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Abstract

A. Rosenfeld [23] introduced the notion of a digitally continuous func-
tion between digital images, and showed that although digital images
need not have fixed point properties analogous to those of the Euclidean
spaces modeled by the images, there often are approximate fixed point
properties of such images. In the current paper, we obtain additional
results concerning fixed points and approximate fixed points of digi-
tally continuous functions. Among these are several results concerning
the relationship between universal functions and the approximate fixed
point property (AFPP).
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1. Introduction

In digital topology, we study geometric and topological properties of digital
images via tools adapted from geometric and algebraic topology. Prominent
among these tools is a digital version of continuous functions. In the current
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paper, we study fixed points and approximate fixed points of digitally contin-
uous functions. We present a number of original results and some corrections
of previously published assertions.

The paper is organized as follows. Section 2 reviews background material. In
section 3, we show that a digital image X has the Fixed Point Property (FPP)
if and only if X has a single point. In section 4 we introduce approximate fixed
points and the Approximate Fixed Point Property (AFPP). We give examples
of digital images that have, and that don’t have, this property. In section 5 we
study universal functions on digital images and their relation to the AFPP. In
section 6 we correct errors that appeared in earlier papers. Concluding remarks
appear in section 7.

2. Preliminaries

2.1. General Properties. A fixed point of a function f : X → X is a point
x ∈ X such that f(x) = x.

For a finite set X, we denote by |X| the number of distinct members of X.
Let N be the set of natural numbers and let Z denote the set of integers.

Then Zn is the set of lattice points in Euclidean n−dimensional space.
A digital image is a pair (X,κ), where ∅ 6= X ⊂ Zn for some positive integer

n and κ is an adjacency relation on X. Technically, then, a digital image (X,κ)
is an undirected graph whose vertex set is the set of members of X and whose
edge set is the set of unordered pairs {x0, x1} ⊂ X such that x0 6= x1 and x0

and x1 are κ-adjacent.
Adjacency relations commonly used for digital images include the following

[22]. Two points p and q in Z2 are 8− adjacent if they are distinct and differ
by at most 1 in each coordinate; p and q in Z2 are 4 − adjacent if they are
8-adjacent and differ in exactly one coordinate. Two points p and q in Z3 are
26−adjacent if they are distinct and differ by at most 1 in each coordinate; they
are 18−adjacent if they are 26-adjacent and differ in at most two coordinates;
they are 6−adjacent if they are 18-adjacent and differ in exactly one coordinate.
For k ∈ {4, 8, 6, 18, 26}, a k − neighbor of a lattice point p is a point that is
k−adjacent to p.

The adjacencies discussed above are generalized as follows. Let u, n be
positive integers, 1 ≤ u ≤ n. Distinct points p, q ∈ Zn are called cu-adjacent if
there are at most u distinct coordinates j for which |pj − qj | = 1, and for all
other coordinates j, pj = qj . The notation cu represents the number of points
q ∈ Zn that are adjacent to a given point p ∈ Zn in this sense. Thus the values
mentioned above: if n = 1 we have c1 = 2; if n = 2 we have c1 = 4 and c2 = 8;
if n = 3 we have c1 = 6, c2 = 18, and c3 = 26. Yet more general adjacency
relations are discussed in [19].

Let κ be an adjacency relation defined on Zn. A digital image X ⊂ Zn is
κ − connected [19] if and only if for every pair of points {x, y} ⊂ X, x 6= y,
there exists a set {x0, x1, . . . , xc} ⊂ X such that x = x0, xc = y, and xi and
xi+1 are κ−neighbors, i ∈ {0, 1, . . . , c− 1}. A κ-component of X is a maximal
κ-connected subset of X.
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Often, we must assume some adjacency relation for the white pixels in Zn,
i.e., the pixels of Zn \X (the pixels that belong to X are sometimes referred to
as black pixels). In this paper, we are not concerned with adjacencies between
white pixels.

Definition 2.1 ([3]). Let a, b ∈ Z, a < b. A digital interval is a set of the form

[a, b]Z = {z ∈ Z | a ≤ z ≤ b}
in which 2−adjacency is assumed.

Definition 2.2 ([4]; see also [23]). Let X ⊂ Zn0 , Y ⊂ Zn1 . Let f : X → Y
be a function. Let κi be an adjacency relation defined on Zni , i ∈ {0, 1}. We
say f is (κ0, κ1)−continuous if for every κ0−connected subset A of X, f(A) is
a κ1−connected subset of Y .

