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Abstract

In this paper we give two families of non-metrizable topologies on the
group of the integers having a countable dual group which is isomorphic
to a infinite torsion subgroup of the unit circle in the complex plane.
Both families are related to D-sequences, which are sequences of natural
numbers such that each term divides the following. The first family
consists of locally quasi-convex group topologies. The second consists
of complete topologies which are not locally quasi-convex. In order to
study the dual groups for both families we need to make numerical
considerations of independent interest.
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1. Introduction and notation

The most important class of topological abelian groups are the locally com-
pact groups. In this class, the most interesting theorems can be proved. In this
paper we consider a wider class of groups, which is the class of locally quasi-
convex groups. Clearly, locally compact groups are locally quasi-convex, since
they can be considered as a dual group (in fact, a locally compact abelian group
is isomorphic to its bidual group) and dual groups are locally quasi-convex.

This paper is part of a project about duality, which intends to solve, among
others, the Mackey Problem (first stated in [8]). This problem asks whether
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there exists a maximum element in the family of all locally quasi-convex com-
patible topologies (see Definition 1.12).

We present two different kinds of topologies on the group of the integers,
having as common feature that topologies in both families have countable dual
group, which is isomorphic to an infinite torsion subgroup of the unit circle in
the complex plane.

On the one hand, the topologies presented in Section 3 are metrizable, non-
complete and locally quasi-convex and the results contained are the natural
further steps of the ones given in [2].

On the other hand, the topologies presented in Section 4 are complete, non-
metrizable but they are not locally quasi-convex. These topologies, introduced
by Graev, were thoroughly studied by Protasov and Zelenyuk. Precisely, in
[16], a neighborhood basis for this topology is given and this allows us to study
these topologies on Z from a numerical point of view. The fact that these
topologies have countable dual group is surprising due to the belief that the
more open sets the topology has, the more continuous characters it should have.

All the groups considered will be abelian and the notation will be additive.
In order to state properly the Mackey Problem, we need first to recall some

notation on duality:

Definition 1.1. We will consider the unit circle as

T = R/Z =

{
x+ Z : x ∈

(
−1

2
,

1

2

]}
.

We will consider in T the following neighborhood basis:

Tm :=

{
x+ Z : x ∈

[
− 1

4m
,

1

4m

]}
.

We set

T+ :=

{
x+ Z : x ∈

[
−1

4
,

1

4

]}
= T1.

Definition 1.2. Let (G, τ) be a topological group. Denote by G∧ the set of
continuous homomorphisms (or continuous characters) CHom(G,T). This set
is a group when we consider the operation (f+g)(x) = f(x)+g(x). In addition,
if we consider the compact open topology on G∧ it is a topological group. The
topological group G∧ is called the dual group of G.

Definition 1.3. The natural embedding

αG : G→ G∧∧,

is defined by

x 7→ αG(x) : G∧ → T,
where

χ 7→ χ(x).

Proposition 1.4. αG is a homomorphism.
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Proof. αG(x+y)(χ) = χ(x+y) = χ(x)χ(y) = αG(x)(χ)αG(y)(χ) = (αG(x)αG(y))(χ),
for all χ ∈ G∧.

Thus, αG(x+ y) = αG(x)αG(y). �

Definition 1.5. A topological group (G, τ) is reflexive if αG is a topological
isomorphism.

Definition 1.6. Let τ, ν be two group topologies on a group G. We say that
τ and ν are compatible if algebraically (G, τ)∧ = (G, ν)∧.

Now we include the definition of quasi-convex set, which emulates the Hahn-
Banach Theorem from Functional Analysis:

Definition 1.7 ([17]). Let (G, τ) be a topological group and let M ⊂ G be a
subset. We say that M is quasi-convex if for every x ∈ G \M , there exists
χ ∈ G∧ such that χ(M) ⊂ T+ and χ(x) /∈ T+. We say that τ is locally quasi-
convex if there exists a neighborhood basis for τ consisting of quasi-convex
subsets. We denote by Lqc the class of all locally quasi-convex topological
groups.

Definition 1.8. Let τ be a group topology. We define the locally quasi-convex
modification of τ as the finest locally quasi-convex group topology (τ)lqc among
all those satisfying that they are coarser than τ .

For a deeper insight into the locally quasi-convex modification of a topolog-
ical group, see [10].

