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Abstract

We introduce a new type of nonlinear contraction and present some
fixed point results without using continuity or semi-continuity. Our
result complement, extend and generalize a number of fixed point the-
orems including the well-known Boyd and Wong theorem [On nonlinear
contractions, Proc. Amer. Math. Soc. 20(1969), 458–464]. Also we
discuss an application to iterated function systems.
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1. Introduction and Preliminaries

In 1981, Hutchinson [12] introduced the concept of iterated function system
(IFS) and self-similarity. A set is said to be self-similar if it is made up of a
finite transformed copies of itself. Self-similar sets are special class of fractals
and there are no objects in nature which have exact structures of self-similar
sets. These sets are perhaps the simplest and the most basic structures in the
theory of fractals. In recent years this area received great attention of many
mathematicians, scientists and a huge developments took place (cf. [1, 2, 3, 4,
5, 7, 10, 11, 14, 18, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33]).

The purpose of this paper is to introduce a new class of nonlinear contrac-
tions and present some fixed point results for this class of mapping without
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using any kind of continuity. Our result complement, extend and generalize a
number of fixed point theorems in the literature. We also discuss an application
of our results to iterated function systems.

The following result which generalizes the classical Banach contraction prin-
ciple (BCP) is due to Boyd and Wong [6]:

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a self-
mapping such that for all x, y ∈ X

d(Tx, T y) ≤ ϕ(d(x, y)),

where ϕ : [0,∞) → [0,∞) is upper semicontinuous from the right on [0,∞),
and satisfies ϕ(t) < t for all t > 0. Then T has a unique fixed point in X.

Jachymski [13] established equivalence between various ϕ-contractive type
conditions (see also [22]).

Definition 1.2 ([13]). Let (X, d) be a metric space and ϕ : [0,∞) → [0,∞) a
function such that ϕ(t) < t for t > 0. A self-mapping T : X → X is said to be
ϕ-contractive if

d(Tx, T y) ≤ ϕ(d(x, y))

for all x, y ∈ X.

Theorem 1.3 ([13]). Let (X, d) be a metric space and T : X → X a self-
mapping. The following statements are equivalent:

(i) There exists an increasing and right continuous function ϕ : [0,∞) →
[0,∞) such that T is ϕ-contractive;

(ii) There exists a continuous function ϕ : [0,∞) → [0,∞) with ϕ(t) > 0 for
t > 0, such that

d(Tx, T y) ≤ d(x, y) − ϕ(d(x, y))

for all x, y ∈ X ;
(iii) There exists an upper semicontinuous function ϕ : [0,∞) → [0,∞) such

that T is ϕ-contractive;
(iv) There exists a function ϕ : [0,∞) → [0,∞) with lim sup

s→t
ϕ(s) < t for all

t > 0 such that T is ϕ-contractive;
(v) There exists a strictly increasing function ϕ : [0,∞) → [0,∞) such that

lim
n→∞

ϕn(t) = 0 for all t ∈ [0,∞) and T is ϕ-contractive;

(vi) There exists a strictly increasing and continuous ϕ : [0,∞) → [0,∞) such
that T is ϕ-contractive;

On the other hand, Suzuki [30] obtained the following forceful generalization
of the BCP:
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Theorem 1.4. Let (X, d) be a complete metric space and T : X → X a self-
mapping. Define a non decreasing function θ : [0, 1) → (1/2, 1] such that

θ(r) =











1, if 0 ≤ r ≤ (
√
5− 1)/2,

(1− r)r−2, if (
√
5− 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1, if 2−1/2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that for all x, y ∈ X

(1.1) θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, T y) ≤ rd(x, y).

Then T has a unique fixed point in X.

The above theorem has been extended and generalized by many authors in
various ways (cf. [8, 9, 15, 16, 17, 19, 20, 26] and elsewhere).

