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ABSTRACT

Let G be a subgroup of the group Homeo(E) of homeomorphisms of
a Hausdorff topological space E. The class of an orbit O of G is the
union of all orbits having the same closure as O. We denote by E/é
the space of classes of orbits called quasi-orbit space. A space X is
called a quasi-orbital space if it is homeomorphic to E/é where E is
a compact Hausdorff space. In this paper, we show that every infinite
second countable quasi-compact Ty-space is the quotient of a quasi-
orbital space.
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1. INTRODUCTION

The standard setting for topological dynamics is a group of homeomorphisms
G on a compact Hausdorff space E [6]. This group induces an open equivalence
relation defined by the family of orbits (Gx = {gz : g € G},z € E). We
denote by E/G the orbit space equipped with the quotient topology. The
study of this space is difficult: just consider the example of a group generated
by an irrational rotation on the circle; indeed the orbit space does not verify
the weaker separation axioms, as the Ty separation axiom. For this reason
[8, 1, 2, 7] consider an intermediary quotient, called the quasi-orbit space.

The class of the orbit Gz is Gz = U O. The family (Gz,z € E) deter-

0=Cz _

mines an open equivalent relation on E [8]. Let E/G the space of classes of
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orbits equipped with the quotient topology. The space of classes of orbits is
called the quasi-orbit space. The space E/G is a Ty-space and its the universal
To-space associated to the orbit space E/G as in Bourbaki [3, Exercice 27 page
I-104]. Let p: E — E/é be the canonical projection. The map p is open. The
map ¢ : E/G — E/ G which associates to each orbit its class is an onto quasi-
homeomorphism'. Thus E/ Gisa good representative of E/G. According to
[8, 1], the space E/ G keeps information on the initial dynamical system.

A space X is a quasi-orbital space if it is homeomorphic to a quasi-orbit E/ G
where E is a compact Hausdorff space and G is a subgroup of homeomorphisms
of E.

In [1], the authors asked the following problem: under which conditions a
To-space is quasi-orbital? In [2] the authors showed that a finite Ty-space is
quasi-orbital. Note that, according to [1, Example 3.4], if X is a non quasi-
compact space then FE is not in general compact.

In this paper we study this problem for an infinite Tp-space. Our main result
is the following:

Theorem 1.1. FEvery second countable quasi-compact Ty-space is the quotient
of a quasi-orbital space.

If F is a locally compact second countable topological space and G is a
subgroup of homeomorphisms of F then, according to [8, 7], E/ G satisfies the
following properties:

(1) E/G is sober?;
(2) If @ has a minimal set then, E/G is quasi-compact.

In this paper, we show that if F is a locally compact topological space and
G is a subgroup of homeomorphisms of E then, if £/ G is quasi-compact then
it is quasi-orbital.

The paper consists of three sections. After introduction we will show some
properties of the quasi-orbital space. In section 3 we prove the main theorem.

2. (QUASI-ORBITAL SPACES
In this section we study some properties of the quasi-orbital spaces.
Proposition 2.1. A closed subspace of a quasi-orbital space is quasi-orbital.

Proof. Let Y be a closed subset of a quasi-orbital space X. There exist a
compact and Haudorff space F and a subgroup G of Homeo(E) such that X

is homeomorphic to to the quasi-orbit space E/ G ; let ¢ such homeomorphism.
S =p~L(p(Y)) is an invariant compact subset of E. We denote by H = G/S

LA continuous map f : X — Y between two topological spaces is called a quasi-
homeomorphism if the map which assigns to each open set V C Y the open set f~1(V)
is a bijective map.

2A space X is sober if every irreducible, nonempty, closed subset M of X has a unique
generic point m, i.e. M = {m}.
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the induced subgroup of G on S. Since S is an invariant subset of E, we have
for each x € S, H(z) = G(z).

We will show that S/H is homeomorphic to ¢(Y) and so to Y. Let f :
S/H — (Y) which maps any class of an orbit Haz to the class of the orbit
Gz. We will prove now that the bijective map f is a homeomorphism.

Let V be an open subset of ¢(X), that means that V = U N p(X) where U
is an open subset of E/(N; So we have

p (V) =p {(U)Np H(e(X)) =p (U)NS
since p~1(U) is an open subset of E, p~*(V) is an open subset of S. Thus V'
is an open subset of S/ H and so f is a continuous map.
Let p1 : S — 5/ H be the canonical projection and let V' be an open subset

of S/H, that means that p; ' (V) is an open subset of S and so there exists an
open subset U of E such that p;* (V) =U N S. We have

V=pp (V) =pUnNS)
Since S is invariant, we deduce that
V =pU)Np(S) =pU)Nep(X)

The fact that p is an open map implies that V is an open subset of p(X).
Therefore f is an open map.
Thus f is a homeomorphism and so Y is a quasi-orbital space. O