Lemma 1.9. Let (G, τ) be a topological group. Then (G, τ)∧ = (G, (τ)lqc)
∧.

Definition 1.10. Let (G, τ) a topological group. The polar of a subset S ⊂ G
is defined as

S. := {χ ∈ G∧ | χ(S) ⊂ T+}.

Remark 1.11. It is clear that

(G, τ)∧ =
⋃
V ∈B

V .,

where B is a neighborhood basis of 0 for the topology τ .

Definition 1.12 ([12]). Let G be a class of abelian topological groups and
let (G, τ) be a topological group in G. Let CG(G, τ) denote the family of all
G-topologies ν on G compatible with τ . We say that µ ∈ CG(G, τ) is the G-
Mackey topology for (G,G∧) (or the Mackey topology for (G, τ) in G) if
ν ≤ µ for all ν ∈ CG(G, τ).

If G is the class of locally quasi-convex groups Lqc, we will simply say that
the topology is Mackey.

The problem whether the Mackey Topology for a topological group (G, τ)
exists was first posed in [8]. This problem is called the Mackey Problem.
During recent years several mathematicians have tried to solve the Mackey
Problem: de Leo [9], Aussenhofer, Dikranjan, Mart́ın-Peinador [4], Dı́az-Nieto
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[10], Gabriyelyan [11]. A survey including similarities and differences between
the Mackey topology in spaces and the Mackey Problem for groups has recently
appeared [14]. In [3], the Mackey Problem for groups of finite exponent is
reduced to the problem of finding a top element in the family of compatible
linear topologies (that is, topologies having a neighborhood basis consisting in
open subgroups). In order to solve the Mackey Problem (in the negative) we
try to find all the locally quasi-convex group topologies which are compatible
with a non-discrete linear topology on Z and study if the supremum of all
these topologies is again compatible. So far, it is not known if the supremum
of compatible topologies is again compatible.

Now we give the basic definitions on D-sequences, which are sequences of
natural numbers that encode the relevant information of non-discrete linear
topologies on Z.

Definition 1.13. A sequence of natural numbers b = (bn)n∈N0 ∈ NN0 is called
a D-sequence if it satisfies:

(1) b0 = 1,
(2) bn 6= bn+1 for all n ∈ N0,
(3) bn divides bn+1 for all n ∈ N0.

The following notation will be used in the sequel:

• D := {b : b is a D − sequence}.
• D∞ := {b ∈ D : bn+1

bn
→∞}.

• D∞(b) := {c : c is a subsequence of b and c ∈ D∞}.
and for an arbitrary (fixed) natural number ` we define:

• D`∞ := {b ∈ D : bn+`

bn
→∞}.

• D`∞(b) := {c : c is a subsequence of b and c ∈ D`∞}.

Our interest in D-sequences stems from the fact that several compatible
topologies on Z can be associated to D-sequences. This family of topologies
is interesting due to the fact that we don’t know in general, if the supremum
of compatible topologies is again compatible. This is the main difference be-
tween the study of the Mackey Topology in spaces and the Mackey Problem
for groups.

Definition 1.14. Let b be a D-sequence. Define (qn)n∈N by qn := bn
bn−1

.

Definition 1.15. Let b be a D-sequence. We say that

(a) b has bounded ratios if there exists a natural number N , satisfying
that qn = bn

bn−1
≤ N .

(b) b is basic if qn is a prime number for all n ∈ N.

Definition 1.16. Let b be a D-sequence. We write

Z(bn) :=

{
k

bn
+ Z : k = 0, 1, . . . , bn − 1

}
and Z(b∞) :=

⋃
n∈N0

Z(bn).
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As quotient groups, we can write

Z(bn) =

〈{
1

bn

}〉
/Z and Z(b∞) =

〈{
1

bm
: m ∈ N0

}〉
/Z.

In other words, Z(bn) consists of the elements whose order divides bn and
Z(b∞) is generated by the elements having order bn for some natural number
n ∈ N0.

Proposition 1.17. Let b be a D-sequence. Suppose that qj+1 6= 2 for infinitely
many j. For each integer number L ∈ Z, there exists a natural number N =
N(L) and unique integers k0, . . . , kN , such that:

(1) L =

N∑
j=0

kjbj.

(2)

∣∣∣∣∣∣
n∑
j=0

kjbj

∣∣∣∣∣∣ ≤ bn+1

2
for all n.

(3) kj ∈
(
−qj+1

2
,
qj+1

2

]
, for 0 ≤ j ≤ N .

