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ABSTRACT

In this paper, we prove coincidence and common fixed points results
under nonlinear contractions on a metric space equipped with an arbi-
trary binary relation. Our results extend, generalize, modify and unify
several known results especially those are contained in Berzig [J. Fixed
Point Theory Appl. 12, 221-238 (2012))] and Alam and Imdad [To ap-
pear in Filomat (arXiv:1603.09159 (2016))]. Interestingly, a corollary
to one of our main results under symmetric closure of a binary relation
remains a sharpened version of a theorem due to Berzig. Finally, we
use examples to highlight the accomplished improvements in the results
of this paper.
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1. INTRODUCTION

Banach contraction principle (see [8]) continues to be one of the most in-
spiring and core result of metric fixed point theory which also has various
applications in classical functional analysis besides several other domains espe-
cially in mathematical economics and psychology. In the course of last several
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years, numerous authors have extended this result by weakening the contrac-
tion conditions besides enlarging the class of underlying metric space. In recent
years such type of results are also established employing order-theoretic notions.
Historically speaking, the idea of order-theoretic fixed points was initiated by
Turinici [23] in 1986. In 2004, Ran and Reurings [21] formulated a relatively
more natural order-theoretic version of classical Banach contraction principle.
The existing literature contains several relation-theoretic results on fixed, co-
incidence and common fixed point (e.g., partial order: Ran and Reurings [21]
and Nieto and Rodriguez-Lépez [20], tolerance: Turinici [25, 26], strict order:
Ghods et al. [12], transitive: Ben-El-Mechaiekh [10], preorder: Turinici [24]
etc). Berzig [9] established the common fixed point theorem for nonlinear con-
traction under symmetric closure of a arbitrary relation. Most recently, Alam
and Imdad [5] proved a relation-theoretic version of Banach contraction prin-
ciple employing amorphous relation which in turn unify the several well known
relevant order-theoretic fixed point theorems. Moreover, for further details one
can consults [1, 2, 4, 5, 6, 10, 9, 11, 14, 21, 20, 22, 25, 26, 13].

Our aim in this work is to proved some coincidence and common fixed point
theorems for nonlinear contraction on metric space endowed with amorphous
relation. The results proved herein generalize and unify main results of Berzig
[9], Alam and Imdad [5] and several others. To demonstrate the validity of
the hypotheses and degree of generality of our results, we also furnish some
examples.

2. PRELIMINARIES

For the sake of simplicity to have possibly self-contained presentation, we
require some basic definitions, lemmas and propositions for our subsequent
discussion.

Definition 2.1 ([15, 16]). Let (f,g) be a pair of self-mappings defined on a
non-empty set X. Then

(i) apoint u € X is said to be a coincidence point of the pair (f, g) if fu = gu,
(#4) a point v € X is said to be a point of coincidence of the pair (f,g) if
there exists v € X such that v = fu = gu,
(#i7) a coincidence point u € X of the pair (f, g) is said to be a common fixed
point if u = fu = gu,
(iv) a pair (f,g) is called commuting if f(gu) = g(fu),V v € X.
(v) a pair (f,g) is said to be weakly compatible if f and g commutes at
their coincidence points i.e., f(gu) = g(fu) whenever f(u) = g(u) for any
u e X.

Definition 2.2 ([17, 28, 27]). Let (f,g) be a pair of self-mappings defined on
a metric space (X, d). Then

(i) (f,g) is said to be weakly commuting if for all u € X, d(f(gu),g(fu)) <
d(fu, gu),
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(i1) (f,g) is said to be compatible if lim, oo d(f(gun), g(fun,)) = 0 whenever
{un} C X is a sequence such that lim,, o g, = limy, o0 ftin,

(#i7) f is said to be a g-continuous at u € X if gu, BN gu, for all sequence

{un} C X, we have fu, BN fu. Moreover, f is said to be a g-continuous
if it is continuous at every point of X.

Definition 2.3 ([18]). A subset R of X x X is called a binary relation on X.
We say that “u relates v under R” if and only if (u,v) € R.

Throughout this paper, R stands for a ‘non-empty binary relation’ (i.e., R #
@) instead of ‘binary relation’ and R* := R UR ™!, while Ny, Q and Q¢ stand
the set of whole numbers (Ng = NU {0}), the set of rational numbers and the
set of irrational numbers respectively.

Definition 2.4 ([19]). A binary relation R defined on a non-empty set X
is called complete if every pair of elements of X are comparable under that
relation i.e., for all u,v in X, either (u,v) € R or (v,u) € R which is denoted
by [u,v] € R.

Proposition 2.5 ([4]). Let R be a binary relation defined on a non-empty set
X. Then (u,v) € R® if and only if [u,v] € R.

Definition 2.6 ([4]). Let f be a self-mapping defined on a non-empty set X.
Then a binary relation R on X is called f-closed if for all u,v € X (u,v) €
R = (fu, fv) € R.

Definition 2.7 ([5]). Let (f,g) be a pair of self-mappings defined on a non-
empty set X. Then a binary relation R on X is called (£, g)-closed if for all u,v €
X, (gu,gv) € R = (fu, fv) € R.

Notice that on setting g = I, (the identity mapping on X) Definition 2.7
reduces to Definition 2.6.

