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ABSTRACT

This paper considers some various categorical aspects of the inverse
systems (projective spectrums) and inverse limits described in the cat-
egory ifPDitop, whose objects are ditopological plain texture spaces
and morphisms are bicontinuous point functions satisfying a compat-
ibility condition between those spaces. In this context, the category
Invisppitop consisting of the inverse systems constructed by the objects
and morphisms of ifPDitop, besides the inverse systems of mappings,
described between inverse systems, is introduced, and the related ideas
are studied in a categorical - functorial setting. In conclusion, an iden-
tity natural transformation is obtained in the context of inverse systems
- limits constructed in ifPDitop and the ditopological infinite products
are characterized by the finite products via inverse limits.
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1. INTRODUCTION AND PRELIMINARIES

Just as the methods used to derive a new space from two or more spaces are
the products, subtextures and quotients of that spaces, so the another effective
method is the theory of inverse systems ( projective spectrums) and inverse
limits (projective limits).
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The origins of the study of inverse limits date back to the 1920 ’s. Classi-
cal theory of inverse systems and inverse limits are important in the extension
of homology and cohomology theory. An exhaustive discussion of inverse sys-
tems which are in the some classical categories such as Set, Top, Grp and
Rng defined in [1], was presented by the paper [5] which is a milestone in the
development of that theory.

As is the case with products, the inverse limit might not exist in any category
in general whereas inverse systems exist in every category. Note from that
[5] inverse limits exist in any category when that category has products of
objects and the equalizers [1] of pairs of morphisms, in other words, the inverse
limits exist in any category if the category is complete, in the sense of [1].
Additionally, an inverse system has at most one limit. That is, if an inverse
limit of any inverse system exists in any category €, this limit is unique up to
C-isomorphism. Incidentally, inverse limits always exist in the categories Set,
Top, Grp and Rng. Note also that inverse limits are generally restricted to
diagrams over directed sets.

Similarly, a suitable theory of inverse systems and inverse limits for the
categories consisting of textures and ditopological spaces is handled first-time
in [17] and [18].

Incidentally, let ’s recall the notions of texture and ditopology introduced in
1993, by Lawrence M. Brown : For a nonempty set S, the family 8 C P(5)
is called a texturing on S if (8, C) is a point-separating, complete, completely
distributive lattice containing S and @, with meet coinciding with intersection
and finite joins with union. The pair (5, 8) is then called a tezture. If § is closed
under arbitrary unions, it is called plain texturing and (S,8) is called plain
texture. Since a texturing 8 need not be closed under the operation of taking
the set-complement, the notion of topology is replaced by that of dichotomous
topology or ditopology, namely a pair (7, k) of subsets of 8, where the set of open
sets T and the set of closed sets k, satisfy the some dual conditions. Hence a
ditopology is essentially a “topology” for which there is no a priori relation
between the open and closed sets. In addition, a ditopological texture space
or shortly ditopological space with respect to a ditopology (7, k) on the texture
(S,8) is denoted by (5,8, T, k).

There is now a considerable literature on the theory of ditopological spaces.
An adequate introduction to this theory and the motivation for its study may
be obtained from [2, 3, 4, 8, 9, 10, 13]. As will be clear from these general
references, it is shown that ditopological spaces provide a unified setting for the
study of topology, bitopology and fuzzy topology on Hutton algebras. Some of
the links with Hutton spaces and fuzzy topologies are expressed in a categorical
setting in [14]. In addition, there are close and deep relationships between the
bitopological and ditopological spaces as shown in [11, 12] and [15, 16]. In this
study, we will use those close relationships insofar as the inverse systems and
their inverse limits are concerned in a categorical view.
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As it is stated before, in [2, 3, 4] we have a few methods, such as product
space, subtexture space and quotient space, to derive a new ditopological space
from two or more ditopological spaces just like classical case. Recently, it is
seen in [17, 18] that the another method used to construct a new ditopological
space is the theory of ditopological inverse systems and their limit spaces under
the name ditopological inverse limits as the subspaces of ditopological product
spaces described in [3, 4, 18].

There are considerable difficulties involved in constructing a suitable theory
of inverse systems for general ditopological spaces. Hence, in [17] we confined
our attention to a special category whose objects are plain textures, and the
basic properties of inverse systems and their inverse limits are investigated in
the first-time for texture theory in the context of that category. Accordingly,
the various aspects of the inverse systems - limits for texture theory are inves-
tigated for plain case and placed them in a categorical - functorial setting.

Later, in [18], the theory of inverse systems and inverse limits is handled
first-time in the ditopological textural context and we gave a detailed analysis
of the theory of ditopological inverse systems and inverse limits insofar as the
category ifPDitop whose objects are the ditopological texture spaces which
have plain texturing and morphisms are the bicontinuous, w-preserving point
functions, is concerned. (For a detailed information and some basic facts about
the point-functions between texture spaces, see [3, 10, 11]).

By the way, no attempt isn 't made at the direct systems of ditopological
spaces even plain ones, and their (direct) limits as the dual notions of inverse
limits.

Returning to work at the moment, our main aim in the present paper is
to give some further results on the theory of inverse systems and their inverse
limits in the context of category ifPDitop. Especially, this paper will present
some intriguing connections between the bitopological inverse systems - limit
spaces and their ditopological counterparts, in a categorical - functorial setting.
Here we will continue to work within the same framework given in [17, 18] that
are the major sources of the topic on which we study.

According to that, frequent reference will be made to the author ’s papers
[17] and [18] which present all details related to the subjects inverse system
and inverse limit constructed in the textural context for the plain case, besides
providing some useful historical information located in the literature about
inverse systems. Otherwise, this paper is largely self-contained although the
reader may wish to refer to the literature cited in these papers, for motivation
and additional background material specific to the main topic of this paper.
Especially, the significant reference in the general field of inverse system theory
is [5] and in addition, the reader is referred to [6] for the information about the
inverse systems consisting of topological spaces.

Specifically, the reader may consult [7] for terms from lattice theory not
mentioned here. In addition, we follow the terminology of [1] for all the general
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concepts relating to category theory. Thus, if A is a category, Ob A will denote
the class of objects and Mor A the class of morphisms of A.

In this paper, generally we have tried to give enough details of the proofs to
make it clear where various of the conditions imposed are needed, but at the
same time to avoid boring the reader with routine verifications.

Accordingly, this paper consists of six sections and the layout of paper is as
follows:

After presenting some background information via the references mentioned
in the first section, we introduce and study the category Invisppitop in Sec-
tion 2, mainly. For the paper, it will denote the category whose objects are
the inverse systems constructed by the objects of ifPDitop and morphisms
are the inverse systems of mappings in the sense of mappings defined between
inverse systems. Following that, by describing another related categories and
the required functors between the corresponding categories which have some
useful properties, we continued to discuss various aspects of the inverse systems
and their limits in ifPDitop. In addition, there is a close relationship between
ditopological spaces restricted to plain textures and bitopological spaces, as
exemplified by a special functor isomorphism given in that section. Hence,
we are interested in the connections between bitopological and ditopological
inverse systems together with their limits, via that isomorphism. In the end
of this section, as one of the principal aims of paper, we obtained an identity
natural transformation constructed between the related appropriate functors,
described via those connections just mentioned. Specifically, this section con-
tains some examples and other results that are important in their own right
and which will also be needed later on.

In a similar way, in Section 3 we presented a few connections between the
category of topological spaces and the category ifPDitop insofar as the inverse
systems and their inverse limits are concerned in a categorical setting.

Besides these, in Section 4 we investigated the effect of closure operators on
inverse systems and limits in ifPDitop, with respect to the joint topologies
correspond to the ditopologies located on those inverse systems and limits.

A significant characterization theorem which says that by applying the in-
verse limit operation, any cartesian products of ditopological plain spaces which
are the objects of ifPDitop can be expressed in terms of the finite cartesian
products of those spaces, is proved in Section 5. Following that, this section
ends with two principal corollaries of that characterization.

As the last part of paper, Section 6 gives a conclusion about the whole of
this study.

2. RELATIONSHIPS BETWEEN THE INVERSE SYSTEMS-LIMITS IN THE
CATEGORIES OF BITOPOLOGICAL AND DITOPOLOGICAL SPACES

In this section, firstly, let ’s recall all the considerations presented in [12,
Section 2] as follows:
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Let Bitop be the category whose objects are bitopological spaces and mor-
phisms are pairwise continuous functions, and the category ifPDitop, intro-
duced in [18], is known from the previous section.