2. Suzuki type generalized ϕ-contractive mappings

In this section, we present a generalization of Theorem 1.1 which also extends
Theorem 1.4. We begin with the following definition:

Definition 2.1. Let (X, d) be a metric space. A self-mapping T : X → X will
be called a Suzuki type generalized ϕ-contractive if for all x, y ∈ X,

(2.1)
1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, T y) ≤ ϕ(m(x, y)),

where m(x, y) = max{d(x, y), d(x, Tx), d(y, T y)} and ϕ : [0,∞) → [0,∞) is a
function such that ϕ(t) < t for all t > 0 and lim sup

s→t+
ϕ(s) < t for all t > 0.

The following theorem is the main result of this section.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X a Suzuki
type generalized ϕ-contractive mapping. Then T has a unique fixed point in X.

Proof. Pick x0 ∈ X arbitrary and define a sequence {xn} by xn = T nx =
Txn−1 for all n ∈ N.

Since 1
2d(xn, xn+1) ≤ d(xn, xn+1) by (2.1), we have

d(xn+1, xn+2) = d(Txn, T xn+1) ≤ ϕ(m(xn, xn+1))

= ϕ(max{d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)})(2.2)

= ϕ(d(xn, xn+1)) < d(xn, xn+1).

for all n ∈ N.

Set an = d(xn, xn+1) then an ≥ 0. If there exists some n0 ∈ N such that
an0

= d(xn0
, xn0+1) = 0, then since 1

2d(xn0
, xn0+1) ≤ d(xn0

, xn0+1) by (2.1),
we have

an0+1 = d(xn0+1, xn0+2) ≤ ϕ(m(xn0
, xn0+1)).

But ϕ(0) = 0 so, an0+1 = 0 and

0 ≤ an0+1 = d(Txn0
, T xn0+1) ≤ ϕ(m(xn0

, xn0+1)).
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Hence the sequence {an} monotone decreasing and bounded below and an = 0
for all n ≥ n0. Therefore

lim
n→∞

d(T nx, T n+1x) = 0 for each x ∈ X.

If an > 0 for every n ∈ N then since ϕ(t) < t for t > 0 by (2.2), we get

0 < an+1 = d(xn+1, xn+2) = d(Txn, T xn+1) ≤ ϕ(m(xn, xn+1)) < d(xn, xn+1),

we obtain

0 < an+2 ≤ ϕ(an+1) < an+1 ≤ ϕ(an) < an

Hence {an} and {ϕ(an)} are strictly decreasing sequences, which are bounded
below. So, lim

n→∞

an and lim
n→∞

ϕ(an) exist. Suppose 0 < a = lim
n→∞

an and

an = a+ εn (εn > 0). If lim sup
s→t+

ϕ(s) < t for all t > 0, then ∀ {tn}, tn ↓ a+ (as

n → ∞); lim supϕ(tn)
tn→a+

< a. Hence

0 < a = lim
n→∞

an+1 ≤ lim
n→∞

ϕ(an) ≤ lim
n→∞

supϕ(s)
s∈(a,an+1)

= lim
εn+1→0+

supϕ(s)
s∈(a,a+εn+1)

≤ lim
ε→0+

supϕ(s)
s∈(a,a+ε)

< a,

a contradiction and lim
n→∞

an = lim
n→∞

d(T nx, T n+1x) = 0 for each x ∈ X.

Now, we show that the sequence {xn} is a Cauchy. Suppose {xn} is not
Cauchy. Then there exists an ε > 0 and integers mk, nk ∈ N such that mk >
nk > k and

d(xnk
, xmk

) ≥ ε and d(xnk
, xmk−1) < ε.

Hence for each k ∈ N, we have

ε ≤ d(xnk
, xmk

)

≤ d(xnk
, xmk−1) + d(xmk−1, xmk

)

< ε+ d(xmk−1, xmk
).

Since lim
k→∞

d(xmk−1, xmk
) = 0, we get

lim
k→∞

d(xnk
, xmk

) = ε.