Definition 2.8 ([4]). Let R be a binary relation defined on a non-empty set
X. Then a sequence {u,} C X is said to be an R-preserving if (un,tnt1) €
R, VneN.

Definition 2.9 ([5]). Let (X, d) be a metric space equipped with a binary
relation R. Then (X,d) is said to be an R-complete if every R-preserving
Cauchy sequence in X converges to a point in X.

Remark 2.10 ([5]). Every complete metric space is R-complete, where R de-
notes a binary relation. Moreover, if R is universal relation, then notions of
completeness and R-completeness are same.

Definition 2.11 ([5]). Let (X, d) be a metric space equipped with a binary
relation R. Then a mappings f : X — X is said to be an R-continuous at u

if u, —2 u, for any R-preserving sequence {u,} C X, we have fu, 4, fu.
Moreover, f is said to be an R-continuous if it is R-continuous at every point
of X.
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Definition 2.12 ([5]). Let (f, g) be a pair of self-mappings defined on a metric
space (X, d) equipped with a binary relation R. Then f is said to be a (g, R)-
continuous at w if gu, BN gu, for any R-preserving sequence {u,} C X, we

have fu, 4, fu. Moreover, f is called a (g, R)-continuous if it is (g, R)-
continuous at every point of X.

Notice that on setting g = I (the identity mapping on X), Definition 2.12
reduces to Definition 2.11.

Remark 2.13. Every continuous mapping is R-continuous, where R denotes
a binary relation. Moreover, if R is universal relation, then notions of R-
continuity and continuity are same.

Definition 2.14. Let (X, d) be a metric space equipped with a binary relation
R and g a self-mapping on X. Then (X,d) is said to be (g, R)-regular if for
any R-preserving sequence {u, } with w,, — u such that [gu,,gu] € RV n € N.

Definition 2.15 ([4]). Let (X,d) be a metric space. Then a binary rela-
tion R on X is said to be d-self-closed if for any R-preserving sequence {u,}
with u, —% u, there is a subsequence {un, } of {u,} such that [un,,u] €
R, for all k£ € N.

Definition 2.16 ([5]). Let g be a self-mapping on a metric space (X, d). Then
a binary relation R on X is said to be (g, d)-self-closed if for any R-preserving
sequence {uy} with wu, L, u, there is a subsequence {un, } of {u,} such that
[gtn,,gu] € R, for all k € N.

Notice that under the consideration g = I (the identity mapping on X),
Definition 2.16 turn out to be Definition 2.15.

Definition 2.17 ([22]). Let (X, d) be a metric space endowed with an arbitrary
binary relation R. Then a subset D of X is said to be an R-directed if for every
pair of points u,v in D, there is w in X such that (u,w) € R and (v,w) € R.

Definition 2.18 ([5]). Let g be a self-mapping on a metric space (X, d) en-
dowed with a binary relation R. Then a subset D of X is said to be a
(g9, R)-directed if for every pair of points u,v in D, there is w in X such that
(u, gw) € R and (v, gw) € R.

Notice that on setting g = I (the identity mapping on X), Definition 2.18
turn out to be Definition 2.17.

Definition 2.19 ([5]). Let (f, g) be a pair of self-mappings defined on a metric

space (X,d) equipped with a binary relation R. Then the pair (f,g) is said

to be an R-compatible if lim d(g(fun), f(gu,)) = 0, whenever lim g(u,) =
n—oo n—ro0

liﬂm f(uy), for any sequence {u,} C X such that {fu,} and {gu,} are R-

preserving.

For a given non-empty set X, together with a binary relation R on X and
a pair of self-mappings (f,g) on X, we use the following notations:
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e C(f,g): the collection of all coincidence points of (f, g);
o Mg (gu, gv) := maz{d(gu, gv),d(gu, fu),d(gv, fv), 3[d(gu, fv) +
d(gv, fu)]}; and
o Ni(gu, gv) == maz{d(gu, gv), 5ld(gu, fu) + d(gv, fv)], 5[d(gu, fv) +
d(gv, fu)]}.
Remark 2.20. Observe that, Ny (gu, gv) < My(gu, gv), for all u,v € X.

Let ® be the family of all mappings ¢ : [0,00) — [0,00) satisfying the
following properties:
(®1): ¢ is increasing;
(oo}

(®2): Z " (t) < oo for each t > 0, where ¢ is the n-th iterate of ¢.

Lemma 2.21 ([22]). Let ¢ € ®. Then for all s > 0, we have p(s) < s

Proposition 2.22. Let (f,g) be a pair of self-mappings defined on a metric
space (X, d) equipped with a binary relation R and ¢ € ®. Then the following
conditions are equivalent:

(D: d(fu, fv) < p(M;(gu, gv)) with (gu,gv) € R;

(IT): d(fu, fv) < p(My(gu, gv)) with [gu, gv] € R.
Proof. The implication (IT) = (I) is straightforward.
To show that (I) = (II), choose u,v € X such that [gu, gv] € R. If (gu, gv) €
R, then (/1) immediately follows from (I). Otherwise, if (gv, gu) € R, then by
(I) and the symmetry of metric d, we obtained the conclusion. (]

For the sake of completeness, we state the following theorems:

Theorem 2.23 (]9, Theorems 3.2]). Let (f,g) be a pair of self-mappings de-
fined on a metric space (X, d) equipped with a symmetric closure S := RUR ™1
of any binary relation R. Suppose the following conditions hold:

(a) (X,d) is complete;

(b) there exists wy € X such that (gwo, fwo) € S;

(¢) Sis (f,g) closed;

(d) (X,d,S) is regular;

(€) there exists p € ® such that d(fu, fv) < o(Nf(gu,gv)) for all u,v €

X with (gu,gv) € S.