Accordingly, consider the mapping 4 from ifPDitop to Bitop by
U((S, 8,75, k5) 2 (T, T, 77, k7)) = (S, 75, KS) = (T, 71, KS).

It is trivial to verify that this is indeed a functor and we omit the details.

When applied to many important ditopological spaces, such as the unit
interval and real space, the corresponding ditopological Ty axiom as a separation
axiom is described as

Qs £ Qr =— IC eTUk with P £ C € Q
and it behaves more like the bitopological weak pairwise Ty axiom,
zeyg'Ny’andy €T NI’ = xz=y.
Why this is so, at least in the case of plain textures, we now see by setting up
a new functor in the opposite direction of .
To define the suitable functor such that preserves Ty axiom, we restrict
ourselves to weakly pairwise T bitopological spaces (X, u,v), and consider the

smallest subset XK, of P(X) which contains ©Uv® and is closed under arbitrary
intersections and unions. Clearly the elements of X, have the form

(21)  A=[()4;, where A; =U; U [ J{(V/)° | V/ €}, Ujeu, je I
jeJ i€l
In summary, for a weakly pairwise T bitopological space (X, u,v), the set
u U v® generates a texturing, denoted by X,, on X.

Moreover, it is easy to verify that X, is a plain texturing of X since it sepa-
rates points, by using the property “weakly pairwise Ty” of the space (X, u, v).
Finally, we have the plain ditopological space (X, Xy, u,v¢) € ObifPDitop
satisfying the ditopological Ty separation axiom.

Specifically, for a space (5,8, 7, k) € ObifPDitop the equality K,z = 8 is
known from [12, Corollary 3.8].

With all these considerations, this process gives a mapping between the
subcategory Bitop,,o of Bitop, consisting of weakly pairwise Ty bitopological
spaces - pairwise continuous functions and the subcategory ifPDitop of if-
PDitop, consisting of Ty ditopological spaces and bicontinuous, w-preserving
point functions, as follows:

ﬁ((Xv uXavX) i) (Yv uYavY)) = (Xa :KuxvxauXavg() & (Yv KuyﬂyvuYavff)

Clearly, it defines a functor §) : Bitop,,, — ifPDitop, as mentioned in [9].
Note that this concrete functor is a variant of the functor with the same name
considered in [12, 15] in connection with real dicompactness.

We are now in a position to give two examples denote the importance of the
functor $).
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Example 2.1.

(1) The unit interval  ditopological  space (I, J, 7, ki) €
Ob ifPDitop,, is the image of the bitopological space (I, uy, v;) € Ob Bitopy,
under $, where 71 = ur = {[0,7) | r € I} U{I} and §f = vy = {(r, 1] |
r eI} U{l}.
(2) The real ditopological space (R, R, Tr, kr) € ObifPDitop, is the image
of the bitopological space (R, ug,vg) € ObBitop,,, under ), where
TR =ur = {(—o00,7) | r€ R}U{R,&} and x§ = vg = {(r,00) | 7 €
R} U{R, o}.

It may be verified that §) preserves the other basic ditopological separation
axioms, besides Ty axiom. Consequently, we have the following fact from [9, 12]:

Theorem 2.2. §) is a concrete isomorphism between the constructs Bitopwo
and ifPDitopg.

Remark 2.3. In view of the above statements, the equalities 4 o ) = 1Bitopuwo
and $ o U = 1ipDitop, are trivial for the functor U : ifPDitopy, — Bitop,
defined as above. Hence, 4 is the inverse of §) as an isomorphism functor.
Incidentally, it is concrete isomorphism since il is identity carried, as well.

Now, we can turn our attention to the inverse systems and their inverse
limits constructed in ifPDitop, in the light of [18]. Before everything, note
that:

Remark 2.4. The inverse systems constructed by the objects and morphisms of
the category ifPDitop, which are the bonding maps satisfying some conditions
given in [18, Definition 3.1], have an inverse limit space described as in [18,
Definition 4.1], since ifPDitop has products and equalizers as stated in [18,
Corollary 2.6]. Also, the uniqueness of the limit space in the category ifPDitop
was mentioned just before [18, Examples 4.5]. Hence, the operation 1i<£n will be

meaningful for the inverse systems given in the context of that category.

Notation: According to the major theorem given as [18, Theorem 4.6], if take
the inverse system {(Sa,8a, Ta; Fa)s Pas to>p constructed in ifPDitop, over a
directed set A, then the notations (7o, Koo ) and (Soo, Soos Too, Koo ) Will be used
as inverse limit ditopology and (ditopological) inverse limit space, respectively,
where S, = liin{Sa}, in the remainder of paper.

According to let ’s take a glimpse of the mappings between inverse sys-
tems: Consider two inverse systems A = {(Sq4,84;Ta, Fa)s Pasta>p and B =
{(To; Ta, 7Ly KL Yapta>p over A described in ifPDitop, as in [18, Defini-
tion 3.1]. Take into consideration [17, Definition 3.9] which introduces the
notion inverse system of mappings or mapping of inverse systems denoted by
{ta} : A — B, consisting of the components ¢, € MorifPDitop, satisfying the
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equality ¥gq 0 tg = to 0 Yga, that is, the commutativity of diagram

s

l‘ﬂﬁu lwﬁa
ta

Sog —— T,

which associates the bonding maps with the components t,. Hence, by recalling

the notion inverse limit space with the notation Sy, defined as in [18, Definition

4.1] and the map too = lim{#4 }aea defined in [17, Theorem 4.14], called inverse
<

limit map of the inverse system {¢,} of mappings, now let ’s focus on the
following crucial theorem proved in [18, Theorem 4.24]:

Theorem 2.5. Let {to} : {(Sa;8a;Tas ka), P8ats>a = {(Ta, Ta, Ths L), Vot B>a
be an inverse system of mappings in ifPDitop, over a directed set A. Then
there exists a unique map to, € Mor ifPDitop between the spaces (Soo, Soo, Toos Koo)
and (Teo, Too, Thy, Kby ) having the property that for each o € A jthe diagram

Sy — = o1

l/ta l"]a
t

Sa%Ta

is commutative, that is to, 0 flo, = Mg © too-
In this case,

i) If each t, is an ifPDitop-isomorphism, ts is an ifPDitop-isomorphism.
il) If each ty o o 18 surjective, too(Seo) 18 jointly dense in Too.

Notations: In this study, Inve denotes the category whose objects are the
inverse systems constructed by the objects of category € and morphisms are
the mappings of inverse systems, described as just before Theorem 2.5, namely,
the inverse systems of C-morphisms defined between the objects of C.

Particulary, the following notation will be required for the remainder of paper,
mostly:

Invisppitop, Will denote the category consisting of inverse systems constructed
by Ty ditopological plain texture spaces as objects of ifPDitopg, and by the
mappings between inverse systems, namely, the inverse systems of mappings
defined as in Theorem 2.5.

Incidentally, we have the following categorical fact about the inverse systems
due to [18, Remark 3.2]:

Remark 2.6. An inverse system in any category admits an alternative descrip-
tion in terms of functors. A directed set A becomes a category if each relation
a < [ is regarded as a map a — (3, that is the morphisms consist of arrows
a — B if and only if a < 5. Then,
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Any inverse system in the category ifPDitop over the directed set A is
actually a contravariant functor from A to ifPDitop.

In the light of Remark 2.6, note that the objects and morphisms of InvispDitop
may be regarded as the functors and natural transformations, respectively.

Example 2.7. If {(Sa, UasVa), faptea>p € ObInveitop,, then the system
{(Sas Kugvgs Ua, V), Pasta>p consisting of the spaces $H(Sq,Ua,Ve) =
(Sa, Ky v, > Ua, vS) € ObifPDitopy, corresponding to the bitopological spaces
(SasUas Vo) € ObBitop,,o, describes an inverse system via the isomorphism
functor $) given in Theorem 2.2 and all the above considerations. Trivially, this
system is an object of InvifpDitop, -

Now, by taking into account Example 2.7, immediately we have the follo-
wing:

Example 2.8. If (Su, Uoo, Vo) € ObBitopywo is the inverse limit of the in-
verse system {(Sa,Ua,Va); fasta>p € ObINVBitopy, then the corresponding
plain space (Soo, Kuovo > Uso, VS,) € ObifPDitopg is the inverse limit of cor-
responding inverse system {(Sa,Ku, v.sUa;Vs), Papta>s € ObINViepbitopes
where o3 = fop for o > . Let ’s prove it:

First of all, recall the fact Soo C [[Sa. Thus, it is clear that us =
([Tua)lse = (Qua)ls.. since the textgral and classical products of topolo-
gi?ss are coincidz by the plainness property. On the other hand, similar to
the explanations given in [15, Section 3] we have vS, = (@ vS)|s., since
(Qva)ls.. = ([[va)ls.. = veo and by [3, Lemma 2.7 Whicha is peculiar to
thae theory of prgduct ditopologies.

