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ABSTRACT

In this paper, the concept of k-upper semi-continuous set-valued map-
pings is introduced. Using this concept, we give characterizations of
k-semistratifiable and k-MCM spaces, which answers a question posed
by Xie and Yan [9].
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1. INTRODUCTION

Before stating the paper, we give some definitions and notations.

For a mapping ¢ : X — 2¥ and W C Y, the symbols ¢! [W] and ¢*[IV]
stand for {x € X : ¢(x) W # @} and {z € X : ¢(x) C W}, respectively.
A set-valued mapping ¢ : X — 2Y is lower semi-continuous (1.s.c) if ¢~ [W]
is open in X for every open subset W of Y. Also, a set-valued mapping ¢ :
X — 2V is upper semi-continuous (u.s.c) if #*[W] is open in X for every open
subset W of Y. For mappings ¢, d)' : X — 2Y, we express by ¢ C d)' if
o(x) C <Z)' (x) for each x € X. An operator ® assigning to each set-valued
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mapping ¢ : X — 2Y, ®(¢) : X — 2Y, @ is called as a preserved order operator
if ®(¢p) C ®(¢') whenever ¢ C ¢'.
For a space Y, define

F(Y)={F CY :F is anonempty closed set in Y}.

For a metric space (Y, p), a subset B of Y is called bounded if the diameter
of B (with respect to p) is finite, and we define

B(Y)={FCY:F #@,Fis closed and bounded in Y}.

A sequence {B),}nen of closed subsets of a space Y is called a strictly in-
creasing closed cover [10] if |J, .y Bn = Y and B, C By for each n € N.
For a space Y having a strictly increasing closed cover {B,}, a subset B of YV’
is said to be bounded [10] (with respect to {B,}) if B C B, for some n € N.
Define

B(Y;{B,})={F CY :F # @,F is closed and bounded in Y'}.

For a space Y with a strictly increasing closed cover {B,}, a mapping ¢ :
X — B(Y;{B,}) is called locally bounded at x if there exist a bounded set V
of (Y;{B,}) and a neighborhood O of x such that O C ¢*[V]; if ¢ is locally
bounded at each = € X, then ¢ is called locally bounded [10] on X. Let (Y, p)
be a metric space. For a mapping ¢ : X — F(Y), define

Uy = {z € X : ¢ is locally bounded at z with respect to p}.
Similarly, Let Y has a strictly increasing closed cover { B, }. We also define
Uy = {x € X : ¢ is locally bounded at x with respect to {B,})}

for a mapping ¢ : X — F(Y).

Clearly, Uy is an open set in X.

The insertions of functions are one of the most interesting problems in gen-
eral topology and have been applied to characterize some classical cover prop-
erties. For example, J. Mack characterized in [5] countably paracompact spaces
with locally bounded real-valued functions as follows:

Theorem 1.1 (J. Mack [5]). A space X is countably paracompact if and only
if for each locally bounded function h : X — R there exists a locally bounded
l.s.c. function g : X — R such that |h| < g.

C. Good, R. Knight and I. Stares [3] and C. Pan [6] introduced a mono-
tone version of countably paracompact spaces, called monotonically countably
paracompact spaces (MCP) and monotonically cp-spaces, respectively, and it
was proved in [3, Proposition 14] that both these notions are equivalent. Also,
C. Good, R. Knight and I. Stares [3] characterized monotonically countably
paracompact spaces by the insertions of semi-continuous functions. Inspired
by those results, K. Yamazaki [10] characterized MCP spaces by expansions of
locally bounded set-valued mappings as follows:
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Theorem 1.2 (K. Yamazaki [10]). For a space X, the following statements
are equivalent:

(1) X is MCP;

(2) for every space Y having a strictly increasing closed cover { By}, there
erists a preserved order operator ® assigning to each locally bounded
mapping ¢ : X — B(Y;{B,}), a locally bounded l.s.c. mapping ®(p) :
X = B(Y;{Bn}) with p € ®(p);

(3) for every metric space Y, there exists a preserved order operator ®
assigning to each locally bounded set-valued mapping ¢ : X — B(Y), a
locally bounded l.s.c. set-valued mapping ®(p) : X — B(Y) such that
¢ C (p);

(4) there exists a preserved order operator ® assigning to each locally bounded
mapping ¢ : X = B(R), a locally bounded l.s.c. mapping ®(p) : X —
B(R) such that ¢ C ®(p);

(5) there exists a space Y having a strictly increasing closed cover {Bp},
there exists a preserved order operator ® assigning to each each lo-
cally bounded mapping ¢ : X — B(Y;{Byn}), a locally bounded l.s.c.
mapping ®(¢) : X = B(Y;{B,}) such that ¢ C ®(p).