Then (f,g) has a unique coincidence point. Moreover, if C(f,g) is (g,S)-
directed and (f,g) is weakly compatible, then (f,g) has a unique common fized
point.

Theorem 2.24 ([5, Theorem 2]). Let (f,g) be a pair of self-mappings defined
on a metric space (X, d) equipped with a binary relation R and Y a subspace
of X. Assume that the following conditions hold:

(f) (Y,d) is R-complete subspace of X ;

(9) F(X)CYNg(X);
(h) Fwo € X such that (gwo, fwy) € R;
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(1) R is (f,g)-closed;
(4) there exists o € [0,1) such that d(fu, fv) < ad(gu,gv) for all u,v €
X with (gu, gv) € R;
(k) (k1) Y € g(X);
(ko) either f is (g, R)-continuous or f and g are continuous or Ry is
d-self-closed;
or, alternatively
() (1) (f,g) is R-compatible;
(I2) g is R-continuous;
(I3) f is R-continuous or R is (g,d)-self-closed.
Then (f,g) has a coincidence point.

Indeed, the main results of this paper are based on the following points:

e Theorem 2.23 is improved by replacing symmetric closure S of any
binary relation with arbitrary binary relation R,

e Theorems 2.23 (upto coincidence point) and 2.24 are unified by replac-
ing more general contraction condition,

e Theorem 2.23 is generalized by replacing comparatively weaker notions
namely R-completeness of any subspace ¥ C X, with fX C Y NngX
rather than completeness of whole space X,

e Theorem 2.23 is improved by replacing d-self-closedness or (g, d)-self-
closedness of R instead of regularity of the whole space,

e some examples are addopted to demonstrate the realized improvement
in the results proved in this article.

3. MAIN RESULTS
Now, we are equipped to prove our main result as follows:

Theorem 3.1. Let (f,g) be a pair of self-mappings defined on a metric space
(X, d) equipped with a binary relation R. Assume that the conditions (f), (g), (h),
(1) and together with the following conditions hold:

(m) there exists ¢ € ® such that d(fu, fv) < p(My(gu,gv)) (for allu,v €
X with (gu, gv) € R);
(k) (k1) Y C g(X);
(k%) either f is (g,R)-continuous, or (f is continuous and g is bi-
continuous), or Rly is d-self-closed;
or, alternatively
@ (1) (f,g) is R-compatible;
(1) g is R-continuous and (either f is R-continuous or (X, d) is (g, R)-
regular);
or, alternatively
(14) g 1is continuous and (either f is R-continuous or R is (g, d)-self-
closed).

Then (f,g) has a coincidence point.
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Proof. Let wg € X such that (gwyg, fwy) € R. Construct a Picard Jungck
sequence {gw,,}, with the initial point wo, i.e.,

(3.1) g(wnt1) = f(wy), for all n € Ny.
Also as (gwo, fwg) € R and R is (f, g)-closed, we have
(fw07 fwl)a (f’LUQ, fw3)7 ) (fwn) fwn+1)7 - €R.

Thus,

(3.2) (gWn, gwp+1) € R, for all n € No,

therefore {gw, } is R-preserving. From condition (m), we have (for all n € N)
(3-3) d(gwn, gwnt1) = d(fwp—1, fwn) < (M (gwn-1,gwn))

where,

Mf(gwn—lagwn) S max{d(gwn—lagwn)ad(gwn—17fwn—1)7d(gwn7fwn)a

L [dlgwn, Fuvur) + dguwar. f,)])

on using (3.1) and tringular inequality, we have (for all n € N)
(34) Mf(gwnfla gwn) < maz{d(gwn,l, gwn)a d(gwna gwnJrl)}-
On using (3.3), (3.4) and the property (®;1), we obtain (for all n € N)
(35)  dlgwn, gwai1) < p(maz{d(gwn 1, gwn), dgwn, gwns1)})-
Now, we show that the sequence {gw,} is Cauchy in (X,d). In case gw,, =
JWne+1 for some ng € Ny, then the result is follows. Otherwise, gw, # gwn41
for all n € Ny. Suppose that d(gwn, —1, gwn, ) < d(gwp, , gWn, +1), for some ny €
N. On using (3.5) and Lemma 2.21, we get

d(gwnl ’ gwn1+1) < cp(d(gwnl ’ gwnlJrl)) < d(gwnl ) gwn1+1)7

which is a contradiction. Thus d(gwy,, gwnt1) < d(gwn—1, gw,) (for all n € N),
so that

d(gwn, gwni1) < @(d(gwn—1, gwy)), for all n € N.
Employing induction on n and the property (®1), we get