Hence, it remains to prove the equality Ky v, = (@Q Kuyve)ls.- For it,

«
we can show that the types of elements of these two families are absolutely the
same:

If Ae X, then let ’s recall the form of A as follows:
A= (A4, where A; =U; U | J{(V/)* | V/ €vac}, Uj € o, j €T
= i€l
Here, V7 € voo = ([Jva)ls.. and so VI = €9 N S.,, where ¢V € [[vq. In this
« «

case, for TJ € v, €7 = JN 73 T4.] and so (V) = MU S, \ T2.]).

?

Similarly, U; = Bj N Se where B; € @uq, and so U; = (U7, [G4,]) N
«

Soo where GJa € Uq,, by the definition of product topology. Hence, A; =
(UN(Tals) HELDUUN(Ta, 5. )~ Sa, \TE,]) and finally, by the fact that
A =jes A wehave A = N, [(UN(Ta,l5.) T GLDUUN(Ta, s ) S\
Tl
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On the other hand, if B € (Q Ky, v, )|s.. then B = M NSy where M €

® Ky v, In this case, M = N U 7, [Ka], where K, € Ky ,,. Thus,
acl aecl

we have the form K, = (] D2, where D¢ = W& U U;cr {Sa \ (Z))* |
jeJ ’
(Z])* € va}, W;™ € uq, j € J. Hence Ko = ((U;* U (USa \ (Z])%)),
and so M = ﬂ(U(wj_l[ﬂ(Wja UUSa \ (Z7)?])). In this case, with B =
MNSo we have B = (U(((m]s..) " N WU (515..) N US N (Z)))])] =
NUNm ls.) T HWRTUNU s ) HSa \ (27)7])-
Consequently, it is easy to check that the sets A and B have the same type if

consider GJa as W and To{ as Zf by neglecting the details of indices, as well
as by leaving the other details of required equality to the interested reader.

Now, let ’s recall the notion of inverse limit map introduced in [17, Theorem
4.14] as a notion of peculiar to the texture theory, as well as mentioned in
Section 1. Accordingly, in order to prove the next theorem, we need a special
property of inverse limits maps, which is proved in the following:

Proposition 2.9. Consider {hqo} : {(Sa,;84): ¥8ata<s = {(Ta, Ta), ¥8ata<s
and {ga} : {{(Ta,Ta); Vsata<p = {(Zas Za); P8a ta<p between the inverse sys-
tems of textures then {ga © ha} : {(Sa;8a), ¥8ata<p = {(Za,Za); Dpata<p is
also a mapping of inverse system and

hin{ga o ha}ael\ = Hin{ga}ae/\ © 1i£1{ha}a€1\

Proof. At first, we define the composition operation for the mappings of inverse
systems as follows :

{ga} o {ha} - {ga © ha}
by using the composition operation on the morphisms of ifPDitop.

On the other hand, because of the first inverse system, we have the equality
Vga © hg = hga © paa by the commutativity of related diagram constructed
between the sets Sy, Ty, Soo and T,. Similarly, from the second inverse system,
we have the equality ¢ga © g8 = gaa © Vo by the commutativity of related
diagram constructed between the sets Ty, Zq, Too and Zo.

Hence, by considering the above two equalities, we have the result:

$pa © (98 0 hp) = (ga © ha) © Ppa

In fact, it says that {g, © hqa} becomes an inverse system of mappings by [17,
Definition 3.9].

Therefore, now we can look at the commutativity of diagram. Firstly, recall
Hea © hoo = he 0 Ao and 7, © goo = ga © fa by [17, Theorem 4.14]. Thus, due to
these equalities, we have
0.2 (goo0hoo) = (M0 ©go0) 9 oo = (ga O tta) 9o = ga©(fa©hoo) = (gaoha)oAa

and so the related diagram is commutative. Finally, from the uniqueness of
inverse limit maps, mentioned in Theorem 2.5, the required result lim{g, o
+—
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hatach = goo © hoo is proved. That is, lim{gy © ha}acar = Um{ga}aca ©
— —

lim{hq }aca- O

—

Remark 2.10. For the remainder of paper, we will use the above final equality
under the name transitivity property of inverse limit maps.

From Remark 2.4, the inverse systems which are the objects of Invisppitop
have a unique inverse limit space as an object of ifPDitop. With the reference
to this fact, we have the following immediately;

Theorem 2.11. The limit operation lim of assigning an inverse limit in ifPDi-
+—

top to each object in Invirppitop and an inverse limit map to, € Mor ifPDitop
to each inverse system {ta}o € MorInvieppitop 0of maps t, € MorifPDitop,
forms the covariant functor lim : Invippitop — ifPDitop.

+—

Proof. Let ’s recall that for each inverse system which is an object of Invisppitop,
we can obtain an inverse limit space in ifPDitop and moreover, it is unique
by Remark 2.4. Now, according to Theorem 2.5, if take the morphism {4} :
{(Scw Sas Tas Ka)v @ﬂa}BZa — {(Tcw Tas T!x? K:x)v wﬂa}ﬁza in InvifPDitOP then
there exists a unique map to = 1i£n{ta}a€,\ € Mor ifPDitop between the cor-
responding inverse limit spaces (Soo, Soo, Toos Koo) aNd (Too, Too, Ty, Kby ) Which
are the objects of ifPDitop, having the property that for each o € A the
diagram

Sy — = o

l/ta l"]a
t

Sa%Ta

is commutative, that is t4,0pla = 1a0tec. AlS0, too is the identity id(s__ s 7o ko)
if suppose that the mapping {t,}o of inverse systems is identity, that is each
map to @ Sa — Ta, a € A is the identity id(g,_ s, 7.,x.) O0 Sa. Additionally, as
it is stated in Proposition 2.9, the inverse limit maps have the transitivity prop-
erty and so the limit operation liin satisfies the composition rule 1i<£n{ta ohy} =
1i£n{ta} o lign{ha}. Hence, the mapping liin : Invisppitop — ifPDitop is a co-

variant functor. O

Notation: The covariant functor lim described in Theorem 2.11, as the limit
+—

operation in the context of ifPDitop, will be used under the notation & for

the remainder of paper.

Actually, note that we can always define a covariant functor between the
categories C and Inve, for any category € which has the equalizers and pro-
ducts.
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Remark 2.12.

(1) By virtue of the fact that any inverse system consisting of the objects
of Bitop has an inverse limit since Bitop has equalizers and prod-
ucts, we can describe covariant functor, under the name 98 between
the categories Bitop and Invgitop.

(2) The above functor B introduced in (1) may be considered as the re-
stricted mapping between the full subcategory Bitopwo of Bitop and
the full subcategory Invsitop,, Of InVBitop. Obviously, that restric-
tion is a covariant functor, as well.

(3) Furthermore, if we recall that the categories Bitop,,, and ifPDitopg
are isomorphic via the functor §) constructed by using the fact that
weakly pairwise T; bitopology generates the smallest plain texturing
and T ditopology, as mentioned in Theorem 2.2, then we may describe
a functor between the categories Invgitop,, and Invisppitop, in a
natural way.

According to the statement (3), we are now in a position to give a next
isomorphism functor as follows:

Theorem 2.13. The categories InvBitop,, and Invisppitop, are concretely
isomorphic.

Proof. First of all, if consider the isomorphism functor $) given in Theo-
rem 2.2, between the categories Bitop,,o and ifPDitopy, clearly the mapping
X : InvBitop,,, — InvifpDitop, May be defined by using $:

Taking into account the ideas given in Example 2.7, then we may define the
map X({(Sa; ta; va); faptazp) = {(Sa: Kugva s tias V5 ), faptazp where H(Sa, ta, va)
= (Sas Kugvas tasvS), N(fap) = fap, and if take the inverse system {to} of
mappings as the morphism between two inverse systems which are objects of
Ianitopw0 then it is easy to show that it is also a morphism in Invgitep.
Indeed, if take t, € Mor Bitop, for each «, that is, t, is pairwise continu-
ous then it is w-preserving and bicontinuous between the corresponding di-
topological plain spaces and finally, the equality X({to}) = {ta} is mean-
ingful, as well. In this case, for the inverse system mappings, the equality
X({ta} o {ha}) = X{ta o ha}) = {ta 0 ha} = {ta} o {ha} is trivial. Also,
from x(id{(Sa,ua,va),faﬁ}azg) = 1A% ({(Sa,ua,va), faslass)s the map X describes a
functor, naturally.