See also [11, 12], where similar notions are referred to as immersions, grad-
ually varied operators, and gradually varied mappings.

If a and b are members of a digital image (X,κ), we write a↔κ b, or a↔ b
when κ is understood, to indicate that either a = b or a and b are κ-adjacent.

We say a function satisfying Definition 2.2 is digitally continuous. This
definition implies the following.

Proposition 2.3 ([4]; see also [23]). Let X and Y be digital images. Then the
function f : X → Y is (κ0, κ1)-continuous if and only if for every {x0, x1} ⊂ X
such that x0 and x1 are κ0−adjacent, f(x0)↔κ1 f(x1).

For example, if κ is an adjacency relation on a digital image Y , then f :
[a, b]Z → Y is (2, κ)−continuous if and only if for every {c, c + 1} ⊂ [a, b]Z,
f(c)↔κ f(c+ 1).

We have the following.

Proposition 2.4 ([4]). Composition preserves digital continuity, i.e., if f :
X → Y and g : Y → Z are, respectively, (κ0, κ1)−continuous and (κ1, κ2)−continuous
functions, then the composite function g ◦ f : X → Z is (κ0, κ2)−continuous.

We say digital images (X,κ) and (Y, λ) are (κ, λ) − isomorphic (called
(κ, λ) − homeomorphic in [3, 5]) if there is a bijection h : X → Y that is
(κ, λ)-continuous, such that the function h−1 : Y → X is (λ, κ)-continuous.

Classical notions of topology [2] yielded the concept of digital retraction
in [3]. Let (X,κ) be a digital image and let A be a nonempty subset of X. A
retraction of X onto A is a (κ, κ)-continuous function r : X → A such that
r(a) = a for all a ∈ A.

A digital simple closed curve is a digital image X = {xi}m−1
i=0 , with m ≥ 4,

such that the points of X are labeled circularly, i.e., xi and xj are adjacent if
and only if j = (i− 1) (mod m) or j = (i+ 1) (mod m).

2.2. Digital homotopy. A homotopy between continuous functions may be
thought of as a continuous deformation of one of the functions into the other
over a time period.
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Definition 2.5 ([4]; see also [21]). Let X and Y be digital images. Let f, g :
X → Y be (κ, κ′)-continuous functions. Suppose there is a positive integer m
and a function F : X × [0,m]Z → Y such that

• for all x ∈ X, F (x, 0) = f(x) and F (x,m) = g(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by

Fx(t) = F (x, t) for all t ∈ [0,m]Z

is (2, κ′)−continuous.
• for all t ∈ [0,m]Z, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X
is (κ, κ′)−continuous.

Then F is a digital (κ, κ′)−homotopy between f and g, and f and g are digitally
(κ, κ′)−homotopic in Y .

When the adjacency relations κ and κ′ are understood in context, we say
f and g are digitally homotopic to abbreviate “digitally (κ, κ′)−homotopic in
Y .”

Definition 2.6. A digital image (X,κ) is κ-contractible [21, 3] if its identity
map is (κ, κ)-homotopic to a constant function p for some p ∈ X.

When κ is understood, we speak of contractibility for short.

2.3. Digital simplicial homology. Our presentation of digital simplicial ho-
mology is taken from that of [16].

A set of m+ 1 distinct mutually adjacent points is an m-simplex.

Definition 2.7. If αq is the number of (κ, q)-simplices in X and m = max{q ∈
N∗ |αq 6= 0}, then m is the dimension of (X,κ), denoted dim(X,κ) or dim(X),
and the Euler characteristic of (X,κ), χ(X,κ), is defined by

χ(X,κ) =

m∑
q=0

(−1)qαq. 2

For q ∈ N∗, the group of q-chains of (X,κ), denoted Cκq (X), is the free
Abelian group with basis being the set of q-simplices of X.

Let δq : Cκq (X)→ Cκq−1(X) defined by

δq(< p0, p1, . . . , pq >) =

{ ∑q
i=0(−1)i < p0, p1, . . . , p̂i, . . . , pq > if 0 ≤ q ≤ dim(X);

0 if q > dim(X),

where p̂i means that pi is omitted from the vertices of the simplex considered.
Then δq is a homomorphism, and we have δq−1 ◦ δq = 0 [1]. This gives rise to
the following groups [9].