d(gwn, gwn+1) < @™ (d(gwo, gwy)), for all n € Ny.
Now, for all m,n € Ny with m > n, we have
d(gwn, gwm) < d(gwn, gwni1) + d(gWni1, GWnt2) + -+ - + d(gWm—1, gw)
< ¢"(d(gwo, gwr)) + " (d(gwo, gwr)) + -+
™ (d(gwo, gwn))

m—1
= Z " (d(gwo, gwr))
k=n

IN

> F(d(gwo, gwr))

k>n
— Qasn — oo.
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Therefore, {gwy} is R-preserving Cauchy sequence in X. As {gw,} C g(X)
and {gw,} C Y C ¢g(X) (due to (3.1) and (ky1)), therefore {gw,} is R-
preserving Cauchy sequence in Y. Since (Y, d) is R-complete, there exists y € Y’
such that gw, BN Y.

AsY C g(X), there exists € X such that

(3.6) lim gw, =y = gx.

n—oo

Since f is (g, R)-continuous, and on using (3.1) and (3.6), we have

(3.7) lim gwp41 = lim fw, = fx.

Due to uniqueness of the limit, we have fx = gx. Hence x is a coincidence

point of (f,g).
Next, we assume that f is continuous and g is bi-continuous. Then on using

(3.1) and (3.6), we get
fr=fg  (gz) = fg~ (lim gw,) = lim fg~(gw,) = lim fw, = ga.
n—oo n—oo n—oo
Hence z is a coincidence point of (f, g).
Finally, if R|y is d-self-closed, then for any R-preserving sequence {gw,} in

Y with gw, —% gz, there is a subsequence {gwn, } of {gw,} such that [gwn, ,gz]
€ Rly C R, for all k € Ny.

Set 0 := d(fx, gx) > 0. Suppose on contrary that § > 0. On using condition
(m), Proposition 2.22 and [gwy,, gz] € R, for all k € Ny, we have

(3'8) d(gwnk+17 fﬂ'}) = d(fwnk ) f:E) < @(Mf(gwnk ) gl‘)),
where,
My (gwn,,92) = maz{d(gwn, ,gz), d(gwn,, gwn,+1), d(gz, f),
1

5 [d(gwnk ) f:L') + d(gl‘, gwnk+1)]}~

If Ms(gwn,,gz) = d(gz, fz) =4, then (3.8) reduces to
d(gwnk-‘rh fx) < ()0(6)5

which on making k& — oo, gives arise

5 < ¢(0),
which is a contradiction.
Otherwise, if Ms(gwn,,9z) = maz{d(gwn,,gz),d(gWn,, GWn,+1),
1

5 [d(gwnk ) fﬂ')) + d(gl‘, gwnkJrl)]}a

then due to the fact that gw, 4, gz, there exists a positive integer N = N(0)
such that

4
M (gwn,,, gz) < 5(5, for all kK > N.
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As ¢ is increasing, we have
(3.9) P(M¢(gwn,, gz)) < @(%5), for all k > N.
On using (3.8) and (3.9), we get
d(gwn,+1, fz) = d(fwp,, fz) < @(%5), for all kK > N.
Letting kK — oo and using Lemma 2.21, we get
§< @(%5) < %5 <4,

which is again a contradiction. Hence, § = 0, so that d(fz,gx) = § = 0 =

fr=gx.
Thus, z is a coincidence point of (f, g).

Alternatively, we suppose that (I') holds. Firstly, assume that (I}) holds.
As {gw,} C f(X) CY (in view (3.1)) we notice that {gw,} is R-preserving
Cauchy sequence in Y. Since Y is R-complete, there exists y € Y such that

(3.10) lim gw, =y and lim fw, =y.
n—oo n—oo

As {fwyp} and {gw,} are R-preserving sequences (due to (3.1) and (3.2)),
utilizing the condition (I}) and (3.10), we obtain

(3.11) lim d(g fwn, fgwn) = 0.

Using (3.2), (3.10), and due to R-continuity of f and g, we have

(3.12) Jim g(fwn) = g( lim fuw,) = gy,
and
(3.13) Jim_ f(gwn) = f( lim gw,) = fy.

On using (3.11)—(3.13) and continuity of d, we have fy = gy. Hence y is a
coincidence point of (f, g).
Next, assume that (X, d) is (g, R)-regular. As {gw,} is R-preserving and

gun Sy (due to (g, R)-regularity of (X,d)), we have
[9gwn, gy] € R, ¥ n € N.

Set n := d(fy,gy) > 0. Suppose on contrary that > 0. On utilizing the
condition (m), Proposition 2.22 and [ggws, gy] € R, for all n € Ny, we have

(3.14) d(fgwn+1, fy) < p(My(99wWn+1,9Y)),

where, M (ggwni1,9y) = max{d(ggwn1,9y), d(ggwn i1, fgwni1),

d(gy, fy), %[d(ggwmru fy) + d(gy, fgwns1)]}-
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If My(ggwn,gy) = d(gy, fy) =n, then (3.14) yields

|d(fgwni1, 9 fwni1) — d(gfwnir, fy)] < d(fgwnsr, fy) < @(n),

on making n — oo; using (3.10), (3.11), continuity of d and R-continuity of g,
we get

n < o(n),
which is a contradiction. Therefore, n = 0, so that

d(fy,gy) =n=0= fy=gy.