Recently, Xie and Yan [9] gave the following characterizations of stratifiable
and semistratifiable spaces by expansions of set-valued mappings along same
lines, and asked whether there are similar characterizations for k-MCM and
k-semistratifiable spaces.

Theorem 1.3 (Xie and Yan [9]). For a space X, the following statements are
equivalent:

(1) X is stratifiable(resp. semi-stratifiable);

(2) for every space Y having a strictly increasing closed cover { By}, there
exists a preserved order operator ® assigning to each set-valued map-
ping ¢ : X — F(Y), an ls.c. set-valued mapping ®(p) : X — F(Y)
such that ®(p) is locally bounded(resp. bounded) at each x € U, and
that ¢ C ®(p);

(3) for every metric space Y, there exists a preserved order operator ®
assigning to each set-valued mapping ¢ : X — F(Y), an ls.c. set-
valued mapping ®(p) : X — F(Y) such that () is locally bounded
(resp. bounded) at each x € U, and that ¢ C ®(p);

(4) there exists a preserved order operator ® assigning to each set-valued
mapping ¢ : X — F(R), an ls.c. set-valued mapping ®(p) : X —
F(R) such that ®(¢p) is locally bounded (resp. bounded) at each x € U,
and that o C (p);

(5) there exist a space Y having a strictly increasing closed cover {Bp}
and a preserved order operator ® assigning to each set-valued mapping
v: X = F(Y), an Ls.c. set-valued mapping ®(p) : X — F(Y) such
that ®(y) is locally bounded (resp. bounded) at each x € U, and that
¢ C 2(p).
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Recently, Xie and Yan posed the following question:

Question 1.4 (]9, Question 3.3]). Are there monotone set-valued expansions
for k-stratifiable spaces and k-MCM along the same lines?

The purposes of this paper is to attempt to answer this question by the
concept of k-u.s.c set-valued mappings.

Throughout this paper, all spaces are assumed to be regular, and all unde-
fined topological concepts are taken in the sense given Engelking [2].

2. MAIN RESULTS

In this section we shall give characterization of k-MCM and k-semi stratifi-
able spaces. The following concept plays an important role in this paper.

Definition 2.1. For a space Y with a strictly increasing closed cover {B,},
a mapping ¢ : X — B(Y;{B,}) is called k-upper semi-continuous (k-u.s.c.) if
for every compact subset K of X, ¢(K) is bounded.

Obviously, for every space Y with a strictly increasing closed cover {B,}
satisfying B,, C Int By,4+1 and mapping ¢ : X — B(Y;{B,}):

¢ is u.s.c = ¢ is locally bounded = ¢ is k-u.s.c..

Firstly, we shall give the characterization of k-MCM by expansion of set-
valued mappings. Peng and Lin gave the kS characterization as following.
They renamed the k8 as k-MCM in [7].

Proposition 2.2 ([7]). For a space X, the following statements are equivalent:

(1) X is k-MOM;

(2) there is an operator U assigning to a decreasing sequence of closed
sets (Fj)jen with (;enFj = @, a decreasing sequence of open sets
(U(n, (F)))nen such that

(i) F, CU(n,(F;)) for each n € N;
(ii) for any compact subset K in X, there is ng € N such that
U(n07(Fj))nK =9;
(iii) given two decreasing sequences of closed sets (Fj)jen and (Ej)jen
such that F,, C E,, for eachn € N and that ﬂjeN F; = ﬂjeN E; =
@, then U(n, (F;)) CU(n,(E;)), for each n € N.