• Zκq (X) = Ker δq, the group of digital simplicial q-cycles of X.
• Bκq (X) = Im δq+1, the group of digital simplicial q-boundaries of X.
• The quotient group Hκ

q (X) = Zκq (X) /Bκq (X), the q-th digital simpli-
cial homology group of X.
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We have the following.

Theorem 2.8 ([9]). Let (X,κ) be a directed digital simplicial complex of di-
mension m.

• Hq(X) is a finitely generated abelian group for every q ≥ 0.
• Hq(X) is a trivial group for all q > m.
• Hm(X) is a free abelian group, possibly {0}.

3. Fixed point property

We say a digital image (X,κ) has the fixed point property (FPP) if every
(κ, κ)-continuous function f : X → X has a fixed point. Some properties of
digital images with the FPP were studied in [14]. However, the following shows
that for digital images with cu-adjacencies, the FPP is not very interesting.

Theorem 3.1. Let (X,κ) be a digital image. Then (X,κ) has the FPP if and
only if |X| = 1.

Proof. Clearly, if |X| = 1 then (X,κ) has the FPP.
Now suppose |X| > 1. If (X,κ) has more than 1 κ-component, then there

is a (κ, κ) continuous map f : X → X such that for all x ∈ X, x and f(x) are
in different κ-components of X. Such a map does not have a fixed point.

Therefore, we may assume X is κ-connected. Since |X| > 1, there are
distinct κ-adjacent points x0, x1 ∈ X. Consider the map f : X → X given by

f(x) =

{
x0 if x 6= x0;
x1 if x = x0.

Consider a pair y0, y1 of κ-adjacent members of X.

• If one of these points, say, y0, coincides with x0, we have f(y0) =
f(x0) = x1 and, since y1 6= x0, f(y1) = x0, so f(y0) and f(y1) are
κ-adjacent.
• If both y0 and y1 are distinct from x0, then f(y0) = x1 = f(y1)

Therefore, f is (κ, κ)-continuous. Clearly, f does not have a fixed point. There-
fore, (X,κ) does not have the FPP. �

4. Approximate fixed points

Given a digital image (X,κ) and a (κ, κ)-continuous function f : X → X,
we say p ∈ X is an approximate fixed point of f if either f(p) = p, or p and
f(p) are κ-adjacent. We say a digital image (X,κ) has the approximate fixed
point property (AFPP) if every (κ, κ)-continuous function f : X → X has an
approximate fixed point.

Theorem 4.1 ([23]). Let I = Πn
i=1 [ai, bi]Z. Then (I, cn) has the AFPP.

Theorems 3.1 and 4.1 show that it is worthwhile to consider the AFPP,
rather than the FPP, for digital images. We have the following.

Theorem 4.2. Suppose (X,κ) has the AFPP and there is a (κ, λ)-isomorphism
h : X → Y . Then (Y, λ) has the AFPP.
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Proof. Let f : Y → Y be (λ, λ)-continuous. By Proposition 2.4, the function
g = h−1 ◦ f ◦ h : X → X is (κ, κ) continuous, so our hypothesis implies there
exists p ∈ X such that p↔κ g(p).

Then
h(p)↔λ h ◦ g(p) = h ◦ h−1 ◦ f ◦ h(p) = f(h(p)),

so h(p) is an approximate fixed point of f . �

Proposition 4.3. A digital simple closed curve of 4 or more points does not
have the AFPP.

Proof. Let S = ({si}m−1
i=0 , κ) with si and sj κ-adjacent if and only if i =

(j + 1)modm or i = (j − 1)modm. Then the function f : S → S defined
by f(si) = s(i+2)modm is (κ, κ)-continuous, and, for each i, si and f(si) are
neither equal nor κ-adjacent. �

Next, we show retractions preserve the AFPP.

Theorem 4.4. Let (X,κ) be a digital image, and let Y ⊂ X be a (κ, κ)-retract
of X. If (X,κ) has the AFPP, then (Y, κ) has the AFPP.

Proof. Let r : X → Y be a (κ, κ) retraction. Let f : Y → Y be a (κ, κ)-
continuous function. Let i : Y → X be the inclusion map. By Proposition 2.4,
g = i ◦ f ◦ r : X → X is (κ, κ)-continuous. Therefore, g has an approximate
fixed point x0 ∈ X.

Let x1 = g(x0) ∈ Y . By choice of x0, it follows that x0 ↔ x1. Then

x1 = g(x0)↔ g(x1) = i ◦ f ◦ r(x1) = i ◦ f(x1) = f(x1).