Note that lim
n→∞

an = lim
n→∞

d(xn, xn+1) = 0. So, there exists some k ∈ N such

that
1

2
d(xnk

, xnk+1) ≤ d(xnk
, xmk

) for mk > nk ≥ k. Now by (2.1), we have

d(Txnk
, T xmk

) ≤ ϕ(m(xnk
, xmk

)).

By the triangle inequality

d(xnk
, xmk

) ≤ d(xnk
, xnk+1) + d(xnk+1, xmk+1) + d(xmk

, xmk+1)

= d(xnk
, xnk+1) + d(Txnk

, T xmk
) + d(xmk

, xmk+1)

≤ ank
+ ϕ(m(xnk

, xmk
)) + amk

= ank
+ ϕ(max{d(xnk

, xmk
), ank

, amk
}) + amk
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Letting k → ∞ and using ϕ(t) < t and lim sup
s→t+

ϕ(s) < t for all t > 0, we obtain

ε = lim
k→∞

d(xnk
, xmk

) ≤ lim
k→∞

ϕ(d(xnk
, xmk

)) ≤ lim
ε1→0+

supϕ(s)
s∈(ε,ε+ε1)

< ε,

a contradiction. Hence {xn} is a Cauchy sequence. Since X is complete, {xn}
has a limit in X. Call it z. Now for all n ∈ N, we show that

(2.3) either
1

2
d(xn, xn+1) ≤ d(xn, z) or

1

2
d(xn+1, xn+2) ≤ d(xn+1, z).

Arguing by contradiction, we suppose that for some n ∈ N

d(xn, z) <
1

2
d(xn, xn+1) and d(xn+1, z) <

1

2
d(xn+1, xn+2).

By the triangle inequality and (2.2)

d(xn, xn+1) ≤ d(xn, z) + d(xn+1, z)

<
1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2)

<
1

2
[d(xn, xn+1) + d(xn, xn+1)] = d(xn, xn+1),

a contradiction. Thus for all n ∈ N (2.3) holds.

In the first case, since
1

2
d(xn, xn+1) =

1

2
d(xn, T xn) ≤ d(xn, z), by (2.1), we

have
d(xn+1, T z) = d(Txn, T z) ≤ ϕ(d(xn, z)).

Letting n → ∞ and using ϕ(t) < t and lim sup
s→t+

ϕ(s) < t for all t > 0, we obtain

d(z, T z) = lim
n→∞

d(xn+1, T z) ≤ lim
n→∞

ϕ(d(xn+1, T z)) < d(z, T z),

a contradiction unless Tz = z. Similarly, in the other case we can deduce that
Tz = z. Uniqueness of fixed point follows easily. �

Corollary 2.3. Let (X, d) be a complete metric space, ϕ : [0,∞) → [0,∞) an
increasing and right continuous function such that ϕ(t) < t for all t > 0 and
T : X → X a Suzuki type generalized ϕ-contractive mapping. Then T has a
unique fixed point in X.

Proof. It may be completed by following the proof of Theorem 2.2. �

Corollary 2.4. Let (X, d) be a complete metric space and T : X → X a
self-mapping such that for all x, y ∈ X

1

2
d(x, Tx) implies d(Tx, T y) ≤ ϕ(m(x, y)),

where ϕ is as in Theorem 1.1. Then T has a unique fixed point in X.

Proof. It comes from Theorem 2.2 when ϕ : [0,∞) → [0,∞) is upper semicon-
tinuous from the right on [0,∞), and ϕ(t) < t for all t > 0. �

Corollary 2.5. Theorem 1.1.
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Example 2.6. Let X = {0, 2}∪ {1, 3, 5, ...} be endowed with the usual metric
d. Then (X, d) is a complete metric space. Define T : X → X and ϕ : [0,∞) →
[0,∞) by

Tx =











0, if x = 5,

2, if x = 7,

1, otherwise.

and ϕ(t) =











t2

2
, if t ≤ 1,

t− 1

3
, if t > 1.

