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1. Introduction

When we study about fixed points of different mappings satisfying certain
conditions, then it is observed that this theory has enormous applications in
various branches of mathematics and mathematical sciences and hence become
the source of inspiration for many researchers and mathematicians working in
the metric fixed point theory (see for instant [5, 16, 12, 26]). When a self
mapping in a metric space has no fixed points, then it could be interesting to
study the existence and uniqueness of some points that minimize the distance
between the point and its corresponding image. These points are known as best
proximity points. Best proximity points theorems for several types of non-self
mappings have been derived in [1], [2], [3], [6], [7], [8], [10], [9] and [24]. The best
proximity points were introduced by [13] and modified by Sadiq Basha in [7].
The results about best proximity point theory have been found very briefly in
the work of [6] to [9]. Now, after the new generalization of Banach contraction
principle given by khoj. et al. in [15] by defining a notion of Z-contraction,
after that Kumam et. al. in [16] introduced Suzuki type Z-contraction and
unified many fixed point results. Some recent contribution in this field can be
found in ([18, 17, 4, 20, 21, 22, 23]). Because of its importance in nonlinear
analysis, we extend these generalizations and contractions to find out the unique
best proximity point in metric spaces and introduced these notions for non self
mappings in the light of Yaq. et al. [25] by using some suitable properties.
Some examples and an application to fractional order functional differential
equation is given to illustrate the usability of new theory.

2. Preliminaries

In this section, we collect some notations and notions which will be used
throughout the rest of this work.
Let A and B be two nonempty subsets of a metric space (X, d). We will use
the following notations:

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B};

A0 := {a ∈ A : d(a, b) = d(A,B) for some b ∈ B};

B0 := {b ∈ B : d(a, b) = d(A,B) for some a ∈ A}.

Definition 2.1. An element x∗ ∈ A is said to be a best proximity point of
the non-self-mapping T : A → B if it satisfies the condition that d(x∗, T x∗) =
d(A,B).

Remark 2.2. It can be observed that a best proximity reduces to a fixed point
if the underlying mapping is a self-mapping.

Definition 2.3 ([15]). Let ζ : [0,∞) × [0,∞) → R be a mapping, then ζ is
called a simulation function if it satisfies the following conditions:

(1) ζ(0, 0) = 0;
(2) ζ(t, s) < s− t for t, s > 0;
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(3) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then

lim sup
n→∞

ζ(tn, sn) < 0.

We denote the set of all simulation functions by Z.

Definition 2.4 ([15]). Let (X, d) be a metric space, F : X → X is a mapping
and ζ ∈ Z. Then F is called a Z-contraction with respect to ζ if the following
condition holds:

(2.1) ζ(d(Fx, Fy), d(x, y)) ≥ 0

where x, y ∈ X, with x 6= y.

Definition 2.5 ([16]). Let (X, d) be a metric space, F : X → X is a mapping
and ζ ∈ Z. Then F is called a Suzuki type Z-contraction with respect to ζ if
the following condition holds:

(2.2)
1

2
d(x, Fx) < d(x, y) ⇒ ζ(d(Fx, Fy), d(x, y)) ≥ 0

where x, y ∈ X, with x 6= y.

Definition 2.6 ([19]). Let (A,B) be a pair of nonempty subsets of a metric
space (X, d) with A0 6= φ. Then the pair (A,B) is said to have the P -property
if and only if

d(x1, y1) = d(A,B) and d(x2, y2) = d(A,B) ⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Definition 2.7 ([27]). Let (A,B) be a pair of nonempty subsets of a metric
space (X,d) with A0 6= ∅. Then the pair (A,B) is said to have weak P -property
if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}

⇒ d(x1, x2) ≤ d(y1, y2).

Theorem 2.8 ([16]). Let (X, d) be a complete metric space. Define a mapping
F : X → X satisfying the following conditions:

(1) F is Suzuki type Z-contraction with respect to ζ;
(2) for every bounded Picard sequence there exists a natural number k such

that 1
2d(xmk

, xmk+1) < d(xmk
, xnk

) for mk > nk ≥ k.