Thus x1 is an approximate fixed point of f . �

Following a classical construction of topology, the wedge of two digital images
(A, κ) and (B, λ), denoted A ∧ B, is defined [17] as the union of the digital
images (A′, µ) and (B′, µ), where

• A′ ∩B′ has a single point, p;
• If a ∈ A′ and b ∈ B′ are µ-adjacent, then either a = p or b = p;
• (A′, µ) and (A, κ) are isomorphic; and
• (B′, µ) and (B, λ) are isomorphic.

In practice, we often have κ = λ = µ, A = A′, B = B′.
We have the following.

Theorem 4.5. Let A and B be digital images. Then (A∧B, κ) has the AFPP
if and only if both (A, κ) and (B, κ) have the AFPP.

Proof. Let A ∩B = {p}. Let pA, pB : A ∧B → A ∧B be the functions

pA(x) =

{
x if x ∈ A;
p if x ∈ B. pB(x) =

{
p if x ∈ A;
x if x ∈ B.

It is easily seen that both of these functions are well defined and (κ, κ)-continuous.
Also, let iA : A→ A∧B and iB : B → A∧B be the inclusion functions, which
are clearly (κ, κ)-continuous.
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Suppose (A, κ) and (B, κ) have the AFPP. Let f : A∧B → A∧B be (κ, κ)-
continuous. We must show that there exists a point of A ∧ B that is equal
or κ-adjacent to its image under f . If f(p) = p, then we have realized that
goal. Otherwise, without loss of generality, f(p) ∈ A\{p}. By Proposition 2.4,
h = pA ◦ f ◦ iA : A → A is (κ, κ)-continuous. Since A has the AFPP, there
exists a ∈ A such that

(4.1) h(a)↔κ a.

If f(a) ∈ B, then

p = pA ◦ f(a) = pA ◦ f ◦ iA(a) = h(a).

It follows from statement (4.1) that

(4.2) p↔κ a.

If f(a) 6= p then f(a) ∈ B \ {p} and f(p) ∈ A \ {p}, so f(a) and f(p) are
distinct, non-adjacent points. This is a contradiction of statement (4.2), since
f is continuous. Therefore, we have f(a) ∈ A. Then

f(a) = pA ◦ f(a) = pA ◦ f ◦ iA(a) = h(a).

It follows from statement (4.1) that f(a)↔κ a.
Since f was arbitrarily selected, it follows that (A ∧B, κ) has the AFPP.
Conversely, suppose (A∧B, κ) has the AFPP. Since the maps pA and pB are

(κ, κ)-retractions of (A ∧ B, κ) onto (A, κ) and (B, κ), respectively, it follows
from Theorem 4.4 that (A, κ) and (B, κ) have the AFPP. �

5. Universal functions and the AFPP

In this section, we define the notion of a universal function and study its
relation to the AFPP.

Definition 5.1. Let (X,κ) and (Y, λ) be digital images. A (κ, λ)-continuous
function f : X → Y is universal for (X,Y ) if given a (κ, λ)-continuous function
g : X → Y , there exists x ∈ X such that f(x)↔λ g(x).

The notion of a dominating set in graph theory corresponds to the notion
of a dense set in a topological space.

Definition 5.2 ([10]). Let (X,κ) be a nonempty digital image. Let Y be a
nonempty subset of X. We say Y is κ-dominating in X if for every x ∈ X
there exists y ∈ Y such that x↔κ y.

Theorem 5.3. Let (X,κ) and (Y, λ) be digital images. Let f : X → Y be a
universal function for (X,Y ). Then f(X) is λ-dominating in Y .

Proof. Let y ∈ Y and consider the constant function cy : X → Y defined by
cy(x) = y for all x ∈ X. This function is clearly (κ, λ) continuous. Since f is
universal, there exists xy ∈ X such that f(xy) is either equal to or λ-adjacent
to y. Since y was arbitrarily chosen, the assertion follows. �
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Proposition 5.4. Let X be a κ-connected digital image of m points. Let (Y, λ)
be a digital interval or a digital simple closed curve of n points, with n > m+2.
Then there is no universal function from X to Y .

Proof. Let f : X → Y be a (κ, λ) continuous function. Then f(X) is a λ-
connected subset of Y , and |f(X)| ≤ m < n.

We show that Y \f(X) has a component with at least 2 points, one of which
is not λ-adjacent to any member of f(X).

