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ABSTRACT

We show that there exists a Hausdorff topology on the set R of real
numbers such that a subset A of R has compact closure if and only if
A is countable. More generally, given any set X and any infinite set
S, we prove that there exists a Hausdorff topology on X such that a
subset A of X has compact closure if and only if the cardinality of A
is less than or equal to that of S. When we attempt to replace “less
than or equal to” in the preceding statement with “strictly less than,”
the situation is more delicate; we show that the theorem extends to
this case when S has regular cardinality but can fail when it does not.
This counterexample shows that not every bornology is a bornology
of compact closure. These results lie in the intersection of analysis,
general topology, and set theory.
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1. INTRODUCTION

A bornology on a set X is a covering B of X such that (i) if A, B € B, then
AUB € B, and (ii) if B € B and A C B, then B € B. Bornologies are objects
of much study in analysis—see, for example, [2]. The prototypical example of
a bornology is the collection of all bounded sets in a metric space. Another
standard example, for a Hausdorff space X, is the collection of all subsets of X
with compact closure. The latter construction is rather general, and one may
well wonder: Given a bornology on X, does there necessarily exist a topology
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on X with respect to which B is precisely the bornology of sets with compact
closure? In this paper, we answer that question in the negative by constructing
a set Y for which the bornology of subsets of Y with cardinality strictly less
than that of Y cannot be a bornology of compact closure—see Example 3.10.

This example leads to the following general question. Given two sets X and
S, take the bornology B of subsets of X with cardinality less than or equal to
that of S. Is B a bornology of compact closure? One can also ask this question
for the bornology of subsets of X with cardinality strictly less than that of S.
For the first question, we show that the answer is always yes. For the second
question, our counterexample Y mentioned above shows that the answer is not
always yes; however, we prove that it is whenever S has regular cardinality.

Considerations in general topology may lead one to ask the same questions
without reference to bornologies. We now re-introduce this topic from this new
point of view. When a set X is endowed with the discrete topology, a subset
A of X is compact if and only if A is finite. One may wonder next, does there
necessarily exist a topology on X such that a subset A of X is compact if and
only if A is countable? One quickly realizes that unless X is finite, no such
topology can be Hausdorfl. For if so, then let A = {a,, | n € N} be a countably
infinite subset of X with a,, # a,, whenever n # m. (Here N denotes the set of
natural numbers.) Note that each set Ay := {a, | n > k} is countable, hence
compact, hence closed because the topology is Hausdorff. But then {Ay} is a
nested collection of nonempty closed subsets of the compact set A, yet it has
empty intersection, which is a contradiction.

Hausdorff being a typical property to impose a topological space, we there-
fore modify the question slightly: Does there exist a Hausdorff topology on X
in which a set has compact closure if and only if it is countable? In particular,
what about the case X = R, where R is the set of real numbers?

If we assume both the continuum hypothesis (CH) and the Axiom of Choice
(AC), then the answer to this last question is an immediate yes, for the fol-
lowing reason. Recall that CH states that no uncountable set has cardinality
strictly less than that of R. Let Q2 be the least uncountable ordinal, that is, an
uncountable well-ordered set such that every subset of the form {y € Q | y < z}
for x € ) is countable. It follows from CH that the cardinality of R equals
that of 2. We may then identify R with {2 and give it the topology induced by
the order on 2. A straightforward exercise shows that with this topology, the
closure of a set A in R is compact if and only if A is countable.

Although this logic no longer holds when we do not assume CH, it suggests
an approach. Begin by taking a well-ordering of R. Recursively define a topol-
ogy on R by constructing a neighborhood basis at each point, assuming one
has been constructed at each previous point. We carefully select this neighbor-
hood basis so that the sets with compact closure are precisely the countable
sets. Indeed, we may generalize this reasoning considerably. The details are
carried out in Section 3, where we prove our two main theorems. The first
(Theorem 3.1) states that given any set X and any infinite set .S, there exists
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a Hausdorff topology on X such that the sets with compact closure are pre-
cisely those whose cardinality is less than or equal to that of S. We obtain the
first sentence in the abstract by taking X = R and S = N. In Section 2, we
discuss some set-theoretic preliminaries, including the definitions of “regular”
and “singular” cardinals. The second main theorem (Theorem 3.9) states that
when the cardinality of S is regular, the phrase “less than or equal to” in The-
orem 3.1 can be replaced by the phrase “strictly less than.” We conclude with
an example to show that the regularity condition in Theorem 3.9 cannot be
eliminated.