Hence y is a coincidence point of (f, g).

Otherwise, let Ms(ggwni1,9y) = maz{d(ggwni1,9y), d(ggwni1, fgwni1),

%[d(ggwnﬂ, fy) + d(gy, fgwns1)]}

Now, on using triangular inequality, we have

My(ggwnit,gy) < maz{d(ggwni1, 9y), d(99wni1, 99Wni2) + d(ggwns2,

1
fgwni1), §[d(99wn+17 fy)+d(gy, gfwnyr) +

d(gfwni1, fgwnia)]}-

On making n — oo, on using (3.1), (3.10), (3.11), continuity of d and R-
continuity of g, we get

. 1
Jim M (ggwnt, gy) = 37

Since 1 > 0. By definition, there exists a positive integer N = N(n) such that

4
My(ggwni1,gy) < 377, for all n > N.

As ¢ is increasing, we have

4
(M (ggwni1,9y)) < so(gn), for all n > N,
again (3.14) yields that ( for all n > N)

(3.15)  |d(fgwns1,9fwns1) = d(gfwarr, fy)| < d(fgwnsr, fy) < <p(%77)-

Hence,

4
ld(fgwni1, 9fwni1) — d(gfwny, fy)] < (377), for all n > N.

Letting n — oo, on using (3.10), (3.11), continuity of d and R-continuity of g,
we get
4 4
n<elpn) <gn<mn,
which is again a contradiction. Hence, n = 0, so that

d(fy,g9y) =n=0= fy=gy.
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Hence, y is a coincidence point of (f, g).

Alternatively, suppose that (IJ) holds. Firstly, we assume that f is R-
continuous. Since continuity of ¢ implies R-continuity of g. Thus on the
similar lines of proof of (I5) conclusion follows. Secondly, we assume that R is

(g, d)-self-closed. As {gw,} is R-preserving and gw, BN y (due to (g, d)-self-
closedness of R), there exists a subsequence {gwy, } of {gw,} such that

[ggwnk7gy] S R7 Vke No.

Since gw, —% y, therefore gWn, —L, y for any subsequence {gwn, } of {gw,}.
Thus on the similar lines of above proof, we obtain (for all k > N)

(3.16) |d(fgwn,+1,9fwn,+1) — d(gfwn, 41, fy)| < d(fgwn, 41, fy) < 90(%77)-

5
Hence,
4
|d(fgwnk+1,gfwnk+1) - d(gfwnkJrlv fy)| < (gﬂ)a for all K > N.
Letting &k — oo, on using (3.10), (3.11), continuity of d and g, we get
< gz < 2n<
= elgn 51 <
which is again a contradiction. Hence, n = 0, so that
d(fy,9y) =n=0= fy=gy.
Hence, y is a coincidence point of (f,g). This completes the proof. O

On account taking Y = X in Theorem 3.1, we deduce a corollary which is
sharpened version of Theorem 2.23 up to coincidence point in view of com-
paratively weaker notions in the considerations of completeness, regularity and
contraction condition.

Corollary 3.2. Let (f,g) be a pair of self-mappings defined on a metric space
(X, d) equipped with a binary relation R. Suppose that the conditions (h), (1), (m)
together with the following conditions hold:
(n) (X,d) is R-complete;
(0) f(X)Cg(X);
(p) g is onto with together the condition (kb)) [or, alternatively condition
(@)

Then (f,g) has a coincidence point.
In lieu of Remarks 2.20, Theorem 3.1 reduces to the following corollary.

Corollary 3.3. Let (f,g) be a pair of self-mappings defined on a metric space
(X,d) endowed with a binary relation R andY be a subspace of X. Assume the
conditions (f),(g), (h), (i) and (k') (or (I')) together with the following condi-
tion holds:
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(q) there exists ¢ € ® such that (for all u,v € X with (gu,gv) € R)

d(fu o) < p(maz{d(gu, gv), 3 d(gu, fu)+d(gv, fo), 3 d(gu, fo)+d(go, fu))

Then (f,g) has a coincidence point.

Now, we establish the following results for the uniqueness of common fixed
point (corresponding to Corollary 3.3):

Theorem 3.4. In addition to the hypotheses of Corollary 3.3, suppose that the
following condition holds:

(r) f(X) is (g, R?)-directed.

Then (f,g) has a unique point of coincidence. Moreover, if (f,g) is weakly
compatible, then (f,g) has a unique common fixed point.

Proof. We prove the result in three steps.

Step 1: By Corollary 3.3, C(f,g) is non-empty. If C(f,g) is singleton, then
there is nothing to prove. Otherwise, to substantiate the proof, take two arbi-
trary elements u,v in C(f, g), so that

fu=gu=7Tand fo=gv=7.

Now, we are required to show that T =7. Since 7,7 € fX and fX is (g, R®)-
directed, there exists up € X such that [Z, gug] € R and [, gug] € R. Now, we
construct a sequence {gu,, } corresponding to ug, so that gu,+1 = fu, for alln €
No.