• If Y is a digital interval [a, a+n− 1]Z, then, since f(X) is a connected
subset of Y , f(X) = [u, v]Z. Consider the following possibilities.

– v ≤ a + n − 3. Then the endpoint a + n − 1 of Y \ f(X) is not
adjacent to any point of f(X).

– v > a+ n− 3. Therefore, v ≥ a+ n− 2. Then

u = v − |f(X)|+ 1 ≥ a+ n− 2− |f(X)|+ 1 ≥ a+ n− (m+ 2) + 1 > a+ 1.

I.e., u ≥ a + 2, so the point a of Y \ f(X) is not adjacent to any
point of f(X).

• If Y is a digital simple closed curve, we may assume Y = {yj}n−1
j=0 ,

where ya and yb are adjacent if and only if a = (b + 1) mod n or
a = (b − 1) mod n. Since f(X) is connected, we may assume without
loss of generality that f(X) = {yj}rj=0 where 0 ≤ r < m < n−2. Then
yr+2 is a point of Y \ f(X) that is not adjacent to any point of f(X).

Thus, f(X) is not λ-dominating in Y . The assertion follows from Theorem 5.3.
�

Proposition 5.5. Let (X,κ) be a digital image. Then (X,κ) has the AFPP if
and only if the identity function 1X is universal for (X,X).

Proof. The function 1X is universal if and only if for every (κ, κ)-continuous
f : X → X, there exists x ∈ X such that f(x)↔κ 1X(x) = x, which is true if
and only if (X,κ) has the AFPP. �

Theorem 5.6. Let (X,κ) and (Y, λ) be digital images and let U ⊂ X. If the
restriction function f |U : (U, κ) → (Y, λ) is a universal function for (U, Y ),
then f is a universal function for (X,Y ).

Proof. Let h : X → Y be (κ, λ)-continuous. Since f |U is universal, there exists
u ∈ U ⊂ X such that h(u) = h|U (u) ↔λ f |U (u) = f(u). Hence f is universal
for (X,Y ). �

Theorem 5.7. Let (W,κ), (X,λ), and (Y, µ) be digital images. Let f : W → X
be (κ, λ)-continuous and let g : X → Y be (λ, µ)-continuous. If g◦f is universal,
then g is also universal.

Proof. Let h : X → Y be (λ, µ)-continuous. Since g◦f is universal, there exists
w ∈ W such that (g ◦ f)(w) ↔µ (h ◦ f)(w). I.e., for x = f(w) ∈ X we have
g(x)↔µ h(x). Since h was arbitrarily chosen, the assertion follows. �
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Theorem 5.8. If g : (U, µ) → (X,κ) and h : (Y, λ) → (V, ν) are digital
isomorphisms and f : X → Y is (κ, λ)-continuous, then the following are
equivalent.

(1) f is a universal function for (X,Y ).
(2) f ◦ g is universal.
(3) h ◦ f is universal.

Proof. (1 implies 2): Let k : U → Y be (µ, λ)-continuous. Since f is universal,
there exists x ∈ X such that (k ◦ g−1)(x) ↔ f(x). By substituting x =
g(g−1(x)), we have k(g−1(x))↔ (f ◦g)(g−1(x)). Since k was arbitrarily chosen
and g−1(x) ∈ U , it follows that f ◦ g is universal.

(2 implies 1): This follows from Theorem 5.7.
(1 implies 3): Let m : X → V be (κ, ν)-continuous. Since f is universal,

there exists x ∈ X such that (h−1 ◦ m)(x) ↔ f(x). Then m(x) = h((h−1 ◦
m)(x)) ↔ν (h ◦ f)(x). Since m was arbitrarily chosen, it follows that h ◦ f is
universal.

(3 implies 1): Suppose h ◦ f is universal. Then given a (κ, λ)-continuous
r : X → Y , there exists x ∈ X such that h ◦ f(x) ↔ν h ◦ r(x). Therefore,
f(x) = (h−1 ◦ h ◦ f)(x) ↔λ (h−1 ◦ h ◦ r)(x) = r(x). Since r was arbitrarily
chosen, it follows that f is universal. �

Corollary 5.9. Let f : (X,κ) → (Y, λ) be a digital isomorphism. Then f is
universal for (X,Y ) if and only if (X,κ) has the AFPP.

