISM RINGS
OF VECTOR SPACES

Theorem 4.1. Let Ar be a right vector space over a division ring F and
S =End (Ar). The following conditions are equivalent:

(1) (S, Trin) is a completely simple topological ring.
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(ii) dim(Ar) = oo or dim(Ar) < 0o and F does not admit a nondiscrete
ring topology.

Proof. (i)= (ii): If A is finite-dimensional, then S is discrete and isomorphic
to the matrix ring M(n, F), where n is the dimension of Ap. Then, obviously,
F does not admit a nondiscrete ring topology.

(if)= (i): If dim(Ap) = n < oo, then S = M(n, F). Since F does not admit
nondiscrete ring topologies, the same holds for M(n, F).

Let Ap be infinite dimensional. Fix a basis {24 }a<, over F', where 7 is an
infinite ordinal number. It is well-known that the topological ring (S, Tin) is
weakly simple (see [22, Satz 12, p. 258]) and the family {T'(z4)}a<~ is & prebase
at zero for the finite topology T, of S.

Assume on the contrary that there exists a Hausdorff ring topology T,
coarser that 7t;, and different from it. Let e, € S such that €2 = e, and
ea(xg) = 0apxq for each a < 7, where dop is the Kronecker delta.

Fact 1. T'(zo) = Ann(eq) for each a < 7.

Indeed, if p € T(x4), then peq(za) = p(za) = 0. If 8 # «, then eq(z5) = 0,
hence pe, = 0, i.e. p € Ann(e,). Conversely, if pe, = 0, then we have
P(Za) = pealxe) =0, ie. p € T(x,).

Fact 2. There exists ap < 7 for which Se,,, is nondiscrete in (S, T).

Assume on the contrary that for every a < 7 there exists a neighborhood
V., of zero of (S, T) such that Se, NV, = 0. If U, is a neighborhood of zero of
(S,T) such that Uyeq C V,, then Uye, = 0, hence Anng(e,) = T(x4) is open
in (S, 7). Hence Tyin < T and T = Tin, a contradiction.

Fact 3. (Seqy NV )20y € GperapF
for any neighborhood V' of of zero of (S, T) and any finite subset K of the set
[0,7) of all ordinal numbers less than 7.

Assume on the contrary that there exists a finite subset K of [0,7) and a

neighborhood V' of zero of (S, 7) such that

(4.1) (Seao NV)xe, C DBgexxgk.

Fix v € [0,7) \ K. For each § € K define g3 € S such that gg(zg) = =, and
q(zs) = 0 for § # .

Let V, be a neighborhood of zero of (S, T) such that Vy CV and ¢ggVp CV
for all § € K. There exists 0 # h € Se,, N Vo by Fact 2 and hx,, # 0 by Fact
1. Since Seq, N Vo C Seq, NV, we obtain that hza, = Ygerxxpfs, (fz € F)
by (4.1). There exists 8y € K such that fg, # 0 (because hzq, # 0), so

apoh = ap,(Xperxrpfp) = 75,7y & SpexTpF,

a contradiction. Therefore Fact 3 is proved.

Now let V' be a neighborhood of zero of (S, T). Pick up a neighborhood Vy
of zero of (S, T) such that V, -V C V. Since T < Tyip, there exists a finite
subset K of [0,7) such that

T({xp | B € K})C Vo
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We have (Seq, N Vo)2a, € @peragF by Fact 3. It follows that there exists
q € Seq, NV such that
4(Tay) & DpexrsF.
Clearly, q(7a,) € Ar, so it can be written as q(za,) = >_,; Tafa, Where
fa € F and there exists By € K such that fg, # 0.
Consider the element s € S such that s(xzg,) = xaofﬁ_ol and s(zy) = 0 for
A # Bo. Evidently, s € T(K), hence

sq €T(K) Vo CVy-Vp CV.

Moreover, $q(Za,) = $(28,f8, + ) = Ta,- Since g € Seq,, we obtain that
sq(zg) = 0 for 8 # ap. Consequently, en, = sq € V for every neighborhood V'
of zero of (S,T), a contradiction. O

Remark 4.2. The question of existence of a uncountable division ring which
does not admit a nondiscrete Hausdorff ring topology is open. Several results
on this topic can be found in Chapter 5 of [2].