Then there exists unique fixed point in X and the Picard iteration sequence
{xn} defined by

xn = Fxn−1, n = 1, 2, ...

converges to a fixed point of F,

Remark 2.9 ([15]). Every Z-contraction is contractive and hence Banach con-
traction.
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Theorem 2.10 ([5]). Let (X, d) be a complete metric space. Then every con-
traction mapping has a unique fixed point. It is known as Banach contraction
principle.

3. Main Results

In this section, we will introduced the notion of generalized contraction prin-
ciple for non self mappings by combining Suzuki and Z- contraction mappings
and will find the unique best proximity point.

Definition 3.1. Let (X, d) be a metric space, F : A → B is a mapping and
ζ ∈ Z. Then F is called a Z-contraction with respect to ζ if the following
condition holds:

(3.1) ζ(d(Fx, Fy), d(x, y)) ≥ 0

where A,B ⊆ X and x, y ∈ A, with x 6= y.

Definition 3.2. Let (X, d) be a metric space, F : A → B is a mapping and
ζ ∈ Z. Then F is called a Suzuki type Z-contraction with respect to ζ if the
following condition holds:

(3.2)
1

2
d(x, Fx) < d(x, y) ⇒ ζ(d(Fx, Fy), d(x, y)) ≥ 0

where A,B ⊆ X and x, y ∈ A, with x 6= y.

Remark 3.3. Since the definition of simulation function implies that ζ(t, s) < 0
for all t ≥ s > 0. Therefore F is Suzuki type Z contraction with respect to ζ,

then

1

2
d(x, Fx) < d(x, y) ⇒ d(Fx, Fy) < d(x, y)

for any distinct x, y ∈ A.

Remark 3.4. Every Suzuki type Z-contraction is also a Z-contraction.

Now, we are in a position to prove best proximity point theorems for Z and
Suzuki type Z-contractions in metric spaces.

Theorem 3.5. Let (A,B) be the pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty. Define a mapping F : A → B

satisfying the following conditions:

(1) F is Z-contraction with F (A0) ⊆ B0;
(2) the pair (A,B) has weak P -property.

Then there exists unique best proximity point in A and the iteration sequence
{x2n} defined by

x2n+1 = Fx2n, d(x2n+2, x2n+1) = d(A,B), n = 0, 1, 2, ...

converges, to x∗, for every x0 ∈ A0.
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Proof. First of all, we have to show that B0 is closed. For this, let us take
{yn} ⊆ B0 a sequence such that yn → t ∈ B. Since the pair (A,B) has weak
P -property, it follows from the weak P -property that

d(yn, ym) → 0 ⇒ d(xn, xm) → 0,

as m,n → ∞, and xn, xm ∈ A0 and d(xn, yn) = d(xm, ym) = d(A,B).
Thus {xn} is a Cauchy sequence and converges strongly to a point s ∈ A. By
the continuity of the metric d, we have d(s, t) = d(A,B), that is t ∈ B0 and
hence B0 is closed.
Let A0 be the closure of A0; now we have to prove that F (A0) ⊆ B0. If we take
x ∈ A0 \A0, then there exists a sequence {xn} ⊆ A0 such that xn → x. By the
continuity of F and the closeness of B0, we get as Fx = limn→∞ Fxn ∈ B0.

That is, F (A0) ⊆ B0.

Since F is Z-contraction,which implies that

0 ≤ ζ(d(Fx1, Fx2), d(x1, x2))

< d(x1, x2)− d(Fx1, Fx2),

implies that

(3.3) d(Fx1, Fx2) < d(x1, x2).

Define an operator PA0
: F (A0) → A0, by PA0

y = {x ∈ A0 : d(x, y) = d(A,B)}.

Since the pair (A,B) has weak P -property and using (5), we have

d(PA0
Fx1, PA0

Fx2) ≤ d(Fx1, Fx2)

< d(x1, x2)

for any x1, x2 ∈ Ao. Hence ζ(d(PA0
Fx1, PA0

Fx2), d(x1, x2)) ≥ 0. So, PA0
F :

A0 → A0 is a Z-contraction from complete metric subspace A0 into itself.
Since by using Remark (2.1), every Z-contraction is a contraction and hence
a Banach contraction. Thus by using theorem (2.2), PA0

F has unique fixed
point, that is PA0

Fx∗ = x∗ ∈ A0, which implies that

d(x∗, Fx∗) = d(A,B).