For x = 5 and y = 7, we have

d(Tx, T y) = d(0, 2) = 2 >
5

3
= ϕ(2) = ϕ(d(5, 7)) = ϕ(d(x, y)).

Therefore T does not satisfy Theorem 1.1.

On the other hand

1

2
d(5, T 5) =

1

2
d(5, 0) =

5

2
> 2 = d(5, 7) and

1

2
d(7, T 7) =

1

2
d(7, 2) =

5

2
> 2 = d(5, 7).

Therefore Theorem 2.2 is applicable and z = 1 is the unique fixed point of T.

Further, we get the same conclusion when

ϕ(t) =







t2

2
, if t ≤ 1,

t− 1
4 , if t > 1.

We note that in this case ϕ is not upper semicontinuous on [0,∞).

3. Applications to Fractal spaces

Let (X, d) be an metric space and C(X), the collection of all nonempty
compact subsets of X. Define

(a) d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B} (the distance between two sets).
(b) δ(A,B) := sup{d(x,B) : x ∈ A}.

The Hausdorff metric induced by d is defined by

H(A,B) = max

{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}

= max{δ(A,B), δ(B,A)}

for all A,B ∈ C(X), where d(x,B) = inf
y∈B

d(x, y).

Hutchinson [12] and Barnsley [1] initiated an ingenius way to define and
construct fractals as compact invariant subsets of an abstract complete metric
space with respect to the union of contractions fi, i = 1, 2, 3, . . . n. Hutchinson
showed that the operator

F (A) = f1(A) ∪ f2(A) ∪ ... ∪ fn(A), A ⊂ X,

is a contraction with respect to the Hausdorff distance. Thus, the contraction
mapping principle can be applied to the iteration of Hutchinson operator F.
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Consequently, whatever the initial image is chosen to start the iteration under
the IFS, for example A0, the generated sequence

Ak+1 = F (Ak), k = 0, 1, ...

will tend towards a distinguished image, the attractor A∞ of the IFS. Moreover,
this image is invariant, i.e., F (A∞) = A∞.

Now onwards ϕ : [0,∞) → [0,∞) a non-decreasing continuous function. The
following lemma which is modeled on the pattern of [22, Lem. 3.2] is a crucial
result of this section.

Lemma 3.1. Let (X, d) be a metric space and T : X → X a continuous Suzuki
type generalized ϕ-contractive mapping. Then

1

2
H(A, T (A)) ≤ H(A,B) implies H(FT (A), FT (B)) ≤ ϕ(MT (A,B))

for all A,B ∈ C(X), where MT (A,B) = max{H(A,B), H(A, T (A)), H(B, T (B))}.
That is, FT : C(X) → C(X) is also a Suzuki type generalized ϕ-contractive
(with the same ϕ), where

∀ D ∈ C(X), FT (D) := T (D).

Proof. Following the proof of Lemma 3.2 [22], for all x ∈ A and y ∈ B, we have

sup
x∈A

inf
y∈B

ϕ(d(x, y)) ≤ sup
x∈A

ϕ( inf
y∈B

d(x, y)) ≤ ϕ(MT (A,B)); and

sup
y∈B

inf
x∈A

ϕ(d(x, y)) ≤ sup
y∈B

ϕ( inf
x∈A

d(x, y)) ≤ ϕ(MT (A,B)).

Further, for all x ∈ A, y ∈ B

1

2
d(x, Tx) ≤ d(x, y) implies

1

2
δ(A, T (A)) ≤ 1

2
H(A, T (A)) ≤ H(A,B) and

1

2
d(y, T y) ≤ d(x, y) implies

1

2
δ(B, T (B)) ≤ 1

2
H(B, T (B)) ≤ H(A,B).

Now

δ(FT (A), FT (B)) = max
Tx∈F (A)

min
Ty∈F (B)

d(Tx, T y) = max
x∈A

min
y∈B

d(Tx, T y).