Now we will turn our attention to the isomorphism conditions for X. It is
easy to show that X is full and faithful, since it is bijective between hom-set
restrictions by the fact that the functor $ given in Theorem 2.2 is full and
faithful.

As the final step, it remains to prove that the bijectivity of X on objects of
InvBitop,,, and InvifPDitop,, and it is clear from the bijectivity of the functor

9. O

In the light of considerations presented in Remark 2.12 and Theorem 2.13,
now we can start to construct a major part in that theory, consisting of the
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useful implications and an identity natural transformation which arises from
those implications:

A Natural Transformation in the Context of Inverse Systems and
Limits Located Inside the Categories Bitopwo and ifPDitopg :

As we promised in Section 1, firstly a natural transformation will be de-
scribed between the corresponding functors, and later, that the natural trans-
formation is identity will be proved, thoroughly.

Let ’s start by recalling the corresponding required functors as follows:

B - . .
Invsitop,,, — Bitopyo 2, ifPDitop,

{(Xa;uavva)a@aﬂ}azﬂ = (Xomuoo;Uoo) = (Xoo;jcuxvxvuoo; ('Uoo)c)

x ¢ . .
InvBitop,, — InvifPDitop, — ifPDitop,

{(Xa, tia, va), Paptazp = {(Xa Kugve, Uas (va)), Papazp = (X0, 2, T, K)
where 2 = (@ Kugvo)|xo) T= (@ ta)|x. and X = (Q v5)|x.
Now, Withathe previous consid;"ations, if take the ec?ualities
F = $ 0% : Invgitop,, — ifPDitop,

G = €o X : Invaitop,,, — ifPDitop,

then it is clear that F' and G are functors as compositions of the functors £, B
and €&, X, respectively.

Consider a mapping 7 : F — G. In particular;

Theorem 2.14. 7 is an identity natural transformation between the functors
F and G.

Proof. Let the inverse system A = {(Xa,Ua,Va), Papta>s € ObInveitop,,,
over A and the mapping 74 : FA — GA. Firstly, it is easy to verify that
FA = GA by the considerations mentioned in Example 2.8 and thus, the
mapping 74 is an ifPDitopg-identity morphism.

(o2} «
ObInvgitop,,, over A, take the inverse system {kq} : A — A’ € Mor Invitop,,
of mappings ko : Xo — X/, a € A, as in described in Theorem 2.5. Also, as-

[e'R)
sume that 1i£1A = 1i£1{Xa}aeA = X and liin.A’ = 1131{)(&}@61\ =XL.

On the other hand, for the inverse system A" = {(X{,, ug,v,), vopta>p €

Let € : {(Xa,Ua,Va); Papla>p = {(Xos U Vo), Postazp be the mapping
{ko }acn of inverse systems, with the components k,, : X, — X/, € Mor Bitopwo,
a €A
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With all the above notations, now we may construct the following diagram:

(XL, Kurvr, s b, (010)°) —2= (XL, (‘? Kz or )| xz, s (‘? ug)|x:_, (@(ve))|x:.) )

«

F¢ ce

(Xoos Kty vas » Uoos (Voo)€) A (Xoor (@ Kugva) | Xoo s (@ Ua)| X0 s (‘?(Ua)C”Xoo

[e%

In order to see that this diagram is commutative, we need to show the equality
F¢ = G¢ for all £ € MorInvBitopyo :

Clearly, each k, : X, — X/, is pairwise continuous and by F' = $) o B
we have F({ka}acr) = H(B{katacr) = 9(ks) where koo = hgl{ka}aez\ €
Mor Bitopwo and by applying the isomorphism ) : Bitopwo — ifPDitopg
to the limit map koo € Mor InVBitopyo, We obtained $(ko) = koo since § is
identity on morphisms. Finally, F§ = F({ka}aeca) = koo-

On the other hand, now let ’s turn our attention to G(§) and recall the
equality G = €oX. According to that, we have G({kq }aca) = E(X{kataca) =
E({ka}tacn) since the isomorphism X described in Theorem 2.13 is the identity
on morphisms of InVBitop., and Invirppitop,- Hence, by applying the functor
¢ : Invirppitop, — ifPDitopg to the mapping {kq}aca, we describe the
map €({ka}) = hoo, where hoo = 1i£1{k:a}aEA € Mor Bitopwo. Hence G¢ =
G({ka}aEA) = hoo

Now, let ’s see that to, = hoo: the inverse systems considered above are
exactly same since the spaces and bonding maps are the same. Also, the
property of commutativity 1y 0too = o 0 fia, @ € A is satisfied for the map ho,
as well. In this case, by virtue of the fact that the inverse limit of the mappings
of inverse systems is unique by [17, Theorem 4.14], we have F§ = G¢. Thus, the
equality F' = G is verified and 7 is identity. Moreover, we have G§oT4 = T4/ 0F§
since 74, T4s are identities and so, the diagram is commutative. O

As a result of the above considerations, T : F' — G is the identity natural
transformation.

In a similar way to the considerations given in Section 2, next section will
discuss the relations between the topological inverse systems - limits and di-
topological inverse systems - limits insofar as the theory of plain textures are
concerned.

3. RELATIONSHIPS BETWEEN THE INVERSE SYSTEMS-LIMITS IN THE
CATEGORIES OF TOPOLOGICAL AND DITOPOLOGICAL SPACES

Now we will show that we may associate with the ditopology (7,%) on a
plain texture (.59, 8) a topology d.,. on S, by adapting the notion of appropriate
joint topology for a ditopology described in [11], to the plain case:
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Definition 3.1. Let (S,8,7, k) € ObifPDitop. We define the joint topology
on S in terms of its family g¢, of closed sets by the condition

Wejds, < (s€8, Gen(s),Keus) = GNWZK) = seW.

Here n(s) ={N €8| P, CGC N Qs forsome G € 7} and u(s) =
{MeS| PsZ€MC K C Q, for some K € k}. For the details about filter
n(s) and cofilter u(s) for s € S, see [8, 11, 16].

The verification of that J¢, satisfies the closed-set axioms is straightforward
and on passing to the complement this reveals that

i) {GCS|GetU{S\K CS|K €k} is a subbase, and
(i) {GN(S\K)C S|Ger,K €k} abase
of open sets for the topology J,« on S.

In case (X, u,v) is an object of Bitop, we have the space (X, P(X),u,v¢) €
ObifPDitop, and clearly obtain J,, = u V v as the joint topology of (u,v),
where 7 = v and k = v°. Hence we will refer to J,. as the joint topology of
(1,8) on S.

Remark 3.2. (1) For (S,8,7,k) € ObifPDitop, it is trivial to see that
k C J¢,. and 7 C J,. In addition, the family 7 U k¢ is the subbase for
the joint topology J.«.

(2) From now on, in this work we will use the terms jointly closed (open,
dense) for the set which is closed (open, dense) with respect to the
appropriate joint topology of the ditopology on space.

Note that the following statements are adapted forms of general cases given
in [11] to the category ifPDitop. Here Top will denote the category of topo-
logical spaces and continuous functions.

Theorem 3.3. The mapping J : ifPDitop — Top defined by
J: ((Sa S,Ts, KS) . (T7 T, 77, k1)) = (Sv 3Tsf'€s) . (T7 3TTKT)
is an adjoint functor.

It is clear that J is full, faithful and isomorphism-dense functor although it
is not a functor isomorphism since it is not one-to-one on the objects.

Corollary 3.4. The functor ¥ : Top — ifPDitop given by
TX,T) = (X, P(X), 7,79, Tp) =¢
is the co-adjoint of J.
Here note also that ¥ is not a functor isomorphism.
In this section, we will be interested in the category Invr,p whose objects
are the inverse systems constructed by the objects of Top and morphisms are
the inverse systems constructed by the morphisms of Top, as well as the map-

pings between the inverse systems constructed in Top. Naturally, a covariant
functor may be established between the categories Top and Invrep since any
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inverse system constructed in Top has an inverse limit by the fact that Top
has equalizers and products as mentioned in [5].