Therefore, x∗ is unique in A0 such that d(x∗, Fx∗) = d(A,B). It is easily seen
that x∗ is unique one in A such that d(x∗, Fx∗) = d(A,B). The Picard Iterative
sequence

xn+1 = PA0
Fxn, n = 0, 1, 2, ...

converges, for every x0 ∈ A0, to x∗. The iteration sequence {x2n}, for n =
0, 1, 2, ... defined by,

x2n+1 = Fx2n, d(x2n+2, x2n+1) = d(A,B), n = 0, 1, 2, ...

is exactly a subsequence of {xn}, so that it converges to x∗, for every x0 ∈
A0. �

Theorem 3.6. Let (A,B) be the pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty. Define a mapping F : A → B

satisfying the following conditions:
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(1) F is Suzuki type Z-contraction with F (A0) ⊆ B0;
(2) the pair (A,B) has the weak P -property.

Then there exists unique x∗ in A such that d(x∗, Fx∗) = d(A,B) and the
iteration sequence {x2n} defined by

x2n+1 = Fx2n, d(x2n+2, x2n+1) = d(A,B), n = 0, 1, 2, ...

converges, for every x0 ∈ A0 to x∗.

Proof. First of all, we have to show that B0 is closed. For this, let us take
{yn} ⊆ B0 a sequence such that yn → g ∈ B. Since the pair (A,B) has weak
P -property, it follows from weak P -property that

d(yn, ym) → 0 ⇒ d(xn, xm) → 0,

as m,n → ∞, and xn, xm ∈ A0 and d(xn, yn) = d(xm, ym) = d(A,B).
Thus {xn} is a Cauchy sequence and converges strongly to a point f ∈ A. By
the continuity of the metric d, we have d(f, g) = d(A,B), that is g ∈ B0 and
hence B0 is closed.
Let A0 be the closure of A0; now we have to prove that F (A0) ⊆ B0. If we take
x ∈ A0 \A0, then there exists a sequence {xn} ⊆ A0 such that xn → x. By the
continuity of F and the closeness of B0, we get as Fx = limn→∞ Fxn ∈ B0.

That is, F (A0) ⊆ B0.

Define an operator PA0
: F (A0) → A0, by PA0

y = {x ∈ A0 : d(x, y) = d(A,B)}.

Since F is Suzuki type Z-contraction, such that for 1
2d(x1, Fx1) < d(x1, y1),

we have

ζ(d(Fx1, Fy1), d(x1, y1)) ≥ 0.

Now, we claim that PA0
F is Suzuki type Z-contraction. For this, we have to

prove that 1
2d(x1, PA0

Fx1) < d(x1, y1), for all x, y ∈ A. Since F is Suzuki type
Z-contraction, that is d(Fx, Fy) < d(x, y). By using P -property, PA0

y = {x ∈

A0 : d(x, y) = d(A,B)} and triangular inequality, we obtain

1

2
d(x1, PA0

Fx1) ≤
1

2
[d(x1, y1) + d(y1, PA0

Fx1)]

=
1

2
[d(x1, y1) + d(y1, x1)]

= d(x1, y1)

= d(Fx1, Fy1)

< d(x1, y1)

Hence,

(3.4)
1

2
d(x1, PA0

Fx1) < d(x1, y1).

for any x1, y1 ∈ A0. Which shows that ζ(d(PA0
Fx1, PA0

Fy1), d(x1, y1)) ≥ 0,
where x1, y1 ∈ A0. Thus, PA0

F : A0 → A0 is a Suzuki type Z-contraction from
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complete metric subspace A0 into itself. Consequently, one may write by using
the fact that PA0

F is a Suzuki type Z-contraction and remark (3.1) as

⇒ d(PA0
Fx1, PA0

Fy1) < d(x1, y1).

Then by using Theorem (2.1), PA0
F has unique fixed point, that is PA0

Fx∗ =
x∗ ∈ A0, which implies that

d(x∗, Fx∗) = d(A,B).