We claim that lim d(T, gu,) = 0. If d(Z, gu,,) = 0, for some ng € Ny,
n—oo

then there is nothing to prove. Otherwise, d(Z, gu,) > 0, for all n € Ny. As
[T, gun] € R, for all n € Ny (due to the fact that (f, g)-closedness of R and
[T, guo] € R), by Proposition 2.22 and hypothesis (q), we get

(3.17) (T, gunt1) = d(fu, fun) < @(Ny(gu, gun)),
where,
Ni(gugun) = maz{digu, gus), 3 d(gu, fu) +dgun, fu,)],
Sld(gu, fun) +d(gun, fu)]}
< maz{dlgu, gun), 5ld(gun, gu) + d(Fn, gu)] 3 [dlou, Fun)
+d(gun, fu)l}
< maa{dgu, gun), 5ld(gun, gu) + d(fun, gu)}
<

2
maz{d(gu, gun), d(gu, fu,)}
mam{d(gua gun)v d(gua gunJrl) }a
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on using this and property (®1) (3.17) yields (for all n € Np)
d(gu, gunt1) < o(maz{d(gu, gu,), d(gu, gun+1)})
= (d(gu, gun)),
otherwise, we get a contradiction. So, by induction on n, we get
d(gu, gun) < ¢"(d(gu, gug)), for all n € N,

which on making n — oo and using the property (®2), we get

(3.18) ILm d(gu, gu,) = 0.
Similarly, we can obtain
(3.19) ILm d(gv, guy) = 0.

Using (3.18) and (3.19) we have
d(fa ?) < d(gu, gun) + d(gum gv)
— 0, asn—
=T = 7 i.e., (f,g) has a unique point of coincidence .
Step 2: Now, we claim that the pair (f,g) has a common fixed point, let

x € C(f,g), i.e., fr= gr. Due to weakly compatibility of the pair (f,g), we
have

(3.20) fgz) = g(fz) = g(g).
Put g = y. Then from (3.20), fy = gy. Hence y is also a coincidence point of
f and g. In view of Step 1, we have
y=gr=gy=1[y
so that y is a common fixed point (f, g).

Step 3: To prove the uniqueness of common fixed point of (f, g), let us assume
that w is another common fixed point of (f,g). Then w € C(f,g), by Step 1,
w=gw =gy =1y.

Hence (f,g) has a unique common fixed point. O
Remark 3.5. In view of Theorem 3.4, we have used comparatively more nat-
ural condition “(g, R?)-directedness of f(X)” instead of “(g, R®)-directedness

of C(f,g)” which is too restrictive. Our proof carry on even if we take
“C(f,g) is (g, R*®)-directed”. Since point of coincidence implies that coinci-

dence point due to weakly compatible of (f, g), as in our Theorem 3.4 we want
to find unique common fixed point of f and g which is the point in C(f,g).

Theorem 3.6. In addition to the hypotheses of Theorem 3.1, assume the con-
dition (r) together with the following condition holds:
(s) one of f and g is one to one .

Then (f,g) has a unique coincidence point.
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Proof. Due to Theorem 3.1, C(f,g) # @. Let u,v € C(f,g), and hence in
similar lines of the proof of Theorem 3.4, we have
gu = fu= fv=gv.
Since either f or g is one-one, we have
u=v.
O

Notice that Theorem 3.6 is a natural improved version of Theorem 4 due to
Alam and Imdad [5].

Theorem 3.7. In addition to the hypotheses of Theorem 3.1, assume the fol-
lowing condition holds:

(t) Rlfx is complete.
Then (f,g) has a unique point of coincidence. Moreover, if (f,g) is weakly

compatible, then (f,g) has a unique common fixed point.

Proof. From Theorem 3.1, we have C(f,g) # @. If C(f,g) is singleton, then

proof is over. Otherwise, choose any two elements x # y in C(f, g), so that
fr=g9xr=7Tand fy=9gy=1.

As R|;x is complete, [Z,7] € R. Using Proposition 2.22 and condition (m),

we get

d(@,y) = d(fz, fy) < @(max{d(gz,gy),d(gz, fz),d(gy, fy),
l[d(gw, fy) +d(gy, fz)]})

= o(d(gz,gy))

< d(gz,gy) = d(Z,7),

which is a contradiction, hence d(Z,y) = 0, therefore T = F. Thus (f,g) has
a unique point of coincidence. Thus the remaining part of the proof can be
obtained from Theorem 3.4. O

[\

Remark 3.8. Indeed, Theorem 3.7 is more general as compared to Corollary
5.1 of Berzig [9] and Corollary 3 due to Alam and Imdad [5].

In regard of Remark 3.5, on considering symmetric closure S of any binary
relation R in Theorem 3.4, we obtain the following sharpened version of The-
orem 2.23.

Corollary 3.9. Let (f,g) be a pair of self-mappings defined on a metric space
(X, d) endowed with symmetric closure S of any arbitrary binary relation de-
fined on X and 'Y be a subspace of X. Assume that the conditions (b), (c), (e)
and (g) together with the following conditions hold:

(u) (Y,d) is S-complete subspace of X ;

(v) (v1) Y C g(X);
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(va) either f is (g,8)-continuous or (f is continuous and g 1is bi-
continuous) or S|y is d-self-closed;
or, alternatively
(w) (wy) (f,g) is S-compatible;
(w2) g is S-continuous and (either f is S-continuous or (X, d) is (g, S)-
regular);
or, alternatively

(wh) g is continuous and (either f is S-continuous or S is (g, d)-self-
closed).