Theorem 2.3. For a space X, the following statements are equivalent:

(1) X is k-MCM;

(2) for every space Y having a strictly increasing closed cover { By}, there
exists a preserved order operator ® assigning to each locally bounded
set-valued mapping ¢ : X — F(Y), an ls.c. and k-u.s.c. set-valued
mapping ®(p) : X — F(Y) such that ¢ C ®(p);

(3) for every metric space Y, there exists a preserved order operator ®
assigning to each locally bounded set-valued mapping ¢ : X — F(Y),
an l.s.c and k-u.s.c set-valued mapping ®(p) : X — F(Y) such that

© C P(p);
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(4) there exists a preserved order operator ® assigning to each locally bounded
set-valued mapping ¢ : X — F(R), an lLs.c. and k-u.s.c. set-valued
mapping ®(p) : X — F(R) such that ¢ C O(yp);

(5) there exists a space Y having a strictly increasing closed cover {B,},
there exists a preserved order operator ® assigning to each locally bounded
set-valued mapping ¢ : X — F(Y), an lLs.c. and k-u.s.c. set-valued
mapping ®(¢) : X — F(Y) such that ¢ C ®(p).

Proof. The implications of (2)=-(3)=(4)= (5) are trivial.

(1)= (2). Assume that X is a k-MCM space. Then there exists an operator
U satistying (i), (ii) and (iii) in Proposition 2.2.

Let Y be a space having a strictly increasing closed cover {B,}. For each
locally bounded set valued mapping ¢ : X — F(Y) and each n € N, define
Fn, = {z € X :¢(x) € By}. Then we have that (), oy Fn,, = @. Indeed,
since ¢ is locally bounded for each z € X there exist an open nelghborhood
V of 2 and some i € N such that p(y) C B; for each y € V, which implies
that V'.N F;, = @. It implies that ¢ F;, and (), oy Fn,, = @. Define
D(p) : X — F(Y) as follows: ®(p)(z) = By whenever x € X — U( (Fnp)),
®(¢)(x) = Bijt1 whenever x € U(i, (Fy, ) — Ui + 1, (Fp,p))-

Then, ®(yp) is lower semi-continuous. To see this, let W be an open subset
of Y and put k = min {i € N: WN B; # @}. Then, one can easily check that
(@() ' W] =U(k —1,(F,.p)) (we set U0, (F,,,)) = X). This implies that
() is lower semi-continuous.

Let K be a compact subset of X, then there exists k& € N such that K (U (k+
1, (Fn,s)) = @. It implies that ®(p)(K) C Bgy1. Hence ®(¢p) is k-upper semi-
continuous.

To show that ¢ C ®(p). For each z € X, there exists some ¢ € N such
that © € U(i — 1,(F,0)) \ U(i, (Fn,p))(we set U(0, (Fy,,)) = X). Since = ¢
Ui, (Fp,p)), we have = ¢ F; . Hence, p(z) € B; = ®(¢)(x). This completes
the proof of ¢ C ®(ip).

Finally, to show that ® is order-preserving, let v, ¢’ : X — F(Y) be set-
valued mappings such that ¢ C ¢'. Then, F; , C F; , for each i € N, and
therefore, by (iii) of Proposition 2.2, we have U (i, (Fy,,)) € U(%, (Fp,,)) for
each ¢ € N. For each € X. Then, ®(¢')(z) = B for some k' € N. This
implies that z € U(k' — 1, (Fy,0)) \ U(k’ (Fn,p))- Similarly, ®(¢)(x) = By, for
some k € Nand z € U(k — ,( o) \U(k, ( F,)). Clearly, k < k’. Hence,
®(p)(z) = By € B = <I>(<p’)(:c). "This completes the proof of ®(¢) C P(¢’)
whenever ¢ C ¢'.

(5) = (1). Let Y be a space having a strictly increasing closed cover {B,}
possessing the property in (5). Let (F}) en be a sequence of decreasing closed
subsets of X with ﬂJeNF = J. Define a set-valued mapping ¢(r;) : X —
F(Y) as follows: ¢(p,)(z) = Bo whenever x € X — F1, ¢r,)(z) = Biy
whenever @ € F; — Fi1. Then, ;) is locally bounded. By the assumptions,
there exists a preserved operator ® assigning to each p(r,), an ls.c. and k-
w.s.c set-valued mapping ®(¢(r;)) : X — F(Y) such that o) C (o(x,))-

© AGT, UPV, 2018 Appl. Gen. Topol. 19, no. 1 |149



P.-F. Yan, X.-Y. Hu and L.-H. Xie

For every n € N, define
Un, (Fy)) = X = (®(¢(r))* [Bn]
It suffices to show the operator U satisfies (i), (ii) and (iii) of Proposition

2.2
Since p(r;) € ®(p(r,)), for each n € N we have

Fo © X\ (¢(r))¥[Bn] € X\ (2(¢(r)))*[Bul = U(n, (Fy)).