Therefore, x∗ is unique in A0 such that d(x∗, Fx∗) = d(A,B). It is easily seen
that x∗ is unique one in A such that d(x∗, Fx∗) = d(A,B). The Picard Iterative
sequence

xn+1 = PA0
Fxn, n = 0, 1, 2, ...

converges, for every x0 ∈ A0, to x∗. The iteration sequence {x2n}, for n =
0, 1, 2, ... defined by,

x2n+1 = Fx2n, d(x2n+2, x2n+1) = d(A,B), n = 0, 1, 2, ...

is exactly a subsequence of {xn}, so that it converges to x∗, for every x0 ∈
A0. �

Corollary 3.7. Let (X, d) be a complete metric space. Define a mapping
F : X → X satisfying the following conditions:

(1) F is Z-contraction.

Then there exists unique fixed point in X and the iteration sequence {x2n}
defined by

x2n+1 = Fx2n, d(x2n+2, x2n+1) = d(A,B), n = 0, 1, 2, ...

converges to x∗, for every x0 ∈ A0.

Proof. Taking self mapping A = B = X in Theorem (3.1), then we get desired
result. �

Remark 3.8. By Taking self mapping in Theorem (3.2), we obtain Theorem
(2.1).

There is an example to justify our results and remarks.

Example 3.9. Consider X = R
2, with the usual metric d. Define the sets

A = {(x, 1) : x ≥ 0} and B = {(x, 0) : x ≥ 0}. Let A0 = A and B0 = B

and clearly, the pair (A,B) has the P -property, also satisfies weak P -property.
Also define f : A → B as:

f(x, 1) = (
x2

x+ 1
, 0),
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we take A0 = A 6= ∅, B0 = B, f(A0) ⊆ B0. Then,

d(f(x1, 1), f(x2, 1)) = |
x2
1

x1 + 1
−

x2
2

x2 + 1
|

=
|x2

1(x2 + 1)− x2
2(x1 + 1)

(x1 + 1)(x2 + 1)
=

|(x1x2 + x1 + x2)(x2 − x1)|

|(x1 + 1)(x2 + 1)|

=
x1x2 + x1 + x2

(x1 + 1)(x2 + 1)
|x1 − x2|

=
x1x2 + x1 + x2

x1x2 + x1 + x2 + 1
|x1 − x2|

< |x1 − x2| = d((x1, 1), (x2, 1)).

i.e. d(f(x1, 1), f(x2, 1)) < d((x1, 1), (x2, 1)),
which implies that ζ(d(f(x1, 1), f(x2, 1)), d((x1, 1), (x2, 1))) ≥ 0, i.e. f is ζ-
contraction. Thus, all the conditions of the Theorem (3.1) are satisfied, and the
conclusion of that theorem is also correct, that is, f has a unique best proximity
point z∗ = (0, 1) ∈ A0 such that d(z∗, fz∗) = d((0, 1), (0, 0)) = d(A,B) = 1.
On the other hand, it is clear that the iteration sequence {z2k}, k = 0, 1, 2, ...
defined by

z2k+1 = f{z2k}, d(z2k+2, z2k+1) = d(A,B) = 1, k = 0, 1, 2, ...,

converges for every z0 ∈ A0, to z∗, since

z2(k+1) = (x2(k+1), 1) = (
x2
2k

x2k + 1
, 1) → (0, 1).

In fact, from x2(k+1) =
x2
2k

x2k+1 , we know that x2k+1 ≤ x2k, so there exists a

number x∗ such that x2k → x∗. Furthermore, x∗ = (x∗)2

x∗+1 and hence x∗ = 0.

Example 3.10. Consider X = R
2, with the usual metric d. Define the sets

A = {(x, 1) : x ≥ 0} and B = {(x, 0) : x ≥ 0}. Let A0 = A and B0 = B

and clearly, the pair (A,B) has the P -property, also satisfies weak P -property.
Also define f : A → B as:

f(x, 1) = (
x2

x+ 1
, 0),
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we take A0 = A 6= ∅, B0 = B, f(A0) ⊆ B0. Then,

1

2
d((x1, 1), f(x1, 1)) =

1

2
d((x1, 1), (

x2
1

x1 + 1
, 0))

=
1

2
|1 + (x1 −

x2
1

x1 + 1
)|

=
1

2
|1 +

1

1 + x1
|

=
1

2

|1 + 1
1+x1

|

|x1 − x2|
|x1 − x2|

=
1

2

|x1 + 2|

|(x1 − x2)(x1 + 1)|
|x1 − x2|

< |x1 − x2| = d((x1, 1), (x2, 1)).