Obviously, we can’t expect to find an isomorphism between the categories
Invrep and Invisppitop and now, we may turn our attention to the relation-
ships between the objects of categories Invrop and Invisppitop:

It is known that an object of Invifppitop can be obtained as the natural
counterpart of an object of Invmep by [18, Example 3.4]. Thus, by applying
the similar considerations to Corollary 3.4 we can describe a co-adjoint functor
from Invrep to InvispDitop-

Conversely, in order to construct an opposite functor from Invigppitop to
Invrep, let’s consider the reciprocal objects, and the adjoint functor J firstly.
That is, take {(Sa,8a:Tas ko), Pasta>s € ObInvisppitop, and construct the
image J(Sa,8a; Ta) ko) = (Sa,dr.k,) € ObTop. In this case, for the bonding
map @ag : So — Sg € MorifPDitop, we have J(pag) = vas : (Sa,drars) —
(Sg,d75x5) as a morphism of Top since J is a functor. In fact, J is the identity
on morphisms. Hence, we construct the inverse system {(Sa, Jr k. ) Pa} >0 €
ObInvr,p and so a mapping which is described as follows :

Theorem 3.5. The mapping Jinv : InViepDitop — INVrop defined by
~ {ta
JInv : ({(Saa Sa; Toy ’ia)a @aﬁ}azﬁ J {(Ta; 7&7 Téa nlo()a waﬁ}azﬁ) -

{(Sasdrara)s Papta>s {1} {(Tw, 371 k1), aptazp is an adjoint functor.

Proof. Firstly, we need to check that Jiny is a functor. Assume that {t,}o €
Mor Invisppitop. In this case, the maps t, : S — T, for each «, are bicontinu-
ous and w-preserving as the morphisms in ifPDitop. By the definition of joint
topology, it is easy to show that ¢, is continuous for each «, as the morphism
of Top between the joint topological spaces (Sa,dr. ) and (Tu,d7, . )-

To show Jnv is an adjoint, now take {(Xa,Ta), Papla>s € ObInvrep.
Then ({idx, }, {(Xa: P(Xa), Ta, TC), dasta>p) is & Jmv-structured arrow by

Jinv({(Xa, P(Xa), Ta, T0)s @aptazs) = {(Xa,d7,7¢) Gaplazp) and by the
fact that {idx, } : {(Xa, d7ura)s Pasltazp = {(Xa,070ka ), Papla>p is an Invrep-
morphism. To show ({idx, }, {(Xa, P(Xa), Tas TC), Pas}a>p) has the univer-
sal property, take {(Sa,8qa, 7, k%), 0ata>s € ObInvippitop and let {pq} :
{(Xa:Ta)s aptazp = Jiav{(Sa,8as 7oy k4)s aptazs = {(SaagT;Kz)veaﬂ}aZﬂ
be an Invrep-morphism.
(Xa ‘I) L) 3Inv(Xa {‘P(X)a T, T°) = (Xa ‘I)

I

3oy ()

Y
3II’IV(Sa 8; T, ’i) - (Sv 3TH)

Since ¢ maps into S the only point function ¢ : X — S making the above dia-
gram commutative is ¢, so it remains only to verify that ¢ : (X, P(X),T,T¢) —

@
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(S,8,7,k) is a morphism in ifPDitop. Certainly ¢ is w-preserving, due to
the fact that ¢o(x)wg p(x) for all z € X. Moreover, ¢ is bicontinuous. To
see this, note that we have o= A4 = o714 = ¢71(ANS,) for all A € 8.
Hence, G € 7 = GNS, € §;n = ¢“G = ¢ HGNS,) € T, and
Ker = pTK € T° likewise. O

Particularly, by virtue of Theorem 3.3 and Theorem 3.5 we have the follow-
ing:

Remark 3.6. Let ’s take an inverse system A = {(Sa,8q, Ta; Ka)s Pag fa>8 €
Ob Invifppitop- In this case, we  construct the system
Jinv(A) = {(SasIroks), Pasla>p € ObInvrep, and have the inverse limit
space (Soo,800; Toos Koo) €  ObifPDitop by Theorem 2.11. Thus,
T(So0, 8005 Toos Koo) = (Soos drers,) € Ob Top.

In addition, we have an inverse limit lim Jinv(A) = (Y, V) € Ob Top due to
—

the fact that Top has equalizers and products as mentioned in [5]. Now let
’s turn our attention to the main question; Is the space (Y,V) same with the
space (Sso,dro k.. ) in Top ?

Firstly note that the systems {(Sa,Sa;Taska), Pasta>p and {(Sa;Jr.x.),
©Yap o> p have the same bonding maps, so Y = S, as a subset of [ Sy, trivially.

«

As a next step, in order to prove the equality J,_... = V, note that the facts
(IT3rir)lse =V, (B 8a)lse = S, (B Ta)lse = Too and (Q) Ka)ls. = koo
Accordingly, let A € J;_x.., 80 A =J(GsN(Seo \ Ks)) where G5 € (Q 7a)|s..s

s

Ks € (Q Ka)ls.. for each 4. Note here that G5 = (J( N 75}[G2,])) N Ss and

finite
similarly, K5 = (N( U 73 [K2.]) N Soc, Where G5 € 7o, and KJ € Ka,.
finite
Hence, A= (U N 75/ UGN U N 75 UG \ K2 N e
finite finite

On the other hand, let the set B € ([[dr,x,)|s. =V, where V denotes the
«

product topology on S. In this case, B can be written as (| ) ﬂ;jl [Go,])N

finite
Sooa Gaj € gra/{a~ ThUS, B = (U m Tr(;jl[U(COtj N (Saj \Da]))]) N SOO Where
finite
Cay € oy Dy € oy and s0, B=(U | w {UC, )N (U N 7 UGS, \
finite finite

D,;)]) N Se. Consequently, it is easy to check that the types of sets A and B
are the same. It means that the topologies V and J._ .., coincides.

4. EFFECT OF THE CLOSURE OPERATOR ON INVERSE SYSTEMS AND LIMITS
IN THE CATEGORY ifPDitop

By recalling the notion of appropriate joint topology described for a ditopol-
ogy, as presented in the previous section, we have the following significant
theorem, immediately:
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Theorem 4.1. Let A be a directed set. For subspace (U,Sy,Tu,ky) €
ObifPDitop of the inverse limit space (Soo,Sco, Toos Koo) € ObifPDitop of
the inverse system {(Sa,8a;Taska), Pasta>p € ObInvieppitop, the families
{(Uav 8a|Ua7Ta|Ua ) Iia|Ua)7 90045|Ua }aZB and {(Um 8a|UavTa|Uaa ’ia|Ua)7¢aﬂ}a25
describe two objects in Invigppitop @S the inverse systems, where Uy = o (U) =
Tal$e (U), Pop = Paply, and Ua denotes the closure in S of the subset
U C S, with respect to the joint topology of the ditopology (Ta, Ka), & € A.

Proof. Firstly, let us prove that {(U., Salg, s TalF, s KalF, ) Pagla>p is an ob-
ject of Invieppitop: Note that we have pg(s) = Gaﬁ(ua(s)) for s € U and
B < a. Indeed, if s € U then p,(s) € pa(U) and so pq(s) € Uy. In this case,
Pap(Hals)) = Pap(ia(s)). Also the equality was(pa(s)) = ps(s) for a > B is
known by [17, Lemma 4.3], thus we have ©,5(ta(s)) = ps(s) for s € U and
a > 3, as required.

On the other hand, with the continuity of bonding map 3,3 we have $,5(Ua)
=Bup(1a(U)) € op(tia(U)) = ps(U) = Ug and then, it is clear that the point
function @, 4 is defined from U, onto Ug. Following that, ¥, is a morphism
of ifPDitop since it is a restriction of ¢,3 € MorifPDitop to the subset
Uy C S,.