2. BACKGROUND FROM SET THEORY

Throughout this paper, we work within the Zermelo-Fraenkel axiom system
(ZF).

Recall that a linear ordering on a set X is said to be a well-ordering if every
nonempty subset of X has a smallest element.

Theorem 2.1 (Well-Ordering Principle). Fvery set admits a well-ordering.

It is well-known that the well-ordering principle is equivalent to the Axiom
of Choice (AC). The first step in our proofs will be to well-order the set X, so
the proofs depend on the well-ordering principle, and hence AC, right from the
git-go.

It is also well-known that a countable union of countable sets is countable.
More generally, a union over a set no bigger than X of sets no bigger than X
is no bigger than X. More precisely, we have the following theorem, where the
notation |B| < |C| means that the cardinality of B is less than or equal to that
of C. (Likewise, we will later use the notation |B| < |C] to indicate that the
cardinality of B is strictly less than that of C.)

Theorem 2.2. Let X be an infinite set, and let I be a set with |I| < |X|. For

each i € I, let A; be a set with |A;| < |X|[. Then |U,;c; Ail < [X].

Theorem 2.2 is proved in [1]. The proof depends on AC.

Our third and final use of AC comes as we define the terms regular and
singular for cardinalities. Roughly speaking, we say that the cardinality of a
set is regular if the set cannot be written as a smaller union of smaller sets,
and that it is singular otherwise. We now make this concept more precise.

Definition 2.3. Let X be a set. We say that X has singular cardinality if
there exists a set I with |I| < |X| such that for each ¢ € I there exists a set A;
with |A4;] < | X[, and that X = J;c; A;. We say that X has regular cardinality
if X does not have singular cardinality.

We say that this definition relies on AC because although it is not the stan-
dard definition, it is equivalent to the standard definition under the assumption
of AC. We refer to [1] for details.

There is no purpose to Definition 2.3 unless both regular and singular car-
dinals exist. As the name suggests, regular cardinals are not hard to find. For
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instance, R := |N| is regular, because N does not equal a finite union of finite
sets. Producing a singular cardinal requires a deliberate construction, such as
the following.

Example 2.4. Let X; = N. For each n € N, define X,, 11 to be the power set
of X, i.e., the set of all subsets of X,,. By Cantor’s theorem, |X,,| < |Xp41]-

Hence Y := |J,,cy Xn has singular cardinality.

3. MAIN THEOREMS

Throughout this section, fix a nonempty set X and an infinite set S. If A
is a subset of a topological space, then we denote its closure by A. Our first
objective in this section is to prove the following theorem.

Theorem 3.1. There exists a Hausdorff topology on X so that if A C X, then
A is compact if and only if |A] <|S].

Choose a well-ordering < on X. Assume that with respect to this ordering,
X has a maximal element M. (If not, then create a new ordering by reversing all
inequalities involving the minimal element.) To prove Theorem 3.1, we begin
by defining a topology. The definition is recursive and depends on knowing
that what has been defined so far already forms a topology, a fact that in turn
requires proof. So we must simultaneously make a recursive definition and an
inductive proof. For y € X, we define the closed ray (—oo,y] :={z € X |z <
y} and the open ray (—oo,y) := {z € X | # < y}. Observe that X = (—o0, M].

Lemma/Definition 3.2. For any given v € X, define N, By, Tz, and W,
according to (1)-(6) below with y = x, assuming that (1)-(6) are true for all
y<ux.

(1) We define Ny to be the collection of all sets of the form (—oo,y] \ K
such that K is Ty-closed in (—oo,y) and such that if C' is a Ty-closed
subset of K with |C| < |S|, then C is T,-compact. Here T, is defined
as in (3).

(2) We define B, :==,., N-.

(3) We have that By is a basis for a topology T, on (—o0,y).

(4) We have that N,y U By is a basis for a topology W, on (—oo,y].

(5) For all z <y, if K is a Ty-closed subset of (—o0,y), then K N(—0o0, z)
is a T,-closed subset of (—o0, z).

(6) For all z <y, we have that (—o0, 2] is a Wy-closed subspace of (—o0,y].

Proof. Note that in (1), (5) and (6) above, as well as in the proof below,
we always take W, as the topology on any closed ray (—oo,p] and 7, as the
topology on any open ray (—oo, p). This should be assumed when not explicitly
stated.