Thus, d((x1, 1), f(x1, 1)) < d((x1, 1), (x2, 1)), which implies that ζ(d(f(x1, 1),
f(x2, 1)), d((x1, 1), (x2, 1))) ≥ 0, and f is Suzuki type Z-contraction with re-
spect to ζ. Thus, all the conditions of the Theorem (3.2) are satisfied, and the
conclusion of that theorem is also correct, that is, f has a unique best proxim-
ity point z∗ = (0, 1) ∈ A0 such that d(z∗, fz∗) = d((0, 1), (0, 0)) = d(A,B) = 1
On the other hand, it is clear that the iteration sequence {z2k}, k = 0, 1, 2, ...
defined by

z2k+1 = f{z2k} d(z2k+2, z2k+1) = d(A,B) = 1, k = 0, 1, 2, ...,

converges for every z0 ∈ A0, to z∗, since

z2(k+1) = (x2(k+1), 1) = (
x2
2k

x2k + 1
, 1) → (0, 1).

In fact, from x2(k+1) =
x2
2k

x2k+1 , we know that x2k+1 ≤ x2k, so there exists a

number x∗ such that x2k → x∗. Furthermore, x∗ = (x∗)2

x∗+1 and hence x∗ = 0.

Example 3.11. If we change the defined mapping on same conditions of above
example and on little change on given sets like for A = {(1, y) : y ≥ 0} and
B = {(0, y) : y ≥ 0} and A0 = A and B0 = B. Define f : A → B as:

f(1, y) = (0,
y2

y + 1
),

as given in [25], then also with this defined mapping there exists a best prox-
imity point for both Z and Suzuki type Z-contractions, also after such change
in the conditions, examples (3.1) and (3.2), theorems (3.1) and (3.2) ver-
ified, and that best proximity point is (1, 0) for both, that is, d(x, fx) =
d((1, 0), (0, 0)) = d(A,B) = 1. If there are two best proximity points for
same sets, (1, 0) and (0, 1), then their uniqueness can be proved easily as
d((1, 0), (0, 0)) = d(A,B) and d((0, 1), (0, 0)) = d(A,B) = 1, then one can write
as: d((1, 0), (0, 0)) = d((0, 1), (0, 0)) = d(A,B), this implies that (1, 0) = (0, 1).
Hence, existence and uniqueness of best proximity point in the metric space
has proved.
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4. Application

In this section, we present an application of our fixed point results derived
in previous section to establish the existence of solution of fractional order
functional differential equation.
Consider the following initial value problem (IVP for short) of the form

(4.1) Dαy(t) = f(t, yt), for each t ∈ J = [0, b], 0 < α < 1,

(4.2) y(t) = φ(t), t ∈ (−∞, 0]

where Dα is the standard Riemann-Liouville fractional derivative, f : J ×B →
R, φ ∈ B, φ(0) = 0 and B is called a phase space or state space satisfying
some fundamental axioms (H-1, H-2, H-3) given below which were introduced
by Hale and Kato in [14].
For any function y defined on (−∞, b] and any t ∈ J , we denote by yt the
element of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

Here yt(·) represents the history of the state from −∞ up to present time t.

By C(J,R) we denote the Banach space of all continuous functions from J

into R with the norm

||y||∞ := sup{|y(t)| : t ∈ J}

where | · | denotes a suitable complete norm on R.

(H-1) If y : (−∞, b] → R, and y0 ∈ B, then for every t ∈ [0, b] the following
conditions hold:
(i) yt is in B,
(ii) ||yt||B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)||y0||B ,
(iii) |y(t)| ≤ H ||yt||B ,

where H ≥ 0 is a constant, K : [0, b] → [0,∞) is continuous, M :
[0,∞) → [0,∞) is locally bounded and H,K,M are independent
of y(·).