Incidentally, the equality $3, 0 P,3 = P,, may be easily proved for the

elements of U, via the equality ¢g, 0 Pas = Qar-

As a next step, we have the equality B,,(5) = @aa(s) = s for s € U,, as
Paa is the identity ids, on S,. That is, 9., = idg_ = ids, |5, -

Consequently, the family {(U,, Salg, s TalF, s KalF, ) Papta>p forms an ob-
ject in InvispDitop-

Furthermore, in a similar way to the above proof, it is easy to check that
the family {(Ua,8a|v., TalU. s FalUs)s Pasly, fa>p describes an inverse system
in ifPDitop, and so an object in InvifpDitop- O

According to Remark 2.4, we have the following, right away.
Proposition 4.2. Uy = lim {U,} Clim {S,} = S«
— —

Proof. Conversely, assume that Us, = lim {U,} ¢ lim {So} = S, so there
— —

exists s = {sq} € [] Sa such that Uy, € Qs and Ps € So. In this case,
aEA
s € ][ Us and @agly; (sa) = sg for every sq € Us, o, 8 € A such that
a€eA «
a > 3. Moreover, we have the equality Yagl;; (5a) = @as(sa) for sq € Us,.
Thus, because of the facts so € S, @ € A and pas(sa) = sg for a > S,
the point s = {s,} becomes an element of S, obviously and this gives a
contradiction. Il

Proposition 4.3. Let {(Sa,8a;Ta) ka), Pasta>s € ObInvisppitop be an in-
verse system over a directed set A and (Seo, 8o, Toos Koo) € ObifPDitop be the
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Taka’

inverse limit of that system. If U, € J¢ a € A and lim {U,} = Uy for the
—
inverse subsystem {(Ua,8alv., TalUws KalUs), Paslu. ta>s € ObInvippitop,
then Us € 35, -
Proof. By the definition of inverse limit and the equality vasly; (8a) = @as(sa)
for so € Uy, a > B, the inclusion Uy, = lim {Uy} C lim {S,} = S is imme-
— —

diate, as mentioned in Proposition 4.2 as well.

Now, let us prove Uy, € J5_,_: If P, € Uy, that is a ¢ Us for a =
{aa} € S, then a ¢ [] U, due to the equality vasl;; (5a) = Pap(sa) for
aEA «

Sa € Uy, a > . In this case, there exists ap € A such that an, ¢ Us,, that is
P.., € Ua,. Additionally, the subset p,) [Ua,] € Seo is an element of J5_,

since the limiting projection map pia, : Seo — Sa, 18 continuous between the

corresponding joint topological spaces and U,, € Hﬁaoﬁao.

On the other hand, the statements P, € pg ! [Us,] and Uss C g [Ua,] may
be showed as follows:

Conversely, if Py C gl [Ua,) then we have pig,(a) = ao, € Ua, which is a
contradiction.

Also, assume that Uss € pig![Uao]. Thus there exists a point z € S

such that Uy € Q: and P, € pu ) [Us,). Hence, iy (2) = 2oy ¢ Uq, and

z={za} ¢ [] Ua gives the fact that z ¢ U which is a contradiction. O
aEA

From now on, in the remainder of this Section we will use all of the above
notations, in exactly the same form. By virtue of Theorem 4.1 and the last
proposition, now we have the next:

Theorem 4.4. If U denotes the closure of the subset U C Soo with respect to
the joint topology of the limit ditopology (Too, Koo) then
(1) 1i<£n{Ua} is jointly closed subspace of Soo
(2) lim {U,}=U0CS
3) U= N p'Ud]
aEA

Proof. (1) Before everything, let ’s see that lim{U,} C Ss, where S, =
+—
1i<£n{5a}:

Conversely, if the inclusion is not true, then there exists a point s = {s,} €

[T Sa such that im{U,} € Qs and Ps € S.. Hence, by the facts U, Z Q,
aEA ~

and s, € U, for every o € A, we have Pap(8a) = sp for a > .

On the other hand, it is easy to see that P;_ C S, since the set U, is a subset

of Sy forevery o € A,andso Ps = [[ Ps, C [ S,. Also, if recall the equality
oceA gEA

@aﬁ(sa) = Pap(sa) for s, € U, and a > B, then we have p,5(s4) = sp due to
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the fact that $,4(sa) = sp for s € U and a > B. Thus, by the definition of
inverse limit, s = {so} € Seo and it is a contradiction.

Accordingly, now let us show that lim{U,} is a jointly closed subspace of
pan
Soo: Take a point s = {s,} € S such that s ¢ lim{U,}. In this case, because
pan

of the fact that s ¢ [] U, there exists an element o € A such that s, ¢ U,.
aEA

Thus, s ¢ p 2\ [Us] by the equality 15(s) = s, and in view of the fact that
U, is jointly closed in Sy, the subset p;'[U,] C So is jointly closed in Su.
due to the continuity of limiting projection po : Soo — S, as given in [18,
Proposition 4.4]. Now, we can prove that im{U,} C u,![U,]: If there exists
—
a point a = {a,} € So such that lim{U,} € Q, and P, € u;'[U,] then
—

a € lim{U,} and so a € [[ U,. But also, the fact a, = u,(a) ¢ U, gives
« oEA

a contradiction. As a result of the above considerations lim{U,} is a jointly
+—
closed subspace of S.

In addition, now we will show that U = lim{U, }:
+—

(2) First of all, let ’s prove the inclusion U C ligl{Ua}. Conversely, if
U¢g 1i£1{Ua}, then there exists b € Sy = liin{Sa} such that U € Q3 and
P, Z liin{Ua}. In this case, P,, C U, because of p4(b) € 1o (U). Thus,
Py=T[ Po. CI1Uacen.

aclA «
On the other hand, b € [] Saea and @qg(bs) = bg for a > 3, a, B € A. Also,

by the definition of 3,4 fo? a > f and the fact b, € U, for every a € A, the
equality $,5(ba) = Pap(ba) is satisfied. Hence, B,5(ba) = bg for a > 3. That
is, we obtained b € liin{Ua} which is a contradiction.

Therefore, from (1) if recall the fact that lim{U,} is jointly closed with
—

respect to the limit ditopology (Tec, Koo) 0N (Seo, Sxo), then the inclusion U C
lim{U,} is immediate.
+—

For the other direction, assume lim{U,} ¢ U. Thus, there exists a point
pu
a = {as} € Soo such that im{U,} Z Q, and P, Z U. By the definition of joint
-

topology, there exist M € p(a) and N € n(a) such that U € N N (S \ M)
and so we have the sets G € 7 and K € ko such that P, C G C M,
N CKCQ,and U C KN (Sw \G). Hence, by [18, Theorem 4.6], there
exist ap,a1 € A and A, € Tays Bay € Ka, such that the conditions P, C
Pod[Aae) € G and K C g [Ba,] C Qq are satisfied. In this case, the inclusion
U C (Sec\tai[Aao))Ntg  [Ba, ] is trivial. Finally, we obtained a; € A satisfying
the conditions U C U C py![Ba,] and P, € pgl[Ba,]. Thus U, C B,
for a3 € A, because of the inclusions pa, (U) C pia; (Hay [Bay]) € Ba,y. If
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we consider the closure operator on these sets, it is clear that U,, C B,
and 50 fia, (Pa) € Ua, bY pa,(a) ¢ Ba,. Moreover, it is easy to verify that
fay (Pa) = Pa,,:
froy (Pa) = {pta, (z) | € Po} ={x0, | v € Po} = {0, | z € I;IAPaa} =
«@

{%a, | 2o € Pa,, Ya} = P, . As a result of these facts, we have P, < Uy,
and 0 aq, ¢ Ua, for ay € A. This argument gives a ¢ [[Uaqea, clearly. It
«

means that a ¢ lim{U,} and so, a contradiction.
—

(3) Note that the closure set U, is jointly closed in the space S, for each
a. Thus, the sets u;l[ﬁa], a € A are jointly closed in the limit space Seo
since the limiting projection g, is continuous for o« € A, between the cor-
responding joint topological spaces (Seo,drono.)s (Saydror,) Of the spaces
(S00,800s Toos Koo )y (Sas Sas Tay o) € ObifPDitop, respectively. In addition,
with the equality po(U) = U, , @ € A given in the hypothesis, it is clear that
UCu;lUs) andso U € () p;t[Us]. Hence we have U C ) p;'[U,] since

- acA aEA
N 151[U4] is jointly closed in S.
a€cA
For the converse, suppose that () u;'[Us] € U. In this case, there exists
aEN
a point @ = {a,} € Se such that () pa '[Us] € Qo and P, € U. Thus,
a€cA

a € o Uq] and piq(a) = ay € Uy, for every a € A.