Example 2.2. This example shows that Proposition 2.1 minus the hypothesis
that Y is closed is false. Let f be an increasing homeomorphism of [0, 1]
without fixed point in ]0,1[ such that f(0) = 0, f(1) =1 and f(3) = 2. Let

Z.
(an) be an increasing sequence such that ay = % and converges to %. Let
(bn) be a decreasing sequence such that by = 2 and converges to %. Let g
be a homeomorphism of [0, 1] such that its support is |, f" ([an, bs]) and

g(f"(an+1)) = f™(ans1). Let G be the group of homeomorphisms of [0, 1]
generated by f and g. Let X = [0, 1}/@ be the quasi-orbital space. The
subspace ¥ = X — p(g) is not closed. On the other hand Y can not be a
quasi-orbital space because it is irreducible without generic point [8, Lemma
2.2).

Proposition 2.3. Let X be a quasi-orbital space and R be an equivalence
relation on X which have a closed continuous cross-section s®. Then X/R is
quasi-orbital.

Proof. Since s is closed, s(X/R) is a closed subset of X and so, according to
Proposition 2.1, s(X/R) is quasi-orbital. Since s is closed and continuous, it
will be an embedding and so X/R is homeomorphic to s(X/R) which implies
that X/R is quasi-orbital. O

3According to [13], if X/R is a T-space and zero-dimensional, then there exists a contin-
uous cross-section for R.
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Remark 2.4. If an open equivalence relation R has a closed and continuous
cross-section, then X/R is a Tp-space. Indeed, let a and b two elements of X/R
such that {a} = {b}. Since s is continuous and closed, s({a}) = s({a}) = {s(a)}
and s({b}) = s({b}) = {s(b)} and so {s(a)} = {s(b)}. The fact that X is a
To-space implies that s(a) = s(b) and so @ = b (s is injective). Therefore X/R
is a Tp-space.

Proposition 2.5. Let (X;,i € I) be a family of quasi-orbital spaces. Then the
product H X, is quasi-orbital.
il
Proof. For every i € I, X; is quasi-orbital, then there exist a compact space
E; and a subgroup G; of Homeo(E;) such that X; is homeomorphic to the
quasi-orbits space E;/G;. Let E = H E; be the product space and G = H G;
il il

be the product group. By applying [3, Proposition 7 TG 1.27], we have, for
each z = (z;,i € I), G(z) = HGZ-(xi) and so G = [Lic: Gi = Iicr G;. By

iel
applying [3, Corollaire p. TG 1.34] it follows that HXi is homeomorphic to
iel
E/é Since E is compact, HXi is quasi-orbital. O
iel

Proposition 2.6. If E is a locally compact space and G is a subgroup of
homeomorphisms of E, then if E/G is quasi-compact then it is a quasi-orbital
space.

Proof. Since E/ G is a quasi-compact space, according to [7, Proposition 2.1],
G has a minimal set M. The fact that £ — M is an open set of a locally
compact set implies that E — M is a locally compact space [3, Proposition 13
TG 1.66]. we denote by H = G/E — M the induced subgroup of G on E — M.
Since F — M is invariant, we have for each x € F — M, H(z) = G(z). Let
E = (E — M) U {w} be the one point compactification of E — M. We can
suppose that H is a group of homeomorphlsms of E by putting H(w) = {w}.
It is easy to see that the bijection f : E/H — E/G which maps any class of
an orbit Hz to the class of the orbit Gz for all x € E — M and f(w) = p(M)

is a homeomorphism. Thus E/G is homeomorphic to E/H. O

3. PROOF OF MAIN THEOREM

Recall that, a topological space X is a k-space (compactly generated) if the
following holds: a subset A C X is closed in X if and only if ANK is closed in K
for every compact subset K C X [10]. It is easy to see that the family of closed
compact sets determines the topology of a k-space. Any locally compact space
is a k-space and any first countable topological space (in particular a metric
space) is a k-space. According to [4, p. 248], X is a k-space if and only if it is a
quotient space of a locally compact space Z. The space Z is a disjoint sum of
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all compact subsets (K;,i € I) of X: Z = HKi ={(z,i):i€Tland xz € K;}.
iel

The equivalence relation R on Z is defined by: (x,i)R(y, j) if = y. Note that

Z is equipped with the disjoint sum topology defined by: U is an open set of

Z if goj_l(U) is an open set of K; where the map ¢; : K; — Z is defined by

@;(x) = (z,7). Recall that, for all j, the map ¢; is continuous closed and open

and f: Z — Y is continuous if and only if f o ¢; is continuous.