Proof. The function f is universal, by Theorem 5.8, if and only if f ◦f−1 = 1X
is universal, which, by Proposition 5.5, is true if and only if (X,κ) has the
AFPP. �

It may be useful to remind the reader for the following theorem that points
that are cn-adjacent in Zn may differ in every coordinate. Concerning products,
we have the following.

Theorem 5.10. Let (Xi, cni
) ⊂ Zni , i = 1, 2, . . . ,m. Let s =

∑m
i=1 ni. Con-

sider the digital image X = Πm
i=1Xi ⊂ Zs. If (X, cs) has the AFPP then each

(Xi, cni) has the AFPP.

Proof. Suppose (X, cs) has the AFPP. Let fi : Xi → Xi be (cni
, cni

)-continuous.
Then the function f : X → X defined by

f(x1, x2, . . . , xm) = (f1(x1), f2(x2), . . . , fm(xm))

is (cs, cs)-continuous. By Proposition 5.5, 1X is universal for (X,X). Therefore,
there is a point x∗ = (x1,∗, x2,∗, . . . , xm,∗) ∈ X with xi,∗ ∈ Xi such that
x∗ ↔cs f(x∗). Therefore, xi,∗ ↔cni

fi(xi,∗) for all i. Since fi was arbitrarily

chosen, it follows that (Xi, cni
) has the AFPP. �
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6. Corrections of published assertions

In this section, we correct some assertions that appear in [14, 16].
We show below that the function F : [0, 1]Z → [0, 1]Z defined by F (x) = 1−x

(i.e., F (0) = 1, F (1) = 0) provides a counterexample to several of the assertions
of [14]. Clearly this function is (2, 2)-continuous and does not have a fixed
point.

We will need the following.

Definition 6.1 ([15]). Let (X,κ) be a digital image whose digital homology
groups are finitely generated and vanish above some dimension n. Let f : X →
X be a (κ, κ)-continuous map. The Lefschetz number of f , denoted λ(f), is
defined as

λ(f) =

n∑
i=0

(−1)i tr(fi,∗),

where fi,∗ : Hκ
i (X) → Hκ

i (X) is the map induced by f on the ith homology
group of (X,κ) and tr(fi,∗) is the trace of fi,∗.

In studying digital maps from a sphere to itself, there is a question of how
to represent a Euclidean sphere digitally.

• As in [16], we will represent S1 by the set S1 = [−1, 1]2Z \{(0, 0)} ⊂ Z2

and c1-adjacency with points {xj}7j=0 labeled circularly.
• More generally, as in [16], we will represent Sn by the set Sn =

[−1, 1]n+1
Z \ {0n+1} ⊂ Zn+1 and c1-adjacency, where 0n+1 is the origin

in Zn+1.

Definition 6.2 ([16, 24]). Suppose a continuous function f : (Sn, κ)→ (Sn, κ)
induces a homomorphism on the n-th homology group, f∗ : Hκ

n(Sn)→ Hκ
n(Sn),

such that f∗([x]) = m[x] for some fixed m ∈ Z, where [x] is a generator of
Hκ
n(Sn). The value of m is the degree of f .

Theorem 6.3 ([8]). Let S be a digital simple closed curve. For an isomorphism
of S and a continuous non-surjective self-map of S to be homotopic, we must
have |S| = 4.

We state the following corrections.

• Incorrect assertion stated as Theorem 3.3 of [14]: If (X,κ) is a finite
digital image and f : X → X is a (κ, κ)-continuous function with
λ(f) 6= 0, then f has a fixed point.

In fact, the function F defined above is a counterexample to this
assertion, since it is easily seen that λ(F ) 6= 0.
• Incorrect assertion stated as Theorem 3.4 of [14]: Every (c1, c1)-

continuous function f : [0, 1]Z → [0, 1]Z has a fixed point.
In fact, [23] shows that this assertion is false, and the function F

defined above is a counterexample.
• Incorrect assertion stated as Theorem 3.5 of [14]: LetX = {(0, 0), (1, 0),

(0, 1), (1, 1)} ⊂ Z2. Then every (c1, c1)-continuous function f : X → X
has a fixed point.
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In fact, we can use the function F above to obtain a counterexam-
ple. Let G : X → X be defined by G(x, y) = (x, F (y)). Then G is
(c1, c1)-continuous and has no fixed point. Alternately, it follows from
Theorem 3.1 that the assertion is incorrect.
• Incorrect assertion stated as Theorem 3.8 of [14]: Let (X,κ) be a κ-

contractible digital image. Then every (κ, κ)-continuous map f : X →
X has a fixed point.