On the other hand, if P, € U and U is closed in S., with respect to the joint
topology of the ditopology on (Se,8+) €ObifPTex, then there exist M €
w(a) and N € n(a) such that U € N N (So\M). So we have the sets G € 7o,
K € koo such that G € M, N C K and U C K N (S5 \G). Therefore, by [18,
Theorem 4.6] there exist ag, @1 € A and Ay, € Tagy, Ba, € Ka, satisfying the
conditions jiz}[Any] C Gy g [An) Z Qu and K C 15 (Bas), Pa i) [Bau ).
In this case, the inclusion U C (Soo\tap [Aao)) N o [Ba,] is trivial and so,
we have Uy, C B,, for ay € A by U C u;ll[Bal]. Consequently, Uy, C Ba,
and the fact that pa,(a) = @a, ¢ Ba, means that a,, ¢ U,, which is a
contradiction. O

With the above notations, we have also the next result:

Corollary 4.5.
i) UC liin{Ua}
i) (U} € lim {7}
Proof. 1) If the inclusion is not true, there exists a point a = {a,} € S such
that U € Q. and P, Z lim{U,}. In this case, by the fact uqo(a) € pa(U) =
—

U, we have a, € U, for every a € A and so a € [] U,, obviously. Also,
aEA
we have poglu, (@) = @aplaa) = ap since aq € Uy, o € A. As a result
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of these considerations, we get a = {a,} € lim{U,} which contradicts with
+—
Po Z lim{Ua}.
ii) Firstly, note that the limit sets lim{U,} and lim{U,} are subsets of S,
— —

due to Proposition 4.2 and Theorem 4.4. Now assume the converse of required
inclusion. Thus, there exists a point s = {sq} € Soo such that lim{U,} € Qs
—

and Py Z im{U,}. In this case, s = {sa} € [[ Us and so pags|u. (sa) = ss for
A aEA

a > B, a, € A because of s, € U,. Hence, s = {54} € [[ Ua by Uy C U,.
A

[e2S
Also, for a > 3, we have the equalities P, 5(5a) = PaslF, (Sa) = Pas(sa) and
©Yap(Sa) = paslu. (Sa) due to so € U,. Consequently, the point s = {s,} €

[T U, is also an element of the inverse limit set lim{U,} since we have the
acA =
equality D,5(sa) = aplg, (8a) = sp for a > §, and it is a contradiction. [

According to all considerations presented above, we can mention a further
result as the final stage of this section, besides the fact that it will be considered
as the converse of Proposition 4.3.

Corollary 4.6. Let the system {(Sa,S8a;Taska), Pasta>p € ObInvirpditop
over a directed set A. If take the ditopological subtexture space (U, 8y, Ty, ky) €
ObifPDitop of the inverse limit space (Soo,8o0, Too, Koo) where U € 35,
then (U,8y,1u,ku) € ObifPDitop is the inverse limit space of the inverse
system {(UQ,SUQ,TUu,HUQ),Eaﬁ}azg € ObInvippitop consisting of jointly
closed subspaces (U, 8., 7.+ K7, of the spaces (Sa,8as Tas ko) € ObifPDitop,
where mo|s. (U) = pa(U) = Ua, 8p, = Salg,, 7, = Talz., £7, = Kol
a€Nand P4 = ‘pa6|ﬁa7 for a, 8 € A such that o > 3.
In other words, if U € J5_,,_ then we have the equality
U= liin {Ua} = 1i<£n {U,}.

Proof. If choose the set U as an element of g7 . , that is a closed set with
respect to the joint topology of the limit ditopology (7o, keo) defined on the
inverse limit texture, then by Theorem 4.4 (2) and the two inclusions presented
in Corollary 4.5, the required equalities are straightforward. (I

5. IDENTIFICATION OF THE DITOPOLOGICAL PRODUCTS AS AN INVERSE
LIMIT IN ifPDitop

Take into account all the previous considerations, it can be mentioned that
the notion of inverse limit as an object of ifPDitop for any inverse system
which is the object of Invirppitop is derived from the products as the objects
of ifPDitop.

Conversely, by applying the limit operation lim located in the theory of

—
inverse systems, to the objects of Invifppitop, One can express infinite ditopo-
logical cartesian products [3, 4, 18] of the spaces which are the objects of
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ifPDitop in terms of the finite cartesian products of those spaces belong to
ObifPDitop.

Now, let ’s mention and prove this significant characterization as a theorem:

Theorem 5.1. For a directed set A and any family {(Xs, 8s,Ts, ks) }sea of

the objects in ifPDitop, the product space (][] Xs, Q 8s, @ 75, Q Ks) €
sEA sEA sEA sEA
Ob ifPDitop may be expressed as the inverse limit of an inverse system over I,

which is the object of InvigpDitop and constructed by the finite cartesian product
spaces
(T X5, @ S5, Q 75, Q ks) € ObifPDitop for I € T, where the set T =
sel sel sel sel
{I CA| I isfinite} is directed by the set inclusion. In other words,

Any arbitrary textural product of the objects in ifPDitop is exactly the in-
verse limit space of the inverse system consisting of finite products of those
objects.

Proof. Let (X, 8s,7s, ks) € ObifPDitop, s € A and T" be directed by the set
inclusion, that is J < I <= J C I for every I,J € I'. Now assume J < [ for

any J € I'. If ¢ = {xs}ser € [] Xs = X1 then z, € X, for all s € I. In this
sel
case, {s}ses € [ Xs = X by the facts that if s € J then s € I and x5 € X,
eJ

for all s € I. Therefore, for J < I, describe the mapping
ory: X1 — Xy

{xs}sel — {Zs}se.l-

Now let us prove that ¢;; is w-preserving and bicontinuous for J < I :
Assume that P, y,., € Qary.e, for {zs}, {zi} € X1, If so € J, then 5o € [
by J < 1. Thus, P, € Qq and Py, € Qury,e, by [18, Corollary
1.2], since P, € Q, for all s € J. Hence P, (2) € Qu, () and @r; is
w-preserving.

For the second part, we prove that o5 is bicontinuous between the product
ditopological spaces (X1,81, 77, k1) and (X 5,87, 77, K7) as follows:

Suppose that J = {1,2,....,m}, I = {1,2,...,t} and J C I. In this case,
m < t.

Now let G € @ 75 = 77 and ¢;;[G] € Q. for © = {zs}ser € X;. In

seJ
this case, prs(x) i {xs}ses € G, that is G € Qy,,y..,- Thus, there exists
B € B;,, where B., denotes the base for 7;, such that B Z Qy,,,., and
B C G, so there exists finite set Jo = {1,2,...,n} < J (n < m) such that
B= ﬂjEJO(W}-’)fl[Gj], where G; € 75, j € Jo. Thus, z; € G; for j € J.
Also, ¢, 71B] = @77 ( N (7;7)7YGy]) C 95 ;]G] because of B C G. Thus,

j€Jo

with all the arrangements, we have B = () (nfopr;) 7 G;] = N (x])7'[G;] €
Jj€Jo Jj€Jo

¢;71G] and so B’ € B,, where B, denotes the base for 7.
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On the other hand, we have {z,}scs € (7])7'[G;] since {}scs € B and
ﬂf({:cs}sez) € G, for every j € Jy . Thus z1 € G1, 22 € G2,....2, € Gp. In
this case, by the fact n < t, 7l ({z,}) € G for j € Jy and so {,}scr € B'.

Since, goj} [G] € 11 for G € 7y, @1 is continuous.

Dually, by using closed sets as the elements of k7, it is proved that oy is
cocontinuous and so bicontinuous.

Furthermore, note that the mappings ¢y for J < I are the bonding maps:
Indeed, for the mapping ;s : X1 — X7, the equality @r;({2s}ser) = {@s}ser
is clear and so ¢y is the identity idx,. In addition, for K > I > J, let s
prove @1y o o1 = ¢y I {zs}sex € Xk then (1o oxr)({Ts}sex) =
eri(eri{astsex)) = pra{astser) ={astses = ors({astsex).

Consequently, thanks to the above expressions, the fact {(Xr, 87,71, 51), 017} 1>75 €
Ob Invifppitop is trivial.

Now let us turn to our main aim: The inverse limit space of inverse system
{(X1,81, 71, k1), 017} 1>5 € ObInvisppitop over I' is ifPDitop-isomorphic to

the arbitrary ditopological product space constructed on the set [[ Xs.
seA

For proof, first of all we define a mapping between IEH{X]}IGF and [] X;:
seA

If {7} € lim{X}rer then {z;} € [] X; and so 2y € X for every I € T.
= Ier
Now, for any s € Alet Iy = {s} € I, soby the fact X;, = [[ X, = [] X, =
z€ls ze{s}

X, we have 2y, = x5, € X, s € A. Thus {z;,} € [[ X and finally, we can
sEA
define the mapping

s lim{ X — X
G pa { I}IEF E\ s
{zr}rer = {2 }Fsen
It is easy to verify that ¢ is well-defined. Now let us show that v is an
ifPDitop-isomorphism:
¥ is w-preserving: Let {z}, {2} € 1i£n{X[}[€p such that Pp,,y € Qa3
In this case, Pr; € Qg for all I € T', by [18, Corollary 1.2]. Take s € A, so
I, = {s} C A, that is I, € I'. Thus, P,, < Ql‘}s by the fact that Py, Z Qur
for all I € I'. It means that P,, ¢ Ql’}s for all s € A. Hence P{l‘IS}SGA Z
Qay )y, o that is Pugory € Quary-
In addition, the bijectivity of v is straightforward.