The proof of Proposition 1.17 can be found in [5, Proposition 2.2.1] and [6,
Proposition 1.4]

Definition 1.18. The family

Bb := {bnZ : n ∈ N0}
is a neighborhood basis of 0 for a linear (that is, it has a neighborhood basis
consisting in open subgroups) group topology on Z, which will be called b-adic
topology and is denoted by λb.

This topology is precompact. In [2], it is proved that (Z, λb)∧ = Z(b∞) and
the following

Lemma 1.19. Let b be a D-sequence. Then bn → 0 in λb.

The topologies of uniform convergence on the group Z are given by differ-
ent families in Hom(Z,T). Identifying Hom(Z,T) with T, we simply have to
consider families of subsets in T. In this paper, we concentrate on families of
cardinality 1, that is we consider the topology of uniform convergence on {B}
for B ⊂ T. We shall write τB instead of τ{B}. The topology τB admits the
following neighborhood basis of 0:

VB,m := {z ∈ Z : χ(z) + Z ∈ Tm for all χ ∈ B} =
⋂
χ∈B

χ−1(Tm).

A particular case of these topologies is the following.

Definition 1.20. A D-sequence b in Z induces in a natural way a sequence
in T. Namely, for a D-sequence, b = (bn)n∈N0 , define

b :=

(
1

bn
+ Z : n ∈ N0

)
⊂ T.

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 1 35



D. de la Barrera Mayoral

Denote by τb the topology of uniform convergence on b.

2. Killing λb null sequences.

In this section we prove that for a D sequence, b with bounded ratios and
any λb convergent sequence, (an), there exists a strictly finer compatible topol-
ogy (constructed as a topology of uniform convergence on a suitable sequence
in D∞(b)) such that the fixed sequence (an) is no longer convergent. This
will allow us to find a locally quasi-convex topology which has no convergent
sequences, but it is still compatible.

Theorem 2.1. Let b be a basic D-sequence with bounded ratios and let (xn) ⊂
Z be a non-quasiconstant (that is, no element in (xn) is repeated infinitely

many times) sequence such that xn
λb→ 0. Then there exists a metrizable locally

quasi-convex compatible group topology τ(= τc for some subsequence c of b) on
Z satisfying:

(a) τ is compatible with λb.

(b) xn
τ9 0.

(c) λb < τ .

Proof. We define τ as the topology of uniform convergence on a subsequence c
of b, which we construct by means of the claim:

Claim 2.2. Since b is a D-sequence with bounded ratios, there exists L ∈ N
such that qn+1 ≤ L for all n ∈ N.

We can construct inductively two sequences (nj), (mj) ⊂ N such that

nj+1 − nj ≥ j and
xmj
bnj+1

+ Z /∈ TL.

Proof of the claim:
j = 1.
Choose n1 ∈ N such that there exists xm1

, satisfying bn1
| xm1

but bn1+1 -
xm1 . By Proposition 1.17, we write

xm1
=

N(xm1 )∑
i=0

kibi.

The condition bn1
| xm1

implies ki = 0 if i < n1 and bn1+1 - xm1
implies

kn1
6= 0.

Hence,

xm1

bn1+1
+ Z =

N(xm1
)∑

i=0

kibi

bn1+1
+ Z =

n1∑
i=0

kibi

bn1+1
+ Z =

kn1

qn1+1
+ Z.

We have that
1

2
≥ |kn1

|
qn1+1

≥ 1

L
.
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Therefore,

xm1

bn1+1
+ Z /∈ TL =

[
− 1

4L
,

1

4L

]
+ Z.

j ⇒ j + 1.
Suppose we have nj ,mj satisfying the desired conditions. Let nj+1 ≥ nj + j

be a natural number such that there exists xmj+1
satisfying bnj+1

| xmj+1
and

bnj+1+1 - xmj+1
. By Proposition 1.17, we write

xmj+1 =

N(xmj+1
)∑

i=0

kibi.

The condition bnj+1 | xmj+1 implies that ki = 0 if i < nj+1 and bnj+1+1 - xmj+1

implies knj+1 6= 0.
Then,

xmj+1

bnj+1+1
+ Z =

N(xmj+1
)∑

i=0

kibi

bnj+1+1
+ Z =

nj+1∑
i=0

kibi

bnj+1+1
+ Z =

knj+1

qnj+1+1
+ Z.