In fact, since [0, 1]Z is c1-contractible, the function F above pro-
vides a counterexample to this assertion. Alternately, it follows from
Theorem 3.1 that the assertion is incorrect.
• Incorrect assertion stated as Example 3.9 of [14]: LetX = {(0, 0), (0, 1),

(1, 1)} ⊂ Z2. Then (X, c2) has the FPP.
In fact, the map f : X → X defined by f(0, 0) = (0, 1), f(0, 1) =

(1, 1), f(1, 1) = (0, 0) is (c2, c2)-continuous and has no fixed points.
Alternately, it follows from Theorem 3.1 that the assertion is incorrect.
• Incorrect assertion stated as Corollary 3.10 of [14]: Any digital image

with the same digital homology groups as a single point image has the
FPP.

To show this assertion is incorrect, observe that if X = {(0, 0), (0, 1),
(1, 1)} ⊂ Z2 and Y is a digital image of one point in Z2, then [1, 9]

H8
q (X) = H8

q (Y ) =

{
Z if q = 0;
0 if q 6= 0.

It follows from Theorem 3.1 that the assertion is incorrect.
• Incorrect assertions stated as Example 3.17 and Corollary 3.18 of [14]:

The digital images (MSS′6, 6) and (P 2, 6), each with more than one
point, have the FPP.

It follows from Theorem 3.1 that these assertions are incorrect.
• Incorrect assertion stated as Theorem 3.5 of [16]: If (X,κ) is a finite

digital image and f : X → X is a (κ, κ)-continuous function with
λ(f) 6= 0, then any map homotopic to f has a fixed point.

In fact, we observed above that the function F , which is homotopic
to itself and has λ(F ) 6= 0, does not have a fixed point.
• Incorrect assertion stated as Theorem 3.7 of [16]: If (X,κ) is a digital

image such that χ(X,κ) 6= 0, then any map homotopic to the identity
has a fixed point.

In fact, we can take X = [0, 1]Z, for which χ(X, c1) = (−1)1(2) +
(−1)2(1) 6= 0, and the function F discussed above is homotopic to 1X
and does not have a fixed point.
• Incorrect assertion stated as Theorem 3.11 of [16]: Let (Sn, c1) ⊂ Zn+1

be a digital n-sphere as described above, where n ∈ {1, 2}. If f : Sn →
Sn is a continuous map of degree m 6= 1, then f has a fixed point.

In fact, we have the following. Elementary calculations show that
Hc1

1 (S1) ≈ Z; also, Hc1
1 (S2) ≈ Z23 [13]. For n ∈ {1, 2}, as in the

proof of Theorem 3.1, we can choose distinct and adjacent x0 and x1
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in Sn and let f : Sn → Sn be given by f(x) = x0 for x 6= x0 and
f(x0) = x1. Clearly, f is continuous and does not have a fixed point.
Since f∗ : H1(Sn)→ H1(Sn) is 0, the degree of f is 0.
• Proposition 3.12 of [16] depends on an unstated assumption that (recall

Definition 2.7) ακq (X) is finite for all q, a condition that is satisfied if
and only if X is finite; after all, one can study infinite digital images
(X,κ), as in [7], for which, e.g., ακ0 (X) =∞. E.g., we could take X =
Z; according to Definition 2.7, χ(Z, c1) is undefined, since αc11 (Z) =
αc10 (Z) =∞. Therefore, the proposition should be stated as follows.

Let (X,κ) be a finite digital image and suppose f : (X,κ)→
(X,κ) is continuous. If f∗ : Hκ

∗ (X) → Hκ
∗ (X) is defined by

f∗(z) = kz where k ∈ Z, i.e., if there exists k ∈ Z such that
in every dimension i we have f inducing the homomorphism
fi∗ : Hκ

i (X) → Hκ
i (X) defined by fi∗(z) = kz, then λ(f) =

k χ(X).
• A theoretically minor, but possibly confusing, error in Theorem 3.14

of [16]: In discussing an antipodal map f : X → X, one needs the
property that for every x ∈ X we have −x ∈ X; this property does
not characterize the version of S2 used in Theorem 3.14 of [16]. In the
following, we use S2 = [−1, 1]3Z \ {(0, 0, 0)}, as described above.