Now, if consider the product ditopological spaces (X1,8;,7r, k1) for I €

I, with the plain texturings then the product texturing & S; and product
I€T
ditopology (& 71, @ ki) can be constructed over the product set [[ X7 in a
Ier  Ier Ier
suitable way. Therefore, the restricted texturing and ditopology will be taken
over the subset im{X;};cr of J] X;. Shortly, if we use the notations T =
« Ier
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(® SI)|1im{XI}I€F7 V= (® TI)|1im{XI}I€F and Z = (® K‘I)llim{XI}IeF for the
Iel - Ier “ Ier «
induced texturing, topology and cotopology, respectively, then now we will

prove that ¢ is bicontinuous with respect to the ditopologies (@ s, Q) ks)
seA sEA
and (V,2):

Let G € @i’l’s =77 and G| € Qury,er- In this case, G € Qu{a;}rer)
s€

and so G € Qq;,1,c5- Thus, there exists B € B,, which is the base for the

product topology 7a, such that B C G and B € Qy({z,};cr)- Note here that

B= pCA 7rj_1[Gj], where G; € 7; and j € Jy for the finite set Jy C A. Thus,
J€Jo

we have ~'( (w7 '[G;]) S Gl and so () (m; 09) 7' [G;] € UG
jeJoCA j€Jo

On the other hand, the equality m; o9 = mp, |lim{XI is obvious by the

}rer

definition of projection map 77, : [] X; — X, = X and by the facts j € A
Ier
and I; = {j} € A which means that I; € T for j € Jp.

Additionally, if take ¢ as the inverse of ¢, then we have 77, |lim{x,},;c0 0@ =
wj. Here, the restriction 7y, |1im{XI}I€F is bicontinuous since I;. projection map
7, is bicontinuous.

Hence, if A= m (7Tj Ol/})il[Gj] = m (7T]J. |11111{X1}1€r)71[Gj] then A € By.

j€Jdo j€Jdo “
Here, By denotes the base for topology V. In this case, the fact A C ¢~ 1[G] is
clear.

Now let us prove A € Qyz;),op: Firstly, recall B & Qay,, on and so
ﬂ;l[Gj] Z Qay,y.cn for all j € Jo. That is, mj({zr,}) € G; and (7 o
V)({xr}rer) € Gy for all j € Jy. Therefore, {x7}rer € (77, [imix,}rer) ' [GY]
is clear for all j € Jo. Finally, {z1}rer € () (71, him{x,},er) ' Gj] = A4, and

Jj€Jo -
s0 A Z Qz,},cr since the related texturings are plain. Hence »p~1[G] € V and
1) is continuous.

Dually, it is easy to verify that 1 is cocontinuous by dealing with the closed
sets. Then ) is bicontinuous. As the final step, that the map ¢ as the inverse
of 1 is bicontinuous can be shown in a like manner. (I

The above theorem could be also summarized for the subcategory ifPDicomp,
comnsisting of dicompact [11] and bi-T5 (bi-Hausdorff) [4] objects of the category
ifPDitop. Hence, with the above arguments, note that:

Corollary 5.2. The infinite ditopological products of the objects which belong
to ifPDicomps can be expressed via inverse limits, in terms of the finite di-
topological products in ifPDicomps of those objects.

Proof. For all the details about category of dicompact spaces see [11], and
from [4], note that (S,8, 7, k) is bi-T5 if and only if for s,t € S, Qs € Q1 —
dJH € 7, K € k with H C K, P, € K and H € @Q;. Thus, the required
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characaterization is seen as a result of Theorem 5.1. Indeed, by the facts that
the jointly closed subtexture spaces and the product spaces of dicompact, bi-
T, ditopological spaces are dicompact and bi-T% from [18, Theorem 4.16] and
Tychonoff property, respectively, and from [18, Theorem 4.17 a)], the proof is
completed. O

Definition 5.3. A property P is called ditopological property if it is a property
defined for ditopological texture spaces, as a natural counterpart of the classical
notion, named topological property.

According to this, we have the following as a final result, as well.

Corollary 5.4. Let P be a ditopological property which is hereditary with re-
spect to the jointly closed subsets of a ditopological space and finitely multi-
plicative (that is, P is preserved under the finite multiplications of ditopological
spaces). In this case, (S,8,7,k) € ObifPDitop is ifPDitop-isomorphic to
the inverse limit of an inverse system constructed over a directed set A, via
bi-To spaces (Su,Sa, Ta, ka) € ObifPDitop, o € A, which have the property
P if and only if (S, 8,7, k) is ifPDitop-isomorphic to a jointly closed subspace
of the product space ( [[ Sa, @ Sa; Q Tay Q Ka)-

aEN aEA aEA aEA

Proof. Necessity. Suppose that (S,8,7,k) € ObifPDitop is isomorphic to
the inverse limit space (Soo, 8oos Too, Keo) € ObifPDitop of the inverse system
{(Sa,8a; Tas Ka)s Pap ta>s € ObInvippitop OVer a directed set A, where S =
li<£n {Sa}. Also, if recall that the inverse limit space S is jointly closed in the
product ] Sa by [18, Theorem 4.17 a)], then the required assertion is proved.
aEA
Sufficiency. Let {(Sa,SasTa, £a) faca be a family consisting of the objects in
ifPDitop, which have the properties bi-T» and P. Assume that (S, 8,7, k) is
ifPDitop-isomorphic to a jointly closed subspace (U, (Q) 8a)|v, (Q 7o), (Q Ka)|v)
of the product space (J[]Sa, Q) 80, Q) 7o, Q k). By Theorem 5.1, it is known
that the product [] S, can be expressed as the inverse limit of an inverse system

n
consisting of finite cartesian product spaces [] S; for n € N. Hence, with the

i=1
same notations used in Corollary 4.6, (U, (Q) 8a)|v, (Q 7a)|v, (R ka)|v)) be-

comes the inverse limit of inverse system
n

A= {U m(®5 )z, 7(® mi)lz,, (& Ki)lg, ) ¢rmtn>m constructed by the
i i=1 i=1

bonding maps gonm : U, — U, forn 2 m, as well as the jointly closed
subspaces (U, (® Sz, » (R 7 Nz, » (R ki
; i=1 i=1

spaces (H Si, ® 84, ® Tis ® #;) for every n € N. Here, U,, denotes the clo-
= =1
sure of U for each n Wlth respect to the joint topology approprlate for the

finite product space of the spaces (S;,8;, 7, ki), i =1,2,..,n

7. ) of finite cartesian product

Un

On the other hand, since each space S, o € A has the property bi-T5 from
[4], the product space [] S, has the property bi-T5 and so the ditopologies on
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subsets U,, have the property bi-T5 as well. Furthermore, each finite product
n

space [] S; has the property P since each space S,, @ € A has the property P
i=1

by hypothesis. Thus, the jointly closed subspaces U,,, n € N have the common

property P as P is hereditary with respect to the jointly closed subspaces.

Consequently, A is the required inverse system in ifPDitop and by the fact

lim A = U, the proof is concluded. (I

+—

6. CONCLUSION

This paper studied some further categorical aspects of the inverse systems
(projective spectrums) and inverse limits constructed in the subcategory if-
PDitop of ditopological plain spaces.

As one of the investigations here, an identity natural transformation which is
peculiar to the theory of inverse systems and inverse limits, as well as consisting
of the adjoint and isomorphism functors introduced between the suitable related
main subcategories of Bitop and ifPDitop, consisting of the spaces which
satisfy a special separation axiom, is established. As another one, we proved a
representation theorem which shows any infinite textural product of the objects
in category ifPDitop can be expressed as the inverse limit of the inverse system
in Invisppitop, constructed by the finite products of those objects in ifPDitop.
Besides that, the textural products of dicompact bi-T5 ditopological spaces are
characterized in terms of finite products, via inverse limits.

There are considerable difficulties involved in constructing a suitable theory
of inverse systems for general ditopological spaces. Hence, we confined our
attention to the inverse systems - limits constructed in the special category
ifPDitop and we leaved as an open problem the task of extending the further
results obtained here to more general categories established in the theory of
ditopological spaces.
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