Let x € X, and assume that (1)—(6) have been established for all y < .
Items (1) and (2) are definitions and so do not require proof. Hence it suffices
to show that (3), (4), (5),and (6) hold when y = z.
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Proof of (3): We must show that B, is a basis for a topology on (—o0, ).
From (1), we have that (—oo,y] € N, for all y < z (take K = &), and so B,
covers (—oo,x). Next let U,V € B, and let p € UNV. We will show that
p € ECUNV for some E € B,. By definition of B,, we have that U € N, and
V € N, for some q < x and z < z. So by (4), we have that Ky := (—o0,q]\ U
is closed in (—o0,q] and Ks := (—o0, 2] \ V is closed in (—o0, z]. By (6), we
have that Ly := K3 N (—o0,p] and Lg := K2 N (—o0,p] are closed in (—oo, p].
Then L; U Ly is closed in (—o0,p], so Ey := (—o0,p] \ (L1 U Lg) is open in
(—o0, p]. So by (4), E; is a union of members of NV, UB,. Because p € E; and
members of B, are subsets of (—co,p), we must have p € E € N, for some E.
Thenpe FC Ey CUNV,and E € B,.

Proof of (4): Next, we prove that N, UB, is a basis for a topology on (—oo, z].
As in our proof of (3), we have that N,UB, covers (—oo, z|. Let U,V € N,UB,,
and let p € UNV. We will show that p € M Cc UNYV for some M € N, U B,.
Case 1: U,V € N. Then U = (—o0,z| \ K1 and V = (—o0,z] \ K3 for some
K1, K5 of the form specified by (1). We will show that K; U K5 also has this
form. Let C be a T,-closed subset of K1 UKy with |C| < |S|. Then CNKj is a
T.-closed subset of K7 with |[CNK;| <|S|, so CNK; is T,-compact. Similarly,
C' N Ky is T-compact. Hence we may take M =UNV = (—o0,2] \ (K1 UK>).
Case 2: U € B,V € N,. Then for some y < 2 we have that U = (—o0,y] \ K1
for some K closed in (—o0,y) such that every T,-closed subset C' of K7 with
|C| < |S] is Ty-compact, and V' = (—o0, z] \ K2 for some K closed in (—o0, x)
with the same property, appropriately modified. Let p € U NV. We’ll show
that there exists E € B, such that p € E € UNV. Let L; = K; N (—o0,p]
and Ly = Ko N (—o00,p]. Our argument from the proof of (3) will go through
provided that (—oo,p] is closed in (—oo,z) and in (—oo,y). But this follows
from (6), because if p < z < x, then (—o0,z] \ (—o0,p] is open in (—oo, 2],
hence a union of members of N, U B., hence open in (—oco,z). Similarly for
(—00,y). Case 3: U € N,V € B,. Similar to Case 2. Case 4: U,V € B,. The
proof is identical to that of (3).

Proof of (5): If z = z then (5) is tautological, so assume that z < x. Let
K be a T,-closed subset of (—oo,z). Let L = K N (—o0, z), and suppose that
p € (—o00,2) \ L. We will show that there exists E € T, such that p € F and
ENL = @. We know that there exists @ € B, such that p € Q and QNK = 2.
Then Q € N, for some y < z, so @ is open in (—o00,y]. So by (6), we know
that Q N (—o0, 2] is open in (—oo, z]. Hence, by (4), we have that Q N (—oo, 2]
is a union of members of N, UB,. If U € N, then U N (-0, z) is open in
(—00,2), by (1). If U € B,, then U N (—o00,2) = U is open in (—o0, z), by (3).
So E = (QN(—00,z])N(—00,2) = QN (—00, z) is a union of T,-open sets and
is therefore open in (—oco, z). Moreover, p € F and ENL = &.

Proof of (6): If z = x then (6) is tautological, so assume that z < .
First we show that (—oo, 2] is closed in (—oo,z]. The proof of (4), Case 2,
shows that (—oo, 2] is T;-closed. Let C be a T,-closed subset of (—oo, z] with
|C| < |S|. We will show that C' is T,-compact. From this it will follow that
(—o0,z] \ (—o0, 2] € N, and therefore that (—oo, 2] is closed in (—oo,z]. To
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show that C is T,-compact, it suffices to show that C U {z} is T,-compact,
because C is T,-closed. Let {U,} be an open cover of C'U {z} by members of
B,. Choose a set Uy, from this cover with z € U,,. Then Uy, € N, for some y
with z <y <. So Uy, = (—00,y] \ K for some K closed in (—o0,y) such that
if D is a T,-closed subset of K with |D| < |S|, then D is T,-compact. By (5),
we know that C'N K is T,-closed. Also, |CN K| < |C| < |S|. Hence CN K is
T,-compact. It follows from (5) that U, N (—o0,y) is 7,-open for all o. Hence
finitely many sets U,, N (—00,y),...,Us, N (—00,y) cover C N K. Therefore
Uags Uays - - - s Ug, is our desired finite subcover of C'U {z}.