From

1

2
≥
∣∣knj+1

∣∣
qnj+1+1

≥ 1

qnj+1+1
≥ 1

L
,

we get that
xmj+1

bnj+1+1
+ Z /∈ TL.

This ends the proof of the claim.

We continue the proof of Theorem 2.1. Consider now c =
(
bnj+1

)
j∈N. Let

c =

{
1

bnj+1
+ Z : j ∈ N

}
and let τ = τc be the topology of uniform convergence on c. Then:

(1) By Proposition [2, Remark 3.3], τ is metrizable and locally quasi-
convex. By [2, Proposition 3.7], we have λb < τ .

(2) By the claim, we have proved that xmj
j→∞9 0 in τ . This implies that

xn 9 0 in τ .

(3) Since nj+1 ≥ nj+j, we get that nj+1−nj ≥ j. Thus,
bnj+1

bnj+1+1
≤ 1

2j
→

0. By [2, Theorem 4.4], we have that (Z, τ)∧ = Z(b∞).

�
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3. The topology Γb.

In Section 2, we use a subfamily of D∞(b) to eliminate all λb convergent
sequences. Unfortunately, this subfamily depends on the choices made in Theo-
rem 2.1. This is why we introduce a new topology Γb, which is the supremmum
of the topologies of uniform convergence on sequences in D∞(b). The topology
Γb is well-defined (in the sense that it does not depend on the choices made in
Theorem 2.1).

Definition 3.1. Let b be a basic D-sequence with bounded ratios. We define
on Z the topology

Γb := sup{τc : c ∈ D∞(b)}.

Now we set some results on Γb:

Remark 3.2. Since D∞(b) is non-empty, we have that λb < Γb.

Theorem 3.3. Let b a basic D-sequence with bounded ratios. Then the topol-
ogy Γb has no nontrivial convergent sequences. Hence, it is not metrizable.

Proof. Since every Γb-convergent sequence is λb-convergent, we consider only

λb-convergent sequences. Let (xn) ⊆ Z be a sequence such that xn
λb→ 0. By

Theorem 2.1, there exists a subsequence (bnk)k satisfying that τ(bnk ) is a locally

quasi-convex topology, (bnk) ∈ D∞(b) and xn
τbnk9 0. Since τbnk ≤ Γb, we know

that xn
Γb9 0. Hence, the only convergent sequences in Γb are the trivial ones.

Since Γb has no nontrivial convergent sequences, it is not metrizable. �

Corollary 3.4. Let p be a prime number and set p = (pn). Then Γp has no
nontrivial convergent sequences.

Lemma 3.5. Let b be a D-sequence. Then (Z,Γb)∧ = Z(b∞).

For the proof of Lemma 3.5 we need the following definition of [5]:

Definition 3.6 ([5, Definition 4.4.4]). Let b be a basicD-sequence with bounded
ratios. We define on Z the topology

δb := sup{τc : c ∈ D`∞(b)}.

Proof of Lemma 3.5. Since λb < Γb, it is clear that Z(b∞) ≤ (Z,Γb)∧.
By definition, it is clear that Γb ≤ δb. Hence (Z,Γb)∧ ≤ (Z, δb)∧ = Z(b∞). 2

Now we set some interesting questions related to the Mackey Problem and
Γb:

Open question 1. Is Γb = δb?

Open question 2. Is Γb (or δb, if different) the Mackey topology for (Z, λb)?

The following lemmas are easy to prove, even for a topological space instead
of a topological group.
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Lemma 3.7. Let K be a countably infinite compact subset of a Hausdorff space.
Then K is first countable, and, hence, every accumulation point in K is the
limit point of some sequence.

Proof. Let K = {xn, n ∈ N}. Fix a ∈ K. Consider for each xn ∈ K a closed
neighborhood of a (this is possible because K is regular) say Vn ⊂ K \xn. The
set {Vn, n ∈ N} and its finite intersections constitute a neighborhood basis for
a ∈ K.

In fact, if W is any open neighborhood of a, we have a family of closed sets
given by {K \W,Vn, n ∈ N} with empty intersection. Since K is compact, the
mentioned family cannot have the finite intersection property. Thus, there is a
finite subfamily {Vj , j ∈ F} such that (K \W ) ∩i∈F Vi = ∅. �

Lemma 3.8. If a countable topological group G has no nontrivial convergent
sequences, then it does not have infinite compact subsets either.