Theorem 4.3. Let [[,.q Ra be a family of compact rings with identity. Then
the product (] cq Ras[lacq Ta) is a minimal ring if and only if every (Ra, Ta)
is a minimal topological ring. (Here [] . Ta is the product topology on the
ring [[oeq Ra-)

Proof. =: Assume on the contrary that there exists 5 € € and a ring topology
T’ on Rg such that 7' < T3 and 7’ # Tg. Consider the product topology U
on Haeﬂ R, where R, is endowed with 7, when o # 3 and Rg is endowed
with 7", Obviously, U < [[,cq To and U # [[,cq Ta, a contradiction.

<: Denote by 74 (o € Q) the projection of [[,cq Ra on R,. By definition of
the product topology, [],cq 7a is the coarsest topology on ] R, for which
the projections mq (o € Q) are continuous.

Let U be a ring topology on [],cq Ra, U < [],cq To and B € Q. Since

acl)

u rR5XHW¢ﬁ{OV}§ ( H 7-0‘) rRBXH7¢[3{OW}’
[e139]
it follows that U [gyxy1 _,{0,}= (ITaca 7o) [RaxI1,.,100,} by minimality of
(Rﬁa 7-5)
Then the family {V x [[,_4{0,}} when V' runs all neighborhoods of zero of
(Rg,T3) is a fundamental system of neighborhoods of zero of

(RB X H{OV}’ U TRyTT, 44104} )
v#B

Since Rg x H’V#B{OV} is an ideal with identity of [ [ . Ra, the topological ring
(ITaeq Ra, U) is a direct sum of ideals RgxJ[,_.5{0,} and {0g} X[ ], .5 Ry. Let
V be a neighborhood of zero of (R, 7). Then V' x[[,_.4 R, be a neighborhood
of zero of ([[,cq Ra,U) and mg(V x [[, 5 Ry) = V.

We have proved that 73 is a continuous function from ([],cq Ra,U) to
(Rg,Ts). It follows that ] .o 7o <U and so U = [],cq Ta- O
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Corollary 4.4. A left linearly compact semisimple Ting is minimal if and only
if has no direct summands of the form M(n,A), where A is a division ring
which does not admit a nondiscrete Hausdorff ring topology.

Proof. This follows from Theorems 4.1, 4.3 and the Theorem of Leptin (see [22,
Theorem 13, p.258]) about the structure of left linearly compact semisimple
rings. O

Corollary 4.5. A semisimple linearly compact ring (R, T) having no ideals
isomorphic to matriz rings over infinite division rings is minimal.

5. COMPLETELY SIMPLE ENDOMORPHISM RINGS OF MODULES
The endomorphism ring of a right R-module M is denoted by End (Mg).

Lemma 5.1. Let M be a divisible, torsion-free module over a commutative
domain R and K the field of fractions of R. The additive group of M has a
structure of a vector K -space such that R-endomorphisms of M are exactly the
K-linear transformations.

Proof. We define a structure of a right vector K-space as follows: if §- € K and
m € M, then there exists a unique x € M such that ma = xb; set mo § = .

Moreover, if £ = ¢ and 0 #m € M, then mo § =mo 5. Indeed, if mo § =

and m o § =y, then mad = zbd and mbc = ybd which means that zbd = ybd,
hence x = y.

Let o € End (Mg), § € K, m € M. By definition, am = b(% o m), hence,
ac(m) = ba(§ om), which means that a(§ om) = § oa(m), so a is a K-linear
transformation. Note that, if a € R and m € M, then m o § = ma.

Conversely, if « is a K-linear transformation, a € R, m € M, then

a

a(fom) = ¢

1 o am,

i.e. a(am) = aa(m). We have proved that every K-linear transformation is an
right R-module homomorphism. O

Remark 5.2. The center Z(R) of a weakly simple ring R is a domain.

Remark 5.3. For every right R-module M the underlying group M(+) is a
discrete left topological (End (MR), Tyin)-module.