Then (f,9) has a coincidence point. Moreover, if C(f,g) is (g, R®)-directed
and (f, g) is weakly compatible, then (f,g) has a unique common fixed point.

Notice that the hypotheses ‘S is (f, g)-closed’ is equivalent to f is a ‘g-
comparative’ and ‘Sl|y is d-self-closed’ is more natural ‘the regular property of
(Y,d,S)’. Further ‘S is (g, d)-self-closed’ is more natural the ‘S is d-self-closed’.

4. CONSEQUENCES

As consequences of our former proved results, we deduce several well known
results of the existing literature.

On the setting ¢(t) = kt, with k € [0,1), we obtain the following corollaries
which are immediate consequences of Theorem 3.4.

Corollary 4.1. Let (f,g) be a pair of self-mappings defined on a metric space
(X,d) equipped with a binary relation R and Y a subspace of X. Suppose that
the conditions (f), (g), (h), (i) and (k") (or (I')) together with the following con-
dition holds:

(q1) there exists k € [0,1] such that ( for all u,v € X with (gu, gv) € R)
Afurfo) < k(maz{d(gu,gv), 3 [d(gu, fu) +dgv, fo)l.
2 ldgu, o) + d(go, fu)]}).

2

Then (f,g) has a coincidence point. Moreover, if f(X) is (g, R®)-directed and
(f,g) is weakly compatible, then (f,g) has a unique common fized point.

Remark 4.2. Corollary 4.1 is a sharpened version of Corollary 5.10 of Berzig
[9] and Corollary 3.3 (corresponding to condition (20)) due to Ahmadullah et
al. [2].

Corollary 4.3. Let (f,g) be a pair of self-mappings defined on a metric space
(X, d) equipped with a binary relation R. Suppose that the conditions (f), (g), (h),
(2) and (k') (or (I")) together with the following condition holds:

(q2) there exist a, b, ¢ > 0 with a+2b+2c < 1 such that (for all u,v € X
with (gu, gv) € R)

d(fu, fv) < ad(gu, gv) + bld(gu, fu) + d(gv, fv)] + c[d(gu, fv) + d(gv, fu)].
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Then (f,g) has a coincidence point. Moreover, if f(X) is (g, R®)-directed and
(f,g) is weakly compatible, then (f,g) has a unique common fized point.

Remark 4.4. Corollary 4.3 remains a sharpened version of Corollary 5.11 due
to Berzig [9] and Corollary 3.3, (corresponding to condition (22)) in view of
Ahmadullah et al. [2].

Remark 4.5. If b = 0 and ¢ = 0 in Corollary 4.3, then we deduces Theorem
2.24 (see Alam and Imdad [5]).

Corollary 4.6. Let (f,g) be a pair of self-mappings defined on a metric space
(X,d) equipped a binary relation R and Y a subspace of X. Assume that the
conditions (f), (g), (h), (i) and (k') (or (I')) together with the following condi-
tion holds:

(g3) there exists k € [0,1/2) such that (for all u,v € X with (gu,gv) € R)

d(fu, fv) < k[d(gu, fu) + d(gv, fv)].
Then (f,g) has a coincidence point. Moreover, if f(X) is (g, R®)-directed and
(f,g) is weakly compatible, then (f,g) has a unique common fixed point.

Remark 4.7. Corollary 4.6 remains a improved version of Corollary 5.13 es-
tablished in Berzig [9] and Corollary 3.3 (corresponding to condition (18)) in
Ahmadullah et al. [2].

Corollary 4.8. Let (f,g) be a pair of self-mappings defined on a metric space
(X, d) equipped with a binary relation R and 'Y a subspace of X. Assume that
the conditions (f),(g),(h), (i) and (k") (or (I')) togetrher with the following
condition holds:

(qs) there exists k € [0,1/2) such that (for all u,v € X with (gu,gv) € R)

d(fu, fv) < k[d(gu, fv) + d(gv, fu)].

Then (f,g) has a coincidence point. Moreover, if f(X) is (g, R®)-directed and
(f,g) is weakly compatible, then (f,g) has a unique common fixed point.

Remark 4.9. Corollary 4.8 is an improved version of Corollary 5.14 of Berzig
[9] and Corollary 3.3 (corresponding to condition (19)) due to Ahmadullah et
al. [2].

Remark 4.10. Under the consideration g = I (identity mapping on X), The-
orems 3.1 and 3.4 deduce the fixed point results of Ahmadullah et al. [3,
Theorem 2.1 and 2.5].

Remark 4.11. On setting g = I (identity mapping on X), in Corollaries 3.2-4.8,
we deduce the fixed point results which are the sharpened version of several
results in the existing literature.

Under the universal relation (i.e., R = X x X)), Theorems 3.4 and 3.7 unify
to the following lone corollary:
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Corollary 4.12. Let (X,d) be a metric space and (f, g) a pair of self-mappings
on X . Suppose that the following conditions hold:
(A) there exists Y C X, f(X) CY C g(X) such that (Y,d) is complete;
(B) there exists ¢ € ® such that (for all u,v € X)

dfu,fo) < olman{dlgu,go), 5 ld(gu, fu) + d(gv, 1)),

Sld(gu. fo) + d(gv, fu)]}).