In addition, ®(¢(r,)) is lower semi-continuous, so U(n, (F})) is an open set of
X for each n € N. This shows that the condition (i) is satisfied.

For each z € X, ®(p(f;))(x) is bounded, so there exists some ny € N
such that =z € (@(cp(Fj)))“[BnO]. It implies that ¢ U(no, (F})). Hence,
ﬂneN U(Tl, (FJ)) =d.

Let K be a compact subset of X, then ®(¢(f;)) (/) is bounded. There exists
some ko € N such that K C (@(cp(Fj)))“[BkO]. It implies that K (U (ko, (F})) =
.

Finally, we show the operator satisfies (iii). Let (Fj)jen and (F})jen be
sequences of decreasing closed subsets of X such that F; C F; for each j € N.
Then one can easily show that ¢r) C ¢( Fl)s hence by the assumption, we
have ®(¢(r,)) C (I)(go(pjg)). Therefore,

U(n, (Fy) = X\ (®(p(r;) [Ba] € X\ (D(p(r)))*[Bn] = Ul(n, (F}))
holds for each n € N. Thus, X is a k-MCM space. (]

Next, we consider the k-semi-stratifiable space.

Definition 2.4. A space X is said to be semi-stratifiable [1], if there is an
operator U assigning to each closed set F', a sequence of open sets U(F) =
(U(n, F))nen such that

(1) FCU(n,F) for each n € N;

(2) if D C F, then U(n,D) C U(n, F) for each n € N;

(3) Noen Un, F) = F.
X is said to be k-semi-stratifiable [4], if, in addition, (3’) obtained from (3) by
requiring (3) a further condition ‘if a compact set K such that K F = &,
there is some ng € N such that K (U(no, F) = @’

The following result was proved in [8]. For the completeness, we give its
proof.

Proposition 2.5. For any topological space X, the following statements are
equivalent:

(1) space X is k-semistratifiable;

(2) there is an operator U assigning to a decreasing sequence of closed sets

(Fj)jen, a decreasing sequence of open sets (U(n, (F;)))nen such that
(i) F, CU(n,(F;)) for each n € N;
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(ii) for any compact subset K in X, if (|, cnFn N K = @, there is
ng € N such that U(no, (F;)) N K = &;

(iii) Given two decreasing sequences of closed sets (F;)jen and (Ej)jen
such that F,, C E,, for each n € N, then U(n, (F})) C U(n, (E;))
for each n € N.

Proof. (1) = (2) Let Uy be an operator having the properties: (1), (2) and (3')
in Definition 2.4. Given any decreasing sequences of closed sets (F}) en, we
can define an operator U by

U((F;)) = (U(n, (F})))nen, where U(n,(F;)) =Uy(n,F,) foreach neN.

We shall prove that the operator U has the properties (i)-(iii) in (2). Because
of Uy having properties (i) and (ii) in Definition 2.4, one can easily verify that
U has the properties (i) and (iii) in (2). We show that the property (ii) in
(2) holds for U. Take any decreasing sequences of closed sets (F},)nen and any
compact subset K in X such that ﬂneN F,NK = @. Then, there exists ng € N
such that F,,, N K = @. Since X is k-semi-stratifiable, there is ¢ € N such that
Uo (i, Frg)NK = @. If i < ng, we have U(ng, (F,,))NK = Up(ng, Fn,) N K = &;
If i > ng, we also have U (4, (F},)) N K = Uy(i, F;) N K = @. Hence the operator
U holds for (ii).