Indeed, T'(m)(m) = 0 for every m € M. Moreover, End (Mg){0} = {0}, so
M is a discrete left topological (End (Mg), Trin)-module.

Theorem 5.4. Let Mp be a module over a commutative ring R.
If the topological ring (End (MR), Tfin) is weakly simple, then:
(i) P={re€ R | Mr =0} is a prime ideal of R.

(ii) M is a vector space over the field K of fractions of R/P and the R-
endomorphisms of M are exactly the K-linear transformations.
Conversely, if Mg is an R-module and are satisfied (i) and (ii), then the ring

(End (MRg), Tfin) is a weakly simple topological ring.
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Proof. =:If (End (MR), Tfin) is weakly simple, then the mapping:
(5.1) oy M — M, m— mr (r € R)

is an R-module homomorphism and «, € Z(= the center of End (Mg)).
First we show that the part (i) holds. Indeed, if a,b € R and ab = 0, then
aqop =0 (see (5.1)). Thus (End (Mg)ay,) - (End (Mg)as) = 0, so

(End (MR)ay) - (End (Mg)ap) = 0.

Since End (Mp) is weakly simple, one of them, say End (Mpg)ay,, is zero. This
implies that a, = 0, hence a € P.

(i) The structure of R/P-module on M is defined as follows: if r € R and
m € M, then put M (r + P) = mr.

Note that M is a torsion-free right R/ P-module. Assume that m(r+P) = 0,
where 0 #r+ P € R/P and 0 # m € M. Then mr = 0 = a,(m) (see (5.1)).
Thus End (Mg)a,(m) = 0. It follows that (End (Mg)a,)(m) = 0 by Remark
5.3. Since End (MFg) is weakly simple

End (Mg)a, = End (Mg).

We obtained that End (Mg)(m) = 0, so m = 0, a contradiction.

Under this convention R-submodules are exactly R/P-submodules and R-
endomorphisms are exactly R/P-endomorphisms.

The module M is a divisible R/P-module. Indeed, if 0 # r+ P € R/P, then
0# M(r+ P) = Mr. Suppose that Mr # M. Consider

I={aeEnd(Mg) | (M) C Mr}.

Since Mr is a fully invariant submodule, I is a two-sided ideal of the ring
(End (Mg), Tfin)-

The ideal I is closed. Indeed, let a € I. If m € M, then there exists 3 € T
such that o — 8 € T'(m). Clearly, a(m) = (m) € Mr and so a € I. We have
proved that I is closed.

Since 1p; ¢ I, I = 0. Tt follows that o, = 0 (see (5.1)), a contradiction.

The module M has a structure of a right K-vector space and End (Mg) is
exactly the ring of endomorphisms of M by Lemma 5.1.

The converse follows from Theorem 4.1. O

A characterization of completely simple topological ring End (Mg) is given
by the following.

Theorem 5.5. Let Mg be a module over a commutative ring R. The topo-
logical ring (End (MRg), Trin) s completely simple if and only are satisfied the
conditions (i) and (i) of Theorem 5.4 and either

(i) M is finite or

(ii) M is infinite and the dimension of M over the field K is infinite.

Proof. =: According to Theorem 5.4, the ideal P is prime and the topology
of End (Mg) coincide with the finite topology of End (Mg ), where K is the
field of fractions of R/P. If M is finite, we have the part (i). Assume that

© AGT, UPV, 2018 Appl. Gen. Topol. 19, no. 2 | 235



V. Bovdi, M. Salim and Mihail Ursul

M is infinite. If R/P is finite, then the dimension of M over K is infinite.
Suppose that R/P is infinite and dimg (M) = n < Xg. Then M is isomorphic
to M(n, K). Since K is an infinite field, it admits a nondiscrete ring topology
(see [13]) and we obtain a contradiction because End (M) is a discrete ring.
Consequently dimg (M) is infinite.

< This follows from Theorems 4.1 and 5.4. (I

Corollary 5.6. The topological ring (End (A), Tfin) of an abelian group A is
completely simple if and only one of the following conditions holds:

(i) A is a elementary abelian p-group.
(ii) A is a divisible torsion-free group of infinite rank.
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