Then (f,g) has a unique common fized point.

5. ILLUSTRATIVE EXAMPLES

In this section, we furnish some examples to demonstrate the realized im-
provement of our proved results.

Example 5.1. Let (X, d) be a metric space, where X = (—2,4) and d(z,y) =
|z —y|, Vxy € X. Now, define a binary relation R = {(x,y) € X? | 2 >
y,z,y > 0y U {(z,y) € X2 | 2 < y,z,y < 0}, an increasing mapping ¢ :

[0,00) — [0, 00) by ¢(s) = %s and two self-mappings f,g: X — X by

z, € (-2,3];
f(x)=0, Yz e (-2,4) and g(x) :{ 13 ie 23 4)]
Let Y = [—3,1), so that f(X) = {0} C Y C gX = (-3,1] and YV is R-

complete but X is not R-complete. Indeed, R is (f,g)-closed, f and g are
R-continuous and (f, g) is R-compatible. By straightforward calculations, one
can easily verify hypothesis (m) of Theorems 3.1 thus in all by Theorem 3.1
we obtain, (f, g) has a coincidence point (Observe that, C(f,g) = {0}). More-
over, as fX is (g, R°)-directed, R|sx is complete and (f,g) commute at their
coincidence point i.e.,z = 0 therefore, all the hypotheses of Theorems 3.4 and
3.7 are satisfied, ensuring the uniqueness of the common fixed point. Notice
that, 2 = 0 is the only common fixed point of (f, g).

With a view to show the genuineness of our results, notice that R is not
symmetric and R can not be a symmetric closure of any binary relation. Also
(X, d) is not complete and even not R-complete which shows that Theorems
3.1, 3.4 and 3.7 are applicable to the present example, while Theorem 2.23 and
even Corollary 3.2 are not, which substantiates the utility of Theorems 3.1, 3.4
and 3.7.

Example 5.2. Let X = [0, 4) with usual metric d and R = {(0,0), (0, 1), (1,0),
(1,1),(1,2),(2,3)} be a binary relation whose symmetric closure S = {(0,0),
(0,1),(1,0), (2,3), (1, 1), (1,2), (2,1), (3,2)} and (f.9) a pair of self-mappings
on X defined by

_J 0, ze[0,4)NQ [z, ze€{0,1,2};
fle) = { 1, z€[0,4)NnQ°, and g() = 3, otherwise.
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Let Y = {0, 1} which is R-complete and fX ={0,1} CY C ¢X ={0,1,2,3}.
Define an increasing function ¢ : [0,00) — [0,00) by ¢(s) = 2s. Clearly, ¢ € ®
and both f and g are not continuous. Also, R is (f,g)-closed. Take any
R-preserving sequence {z,} in Y i.e.,

(Zny Tny1) € Rly, for all n € N with z, s

Here, one can notice that if (x,,2n4+1) € Rly, for all n € N then there exists
N € N such that x, = x € {0,1}, for all n > N. So, we choose a subsequence
{zn, } of the sequence {x,} such that x,, = z, for all k¥ € N, which amounts
to saying that [x,,,x] € R|y, for all k € N. Therefore, R|y is d-self-closed.
Now, to substantiate the contraction condition (m) of Theorems 3.1. For
this, we need to verify for (gx,gy) € {(2,3)}, otherwise, d(fz, fy) = 0. If
(9z,9y) € {(2,3)} = = =2, y € [0,4) — {0,1,2}, then there are two cases
arises:
Case (1): Ifx =2, y €
Case (2): Ifz =2, y €

([0,4) ,1,2}) N Q, then condition (m) is obvious.
([0,4 1,2

a(f2, fy) =1 < ¢
1
2

)
,4) ,1,2,31) N Q¢ then we have
maz{d(92, gy),d(92, f2),d(gy, fy),

[d(92, fy) + d(gy, 2)]})
= @(mam{d(% 3)7 d(27 O)a d(3, 1)7
= »(2).

Thus all the conditions of Theorem 3.1 are satisfied, hence (f, g) has a co-
incidence point (namely C(f,g) = {0}). Also fX is (g, R®)-directed, (f,g)
commutes at their coincidence point i.e., at x = 0 and condition (m) of Theo-
rem 3.4 holds. Therefore all the hypotheses of Theorem 3.4 are satisfied. Notice

that, 2 = 0 is the only common fixed point of (f, g).
Now, since (gz, gy) = (2,3) € R, clearly = = 2, we choose y = v/2 but

L=d(f2,fV2) < ad(g2,9V2) = o,

which shows that contraction condition of Theorem 2.24 (due to Alam and
Imdad [5]) is not satisfied. Further, Theorem 2.23 is not applicable to the
present example as underlying metric space (X, d) is not complete and R is not
symmetric closure of any binary relation. Thus, our results are an improvement
over Theorem 2.23 (due to Berzig [9]) and Theorem 2.24 (Alam and Imdad [5]).

[0,4) = {0
[0,4) = {0
(

[d(2,1) +d(3,0)]}

N | =
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