(H-2) For the function y(·) in (H-1), yt is a B-valued continuous function on
[0, b].

(H-3) The space B is complete.

By a solution of problem (4.1)-(4.2), we mean a space Ω = {y : (−∞, b] →
R : y|(−∞,0] ∈ B and y|[0,b] is continuous}. Thus a function y ∈ Ω is said to be
a solution of (4.1)-(4.2) if y satisfies the equation Dαy(t) = f(t, yt) on J , and
the condition y(t) = φ(t) on (−∞, 0].

The following lemma is crucial to prove our existence theorem for the pro-
blem (4.1)-(4.2).
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Lemma 4.1 (see [11]). Let 0 < α < 1 and let h : (0, b] → R be continuous and
lim
t→0+

h(t) = h(0+) ∈ R. Then y is a solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

if and only if y is a solution of the initial value problem for the fractional
differential equation

Dαy(t) = h(t), t ∈ (0, b],

y(0) = 0.

Now we are ready to prove following existence theorem.

Theorem 4.2. Let f : J ×B → R. Assume
(H) there exists q > 0 such that

|f(t, u)− f(t, v)| ≤ q||u− v||B, for t ∈ J and every u, v ∈ B.

If bαKbq

Γ(α+1) = λ < 1 where

Kb = sup{|K(t)| : t ∈ [0, b]},

then there exists a unique solution for the IVP (4.1)-(4.2) on the interval
(−∞, b].

Proof. To prove the existence of solution for the IVP (4.1)-(4.2), we transform
it into a fixed point problem. For this, consider the operatorN : Ω → Ω defined
by

N(y)(t) =

{

φ(t) t ∈ (−∞, 0],
1

Γ(α)

∫ t

0
(t− s)α−1f(s, ys)ds t ∈ [0, b].

Let x(·) : (−∞, b] → R be the function defined by

x(t) =

{

φ(t) t ∈ (−∞, 0],
0 t ∈ [0, b].

Then x0 = φ. For each z ∈ C([0, b],R) with z(0) = 0, we denote by z̄ the
function defined by

z̄(t) =

{

0 if t ∈ (−∞, 0],
z(t) if t ∈ [0, b].

If y(·) satisfies the integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds,

we can decompose y(·) as y(t) = z̄(t)+x(t), 0 ≤ t ≤ b, which implies yt = z̄t+xt,

for every 0 ≤ t ≤ b, and the function z(·) satisfies

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

Set
C0 = {z ∈ C([0, b],R) : z0 = 0},
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and let || · ||b be the seminorm in C0 defined by

||z||b = ||z0||B + sup{|z(t)|; 0 ≤ t ≤ b} = sup{|z(t)|; 0 ≤ t ≤ b}, z ∈ C0.

C0 is a Banach space with norm || · ||b. Let the operator P : C0 → C0 be defined
by

(4.3) (Pz)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds, t ∈ [0, b].

That the operator N has a fixed point is equivalent to P has a fixed point, and
so we turn to proving that P has a fixed point. Indeed, consider z, z∗ ∈ C0.
Then we have for each t ∈ [0, b]

|P (z)(t)− P (z∗)(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, z̄s + xs)− f(s, z̄∗s + xs)| ds

≤
1

Γ(α)

∫ t

0

(t− s)α−1q||z̄s − z̄∗s ||B ds

≤
1

Γ(α)

∫ t

0

(t− s)α−1qKb sup
s∈[o,t]

||z(s)− z∗(s)|| ds

≤
Kb

Γ(α)

∫ t

0

(t− s)α−1q ds ||z − z∗||b.

Therefore

||P (z)− P (z∗)||b ≤
qbαKb

Γ(α+ 1)
||z − z∗||b,

i.e.

d(P (z), P (z∗)) ≤ λd(z, z∗).

Now we observe that the function ζ : [0,∞)× [0,∞) → R defined by ζ(t, s) =
λs−t for all t, s ∈ [0,∞), is in Z and so we deduce that the operator P satisfies
all the hypothesis of corollary (3.7). Thus P has unique fixed point. �
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