Next, we show that if K is a W,-closed subset of (—o0, 2], then K is W,-
closed. By (4), we have that (—oo, z]\ K is a union of members of N,UB, C B,,
so (—o0, 2] \ K is open in (—o0, z]. Therefore (—oo,z] \ K = ((—o00,2] \ K) U
((7003 SU] \ (7003 Z]) is Wz‘open'

Finally, we show that if K is a W,-closed subset of (—o0, z], then KN (—00, 2]
is W,-closed. Let p € (—o00,2] \ K. Then p € U C (—o0,z] \ K for some
U € N, UB,. It suffices to show that UN(—oo, z] € W,. Case 1: U € B,. Then
U € N, for some y < x. So U is open in (—o0,y]. Therefore UN(—o0,z] € W,
by (6), inductively. Case 2: U € N,. Then U = (—o0,z] \ K3 for some K;
closed in (—o0,x), by (1). So U equals a union of sets W € B,. Arguing as
in Case 1, we see that for all 8, we have that W N (=00, 2] € W,. Therefore
UnN(—o0,z] =Wz N (—o0,2]) € W,. O

Regrettably, the statement and proof of Lemma/Definition 3.2 contain many
unavoidable technicalities. The idea, though, is fairly straightforward. Recall
that if A is a Hausdorff topological space and p is a point not in A, then we
define the co-compact topology on AU {p} by choosing the neighborhood basis
at p to consist of all complements of compact subsets of A. The definition
of N, is somewhat similar to this; we take the neighborhood basis at y to be
the collection of all complements of closed sets, every “small” closed subset of
which is compact. By “small” here we mean, “of cardinality no greater than
that of S.”

Example 3.3. Let X = NU{M}, where M ¢ N. We order X by taking the
usual order on N and declaring that n < M for all n € N. Let § = N. For
any n € N, the topology W,, on (—oo,n] defined by Lemma/Definition 3.2 is
the discrete topology. Then the topology Tas on N = (—oo, M) is also discrete.
The compact subsets of (—oo, M) are precisely the finite subsets. It follows
that the topology Wy on X = (—oo, M] coincides with the order topology.

Example 3.4. Let Q be the least uncountable ordinal, and let X = QU {M},
where M ¢ Q. We order X by taking the usual order on Q and declaring
that x < M for all x € Q. Let S = N. We claim that the topology Wy, on
X = (=00, M] cannot coincide with the order topology on X in this case. For
suppose otherwise. Then K := (—oo, M) is a closed subspace of (—oo, M),
and moreover every closed subset C' of K with |C| < |S| is compact. So
{M} = (—o0,M] \ K is open in X. But in the order topology on X, the set
{M?} is not open.
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From this point on, we endow X = (—oo, M] with the topology W), as in
Lemma/Definition 3.2. The following four lemmas establish that Wy, possesses
the property required by Theorem 3.1.

Lemma 3.5. X is Hausdorff.

Proof. Let a,b be distinct points in X. Without loss of generality, assume that
a < b. We have that (—o0,a] € N, and (—00,b] € N}, so (—o0,a] and (—oo, b]
are open in X. By (6) in Lemma/Definition 3.2, we have that (—oo, a] is closed
in X. So (—o0,a] and (—o0,b] \ (—o0,a] are disjoint open neighborhoods of
a, b, respectively. (Il

Lemma 3.6. If A is a closed subset of X with |A| < |S|, then A is compact.

Proof. Tt suffices to show that AU {M} is compact. Let {U,} be a cover of
AU{M} by members of NpyUBys. Then M € U, for some member Uy, of the
cover with U,, € Nj. Then L = X \ Uy, is closed in (—oo, M) and every Ty;-
closed subset C' of L with |C| < |S] is Tp-compact. From Lemma/Definition
3.2, we see that AN (—oo, M) is Tp-closed. Hence LN AN (—oc0, M) is Tas-
closed as well. Also, |[LN AN (—oo, M)| < |S]. Therefore LN AN (—oo, M) is
Ta-compact. For all o, we have that U, N (—oo, M) € Tas. So finitely many
sets Ug,y, ..., Uqy, cover LN AN (—oo, M). Then Uy, Uy, --.,Ua, give us the
desired subcover. (]

Lemma 3.7. If AC X and |A| <|S|, then |A] <|S].