Proof. Suppose, by contradiction, that K ⊂ G is an infinite compact subset.
Since K is first countable and Hausdorff, any accumulation point is the limit
of a sequence in K. SinceK is infinite and compact, it has an accumulation
point, contradicting the fact that there does not exist convergent sequences in
G (nor in K). Hence any compact subset must be finite. �

Proposition 3.9. Let b be a basic D-sequence with bounded ratios, then the
group G = (Z,Γb) is not reflexive. In fact, the bidual G∧∧ can be identified
with Z endowed with the discrete topology.

Proof. The dual group of (Z,Γb) has supporting set Z(b∞). The Γb-compact
subsets of Z are finite by Lemma 3.8, therefore, the dual group carries the
pointwise convergence topology. Thus, G∧ is exactly Z(b∞) with the topology
induced by the euclidean of T. By [1, 4.5], the group Z(b∞) has the same
dual group as T, namely, Z with the discrete topology. We conclude that the
canonical mapping αG is an open non-continuous isomorphism. �

Corollary 3.10. Since (Z,Γb)∧∧ is discrete, the homomorphism α(Z,Γb) is not
continuous. However, it is an open algebraic isomorphism.

Proposition 3.11. Let b ∈ D`∞ and Gγ := (Z, τb). Then αGγ is a non-
surjective embedding from Gγ into G∧∧γ .

Proof. Since τb is metrizable, αGγ is continuous. The fact that τb is locally
quasi-convex and Z(b∞) separates points of Z imply that αGγ is injective and
open in its image [1, 6.10]. On the other hand, αGγ is not onto, for otherwise
Gγ would be reflexive. However, a non-discrete countable metrizable group
cannot be reflexive. Indeed, the dual of a metrizable group is a k-space ([1, 7])
and the dual group of a k-space is complete. Hence, the original group must be
complete as well. By Baire Category Theorem, the only metrizable complete
group topology on a countable group is the discrete one. �
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4. The complete topology T{bn}
In this section we consider some special families of topologies which were

introduced by Graev and deeply studied in the group of the integers by Protasov
and Zelenyuk ([15, 16]). We need first some definitions about sequences.

Definition 4.1. Let G be a group and g = (gn) ⊂ G a sequence of elements of
G. We say that g is a T -sequence if there exists a Hausdorff group topology

τ such that gn
τ→ 0. Since the topology must be Hausdorff, we can consider

that gn 6= gm if n 6= m

Lemma 4.2. Let g ⊂ G be a T -sequence, then there exists the finest group

topology T{gn} satisfying that gn
T{gn}→ 0.

Since we can describe T{gn} we are interested in finding a suitable neighbor-
hood basis for this topology.

Definition 4.3 ([16]). Let G be a group and let a = (an) be a T -sequence in
G and (ni)i∈N a sequence of natural numbers. We define:

• A∗m := {±an|n ≥ m} ∪ {0G}.
• A(k,m) := {g0 + · · ·+ gk|gi ∈ A∗m i ∈ {0, . . . , k}}.
• [n1, . . . , nk] := {g1 + · · ·+ gk : gi ∈ A∗ni , i = 1, . . . , k}.

• V(ni) =

∞⋃
k=1

[n1, . . . , nk].

Proposition 4.4. The family {V(ni) : (ni) ∈ NN} is a neighborhood basis of 0G
for a group topology T{an} on G, which is the finest among all those satisfying
an → 0. The symbol G{an} will stand for the group G endowed with T{an}.

Next, we include a theorem of great interest from [16]:

Theorem 4.5 ([16, Theorem 2.3.11]). Let (gn) be a T -sequence on a group G.
Then, the topology T{gn} is complete.

Corollary 4.6. Let b be a D-sequence and c ∈ D`∞(b). Then τc 6= T{bn}.

Applying the Baire Category Theorem, we can obtain the following corollary:

Corollary 4.7. Let G be a countable group. For any T -sequence g, the topology
T{gn} is not metrizable.

Since we are mainly interested on topologies on the group of integers, we
include the following results:

Proposition 4.8 ([16, Theorem 2.2.1]). If limn→∞
an+1

an
= ∞ then (an) is a

T -sequence in Z.