Since T is Suzuki type generalized ϕ-contractive mapping, 1
2δ(A, T (A)) ≤

1
2H(A, T (A)) implies

δ(FT (A), FT (B)) ≤ sup
x∈A

inf
y∈B

ϕ(d(x, y)) ≤ ϕ(MT (A,B)).

Similarly, 1
2δ(B, T (B)) ≤ 1

2H(B, T (B)) implies

δ(FT (B), FT (A)) ≤ sup
y∈B

inf
x∈A

ϕ(d(x, y)) ≤ ϕ(MT (A,B)).

Since H(A,B) = H(B,A) (symmetric), and

H(FT (A), FT (B)) = max{δ(FT (A), FT (B)), δ(FT (B), FT (A))},
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we conclude that

1

2
H(A, T (A)) ≤ H(A,B) implies H(FT (A), FT (B)) ≤ ϕ(MT (A,B)),

for all A,B ∈ C(X). Therefore FT is Suzuki type generalized ϕ-contractive
mapping. �

Lemma 3.2 ([1]). Let (X, d) be a complete metric space. Then (C(X), H) is
a complete metric space.

Lemma 3.3. Let (X, d) be a metric space and Tn : C(X) → C(X) (n =
1, 2, 3, ..., p) continuous Suzuki type generalized ϕ-contractive mappings, i.e.,
for all A,B ∈ C(X).

1

2
H(A, Tn(A)) ≤ H(A,B) implies H(Tn(A), Tn(B)) ≤ ϕn(MTn

(A,B)).

Define T : C(X) → C(X) by T (A) = T1(A) ∪ T2(A) ∪ ... ∪ Tp(A) =
p
⋃

n=1
Tn(A)

for each A ∈ C(X). Then T also satisfies

1

2
H(A, T (A)) ≤ H(A,B) implies H(T (A), T (B)) ≤ η(MT (A,B)).

for all A,B ∈ C(X), where η = max{ϕn : n = 1, 2, 3..., p}.

Proof. We shall prove this by induction. For n = 1, the statement is obviously
true. For n = 2, we have

H(T (A), T (B)) = H(T1(A) ∪ T2(A), T1(B) ∪ T2(B))

≤ max{H(T1(A), T1(B)), H(T2(A), T2(B))}.

Since each T1 and T2 are Suzuki type generalized ϕ-contractive, that is

1

2
H(A, T1(A)) ≤ H(A,B) implies H(T1(A), T1(B)) ≤ ϕ1(MT1

(A,B))

1

2
H(A, T2(A)) ≤ H(A,B) implies H(T2(A), T2(B)) ≤ ϕ2(MT2

(A,B)),

we get

H(T (A), T (B)) ≤ max{ϕ1(MT1
(A,B)), ϕ2(MT2

(A,B))}
= η(max{H(A,B), H(A, T1(A) ∪ T2(A)), H(B, T1(B) ∪ T2(B))})
= η(max{H(A,B), H(A, T (A)), H(B, T (B))})
= η(MT (A,B)),

where η = max{ϕ1, ϕ2}. �

As a consequence of Theorem 2.2, and Lemmas 3.1 and 3.3, we get following
result in fractal spaces.
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Theorem 3.4. Let (X, d) be a complete metric space and Tn : C(X) → C(X)
continuous Suzuki type generalized ϕ-contractive mappings. Then the transfor-

mation T : C(X) → C(X) defined by T (A) =
p
⋃

n=1
Tn(A) for each A ∈ C(X)

satisfies the following condition

1

2
H(A, T (A)) ≤ H(A,B) implies H(T (A), T (B)) ≤ η(M(A,B)).

for all A,B ∈ C(X), where η = max{ϕn : n = 1, 2, 3..., p}.
Moreover,

(A): T has a unique fixed point A in C(X); and
(B): lim

n→∞

T n(B) = A for all B ∈ C(X).

Remark 3.5. In view of Rhoades [21], Theorems 2.2 and 3.4, generalizes certain
results of [12, 23, 22, 32] and others.
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