(2) = (1) Let Uy be an operator having the properties (i)-(iii) in (2). Given
any closed set F' in X by letting F;, = F for each n € N, we can define an
operator U by

U4, F) = Uo(4, (Fn))  where  (Uo(4, (Fn)))jew = Uo((Fn))-

One can easily verify that the operator U has the properties in Definition
2.4. O

Theorem 2.6. For a space X, the following statements are equivalent:

(1) X is k-semistratifiable;

(2) for every space Y having a strictly increasing closed cover { By}, there
exists a preserved order operator ® assigning to each set-valued map-
ping ¢ : X — F(Y), an ls.c. set-valued mapping ®(p) : X — F(Y)
such that ®(¢)y,, is k-u.s.c. and ¢ C ®(p) ;

(3) for every metric space Y, there exists a preserved order operator ®
assigning to each set-valued set-valued mapping p : X — F(Y), an l.s.c
set-valued set-valued mapping ®(p) : X — F(Y) such that ®(p)y, is
k-u.s.c. and ¢ C D(p);

(4) there exists an order-preserving operator ® assigning to each set-valued
set-valued mapping ¢ : X — F(R), an ls.c. set-valued mapping () :
X — F(R) such that ®(¢) |y, is k-u.s.c and ¢ C ®(p);

(5) there exists a space Y having a strictly increasing closed cover {B,},
there exists a preserved order operator ® assigning to each set-valued
set-valued mapping ¢ : X — F(Y), an l.s.c set-valued mapping P(p) :
X — F(Y) such that ®(p)|y, is k-u.s.c. and p C O(p).
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Proof. The implications of (2)=-(3)=(4)= (5) are trivial.

(1) = (2). Assume that X is a k-semistratifiable space. Then there exists
an operator U satisfying (i), (ii) and (iii) in Proposition 2.5. Let Y be a space
having a strictly increasing closed cover {B,}. For each set-valued mapping
¢: X — F(Y) and each n € N, define F,, , = {x € X : ¢(z) ¢ B,}.

Then we have U, = X \(,,cy Fn,o- Indeed, for each 2 € Uy, then there exists
an open neighborhood V of z and some i € N such that ¢(y) C B; for each
y € V, which implies that V' () F; , = @. It implies that U, € X — (), cn Fhn,e-
On the other hand, take any y € X — [,y Fn,- Then there is F} , such that
y ¢ Fj,, and therefore, there exists an open neighborhood V' of y such that
VNn{zeX:¢(x) < B} =o. It implies that y € V C U,,.

Define ®(p) : X — F(Y) as follows: ®(p)(x) = By whenever x € X —
U0, (Fup)), ®()(@) = Bisa whenever z € Ui, (Fo ) ~U(i+1, (o)), ®(0) (@) =
Yifze X -U,.

Then, ®(¢p) is lower semi-continuous and ¢ C ®(p). We only need to show
that ®(¢)|y, is k-us.c.

Let K be a compact subset of U,. By Proposition 2.5, there exists k € N
such that KU(k+ 1, (Fn,,)) = @. It implies that ®(¢)(K) C B1.

(5) = (1). Let Y be a space having a strictly increasing closed cover {B,}
possessing the property in (5). Let (F}) en be a sequence of decreasing closed
subsets of X. Define a set-valued mapping ¢(r,) : X — F(Y) as follows:
¢(r;) () = By whenever x € X — Fy, p(p,)(z) = Biy1 whenever v € F; — Fiy1,
) (x)=Yifzxe X - ﬂieN F;. By the assumptions, there exists a preserved
operator ® assigning to each ¢(r,), an l.s.c set-valued mapping @(cp(Fj)) X =
F(Y) such that ®(¢) is k-us.c. and ¢(p;) C ®(p(F,)). For every n € N,
define

|U<P(Fj)

U(n, (Fy)) = X — (®(o(,))* [Bal.

It suffices to show the operator U satisfies (i), (ii) and (iii) of Proposition 2.5.
The proof that the operator U satisfies (i) and (iii) of Proposition 2.5 is as
same as Theorem 2.3, so we only shows that the operator U satisfies (ii) of
Proposition 2.5.
Let K be a compact subset of X satisfying KN((,,cy Fn) = &, then K C U,,.

There exists k£ € N such that ®(p(F};))(K) C Bi. Hence K NU(k, (F})) = @.
Thus, X is a k-semistratifiable space. (I
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