Theorem 3.14 of [16] asserts that
If αi : (Si, c1) → (Si, c1) is the antipodal map between two
digital i-spheres Si ⊂ Zi+1, for i ∈ {1, 2}, then αi has degree
(−1)i+1.

In fact, we show that this assertion is correct for i = 1, although an
argument different from that of [16] must be given, as the argument
of [16] makes use of Theorem 3.4 of [16] (= Theorem 3.3 of [14]), which,
as noted above, is incorrect. For i = 2, we show the assertion is not
well defined.

– For i = 1, we have the following. Let the points {ej}7j=0 of
S1 be circularly ordered. For notational convenience, let e8 =
e0, and, more generally, index arithmetic is assumed to be mod-
ulo 8. The generators of the 1-chains of S1 are the members of
{< ejej+1 >}7j=0. We have

0 = δ(

7∑
j=0

uj < ejej+1 >) =

7∑
j=0

uj(ej − ej+1) =

8∑
j=1

(uj − uj−1)ej

implies u0 = u1 = · · · = u7. Therefore, Z1(S1) is generated

by
∑7
j=0 < ejej+1 >. Since, clearly, B1(S1) = {0}, we have

H1(S1) = Z1(S1)/B1(S1) is isomorphic to Z. Therefore, the ho-
momorphism (α1)∗ : H1(S1)→ H1(S1) induced by α1 must satisfy
(α1)∗(x) = kx for some integer k.
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Indeed, since the antipode of ej is ej+4, we have

(α1)∗(

7∑
j=0

< ejej+1 >) =

7∑
j=0

< ej+4ej+5 >=

7∑
j=0

< ejej+1 >,

so k = 1 = (−1)1+1, as asserted.
– For i=2, we observe that, using the c1 adjacency, there is no triple

of distinct, mutually adjacent points in S2. Therefore, H2(S2) =
{0}. Therefore, the degree of α2 is not well defined since for any
integer k we have (α2)∗(x) = kx for all x = 0 ∈ H2(S2).

• Incorrect assertion stated as Theorem 3.15 of [16]: Let S1 be a digital
simple closed curve in Z2. If h : (S1, c1) → (S1, c1) is a continuous
function that is homotopic to a constant function in S1, then h has a
fixed point.

In fact, we can take S1 as above with its points ordered circularly,
S1 = {xj}7j=0 where distinct points xu, xv are adjacent if and only
if u + 1 = v mod 8 or u − 1 = v mod 8. Then, as in the proof of
Theorem 3.1, the function h : S1 → S1 given by

h(x) =

{
x0 if x 6= x0;
x1 if x = x0,

is continuous and homotopic to the constant function x0 in S1 but has
no fixed point.
• Correct (for |S1| > 4) assertion incorrectly “proven” as Corollary 3.16

of [16]: Let S1 be as above. Let h : (S1, c1) → (S1, c1) be given by
h(xi) = x(i+1) mod m, where m = |S1|. Then h is not homotopic in S1

to a constant map.
The argument given for this assertion in [16] depends on Theorem

3.15 of [16], which, we have shown above, is incorrect. However, since
h is easily seen to be an isomorphism, by Theorem 6.3, the current
assertion is true if and only if |S1| > 4.

7. Summary

We have shown that only single-point digital images have the fixed point
property. However, digital n-cubes have the approximate fixed point property
with respect to the cn-adjacency [23]. We have shown that the approximate
fixed point property is preserved by digital isomorphism and by digital retrac-
tion, and we have a result concerning preservation of the AFPP by Cartesian
products. We have studied relations between universal functions and the AFPP.
We have corrected several errors that appeared in previous papers.
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[1] H. Arslan, I. Karaca, and A. Ŏztel, Homology groups of n-dimensional digital images,
XXI Turkish National Mathematics Symposium (2008), B, 1–13.

[2] K. Borsuk, Theory of Retracts, Polish Scientific Publishers, Warsaw, 1967.

[3] L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833–
839.

[4] L. Boxer, A classical construction for the digital fundamental group, Journal of Mathe-

matical Imaging and Vision 10 (1999), 51–62.
[5] L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision

22 (2005), 19–26.
[6] L. Boxer, Digital products, wedges, and covering spaces, Journal of Mathematical Ima-

ging and Vision 25 (2006), 159–171.

[7] L. Boxer, Fundamental groups of unbounded digital images, Journal of Mathematical
Imaging and Vision 27 (2007), 121–127.

[8] L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics 1

(2010), 377–386.
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