Remark 3.1. The set S = {0,1} equipped with the topology {@,S,{1}} is
called the Sierpinski space; it is a connected Tp-space but it is not a Tj-space.
If G; is a finitely generated abelian subgroup of Diﬁj’f(Sl) of finite rank k& > 2
having only a one fixed point e € S', then all other orbits are everywhere
dense (N. Kopell, G. Reeb [11], [12]). Thus the quasi-orbits space S'/G; is
homeomorphic to the Sierpinski space S.

Proof (Main Theorem). Since X is a Ty-space, by applying [5, Theorem 2.3.26
p.84], there exists an embedding ¢ : X — [],.; Si (where S; is the Sierpinski
space {0,1}). We can suppose that I C N; indeed, X is second countable. We
know that for each i € I there is a homeomorphism f; : S; — S}/ a; where S} is
the unit circle S! and G; is the group G, defined in Remark 3.1. The product
map [T,c; fi : [Lie; Si = Tlicr St /G is also a homeomorphism. According to
[3, Corollaire p. TG 1.34], [],c; Sll/é’vl is homeomorphic to [,c; St/ [T;e; Gi.
The space T! = [Licr S} is a compact second countable metric space. We
put G = [I;c; Gi- The group G! is abelian. Then we conclude that there
exists an embedding ¢ : X — T!//GI. Let p: T! — T!/G! be the canonical
projection. We denote by E = p~1(¢(X)) and we denote by G = G/E the

induced subgroup of G! on E. Since E is a saturated subset of T/. We have
for each z € E, G(z) = G ().

We will show that E/G is homeomorphic to ¢(X) and so to X. Let f :

E/G = o(X) C TI/CTI which maps any class of an orbit G(x) to the class of the
orbit G!(x). We will prove now that this bijective map f is a homeomorphism:
Let V be an open subset of ¢(X), that means that V = U N p(X) where U

is an open subset of T/ /GI. So we have
p (V) =p ' U)Np (X)) =p " (U)NE
since p~1(U) is an open subset of T, p~(V) is an open subset of E. Thus V
is an open subset of E/G and so f is a continuous map.
Let p1 : E — E/G be the canonical projection and let V' be an open subset

of E/G, that means that p; ' (V) is an open subset of E and so there exists an
open subset U of T! such that p;*(V) = U N E. We have

V=pp'(V)=pUNE)
Since F is saturated, we deduce that

V = p(U) Np(E) = p(U) N (X)
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The fact that p is an open map implies that V is an open subset of ¢(X).
Therefore f is an open map. We conclude that f is a homeomorphism.

Since E is a metric space, it is first countable and so F is a k-space. Thus
E is the quotient of a locally compact metric space F' by the relation R. Note
that F is the disjoint union of all compact subsets of E. Let ¢: F — F/R=F
be the canonical projection.

Let g be an element of G. We define on F the map g : F — F by g(z,i) =
(g9(z), j) where g(K;) is the compact K. It is easy to see that g is a well defined
bijection. Let U be an open set of F, then U = H U; N K; where U, is an open

ieI
set of E. g~ }( Hg ) Ng NK;) and g Hg K;) and
i€l el
since g is a homeomorphism ¢(U;) and g~!(U;) are open sets of E and g is a
permutation of the set of all compact subsets. Then g=*(U) = H g N U) NK;
iel
and g(U H g9(U;) N K; are open sets of F'. Therefore g is a homeomorphism

i€l
of F. The set G = {g: g € G} is a subgroup of homeomorphisms of F.

Since E/G is quasi-compact, we show Now that G has a minimal set. We
start by showing that /G contains a point a such that {a} is closed. Since E/G
is quasi-compact, by Zorn’s lemma, it contains a minimal set M. Therefore
for all z € M we have {z} = M. From the fact that E/é is a Tp-space, it
follows that M is a single point set {a} (indeed {a} = {b} = a = b). Let z be
an element of E such that p(x) = a. The fact that {a} is closed implies that

_1({(1}) Gz is a closed invariant set of E such that if y € G then Gy = Gz
and so Gz is a minimal set of G. q_l(Gx) is a closed subset of F. If there exist
(z,i) € ¢ *(Gz) and g € G such that g(z,i) = (g(x),) is not in ¢~1(Gax),
then q(g(x),j)) is not in Gz and so g(x) is not in Gz which contradicts the
fact that Gz is an invariant set. We conclude that ¢~(Gz) is a minimal set of
G.

The fact that F is locally compact, according to [7, Proposition 2.1], implies
that F/ G is quasi-compact. Then, by applying Proposition 2.6, we have F'/ G
is a quasi-orbital space E / H. Let h be the homeomorphism of E / Hand F / G.

Let pg : F — F/(N?- and p3 : E — E/C:Y be the canonical projections. Let
q: F/C-" — E/é be the map defined by ¢ o ps = p3 0 q. ¢ is a continuous and
onto map. The map §= ¢~ ' o fogoh is a continuous and onto map of E/ﬁ
to X which implies that X is a quotient of a quasi-orbital space. O
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