Proof. Suppose that |A] > |S|. Let m be the smallest element of X such that
|(—oo,m]NA| > |S|. Let £ be the least upper bound of AN (—o0o,m). (The fact
that X is well-ordered guarantees that m and £ exist.) Let Q@ = {a € A|a <
m}. Let C = U,cq((—00,a] N A). By Theorem 2.2, |C| < |S|. Observe that
(—o0,m] \ (—00,£] is an open set disjoint from A; therefore it is disjoint from
A. So (—oo,m]N A contains C and at most two other points, namely ¢ and m.
Becasue S is infinite, therefore |(—oo,m] N A| < |S], a contradiction. O

Lemma 3.8. If A C X and |A| > |S|, then A is not compact.

Proof. Temporarily assume that A is compact. Observe that [A| > |S|. Let m
be the smallest element of X such that |(—oo, m]NA| > |S|. By Lemma/Definition
3.2, we have that (—oo, m] is a closed subspace of X = (—o0, M], so (—oo, m]NA
is W,,-compact. Let K = (—oo,m) N A. Note that |K| > |S|, by definition
of m. Let C be any Tp,-closed subset of K such that |C|] < |S|. We will
show that C is T,,-compact. By definition of W,,,, this will show that K is a
Wp-closed subset of the W,,-compact set (—oo,m] N A and therefore that K
is W,,-compact.

Let ¢ be the least upper bound of C' in X. We must have that ¢ < m, for
otherwise, by Theorem 2.2, we would have that

U ((—o0, ] N A)

ceC

K| = <5].
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So C' C (—o0,]. It follows then from Lemma/Definition 3.2 that because C' is

Tm-closed, therefore C' is Wy-closed, and therefore C' is W,,,-closed. But C is a

subset of the W,,-compact set A, so C' is W,,-compact, therefore 7,,-compact.
Note that {(—o0,k] : k € K} is a Wy,-open cover of K. Hence

K C (—00,k1] U~ U (=00, ky]

for some ki,...,k,. So

K C CJ((—OO,kj] ﬂZ)

Jj=1

But each k; < m, so |(—oo,k;] N A| < |S], by definition of m. But then
|K| < |S], because S is infinite. This contradicts the fact that |K| > |S|. O

Theorem 3.1 follows at once from Lemmas 3.5, 3.6, 3.7, and 3.8.

Theorem 3.9. Let X be a set, and let S be an infinite set with reqular cardi-
nality. Then there exists a Hausdorff topology on X so that if A C X, then A
is compact if and only if |A| < |5].

Proof. The proof is identical to that of Theorem 3.1 with two small modifica-
tions. One must replace every instance of “< |S|” with “< |S|.” Also, one must
use Definition 2.3 in place of Theorem 2.2 whenever the latter is invoked. [

The following example illustrates how Theorem 3.9 can fail when S has
singular cardinality.

Example 3.10. Consider the sets defined in Example 2.4. We will show that
there does not exist a topology on Y such that A C Y has compact closure if
and only if |A| < |Y].

Suppose otherwise. The fact that Y does not have strictly smaller cardinality
than itself implies that Y = Y is not compact. Let {U,} be an open cover of Y’
with no finite subcover. We know that |X,,| < Y| for all n, so X,, is compact.
Cover X,, with finitely many sets Uapis--+sUa,,, from the collection {Uy},
and let V,, = (U}, U, ,.- By our assumption on {U,}, there exists a point
b, € Y such that b, ¢ W, where W,, = |J;'_, Vi. Note that the sets W,, form
an increasing chain of open sets. Also note that X,, ¢ X,, C V,, C W,,.

Let S = {b, | n € N}. Then |S| < |Y|. We will show that S is not
compact, thereby producing the desired contradiction. For each ¢ € N, let
Sy = {bn | n > £}. Then {S;} is a collection of closed subsets of S with the
finite intersection property. It suffices to show that (2, S, = @. Let y € Y.
Then y € X,, for some m. Hence y is in the open set W,,. Observe that
W NSy = &, because of how we chose the points b,,. Therefore y ¢ S
Therefore {S,} has empty intersection, and so S cannot be compact.
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