This proposition provides a condition to prove that the following sequences

are T -sequences: (bn) = (2n
2

), (ρn) = (p1 · · · · · pn), where (pn) is the sequence
of prime numbers.
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Proposition 4.9 ([16, Theorem 2.2.3]). If limn→∞
an+1

an
= r and r is a tran-

scendental number then (an) is a T -sequence in Z.

Let b be a D-sequence. It is clear (by Lemma 1.19) that b is a T -sequence.
Hence, the topology T{bn} can be constructed on Z. By Theorem 4.5, it is a
complete topology.

The following properties of Z{an} are interesting by themselves.

Remark 4.10. Let (an) be a T -sequence on Z. Then:

(1) Z{an} is sequential, but not Frechet-Urysohn ([15, Theorem 7 and The-
orem 6]).

(2) Z{an} is a kω-group ([16, Corollary 4.1.5] ).

We prove now that, for a D-sequence b with bounded ratios, the locally
quasi-convex modification of T{bn} is λb. This fact is also proved in [11, Propo-
sition 2.5], but we give here a direct proof. First we study some numerical
results in the group T:

Lemma 4.11. Let k ∈ T and m ∈ N satisfy k, 2k, . . . ,mk ∈ T+. If mk ∈ Tn,
then k ∈ Tnm.

Proof. Write k = z + y where z ∈ Z and y ∈
(
− 1

2 ,
1
2

]
. Since k ∈ T+, we have

|y| ≤ 1
4 .

Suppose that k /∈ Tnm. This means that 1
4nm < |y| ≤ 1

4 . Now, mk = mz +

my. Since 1
4n < |my| ≤

m
4 and mk ∈ Tn, we have that |my| ≥ 1− 1

4n . Hence,

there exists N ≤ k such that 1
4 < |Ny| <

3
4 . Consequently, Nk /∈ T+. �

Lemma 4.12. Let k ∈ T and let m1,m2, . . . ,mn ∈ N \ {1}. If

k, 2k, 3k, . . . ,m1k, 2m1k, . . . ,m1m2k, . . . ,(
n−1∏
i=1

mi

)
k, 2

(
n−1∏
i=1

mi

)
k, . . . ,

(
n∏
i=1

mi

)
k ∈ T+,

then k ∈ T∏n
i=1mi

.

Proof. Since
(∏n−1

i=1 mi

)
k, 2

(∏n−1
i=1 mi

)
k, . . . (

∏n
i=1mi) k ∈ T+ and

(
∏n
i=1mi) k ∈ T1, by Lemma 4.11, we have that

(∏n−1
i=1 mi

)
k ∈ Tmn .

Since
(∏n−2

i=1 mi

)
k, 2

(∏n−2
i=1 mi

)
k, . . .

(∏n−1
i=1 mi

)
k ∈ T+ and

(∏n−1
i=1 mi

)
k ∈

Tmn , by Lemma 4.11, we have that
(∏n−2

i=1 mi

)
k ∈ Tmnmn−1

.

Repeating the argument n times, we obtain that k ∈ T∏n
i=1mi

. �

Lemma 4.13. Let k ∈ T and let (mi) ∈ NN a sequence of natural numbers
satisfying mi > 1 for all i ∈ N. If

k, 2k, 3k, . . . ,m1k, 2m1k, . . . ,m1m2k, . . . ,(
n−1∏
i=1

mi

)
k, 2

(
n−1∏
i=1

mi

)
k, . . . ,

(
n∏
i=1

mi

)
k, · · · ∈ T+
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then k = 0 + Z.

Proof. By Lemma 4.12, we have that k ∈
⋂
N>0 T∏N

i=1mi
. Hence, k = 0+Z. �

Now we can study the polar of the neighborhoods in the topology T{bn}.

Proposition 4.14. Let b be a D-sequence with bounded ratios and V(ni) a
basic neighborhood of T{bn}. Then, there exists N ∈ N such that

A := {bN , 2bN , . . . , bN+1, 2bN+1, . . . , bN+2, 2bN+2, . . . } ∈ V(ni).

As a consequence V .(ni) are finite subsets of T, for any sequence (ni).

Proof. Since b has bounded ratios, there exists L ∈ N such that qn ≤ L for all
n ∈ N.

Let n1, n2, . . . , nL be the indexes satisfying that ni ≤ nj if i ∈ {1, 2, . . . , L}
and j /∈ {1, 2, . . . , L}. That is, the terms n1, . . . , nL are the L smallest ones
in (ni). Let N := max{n1, n2, . . . , nL}. Then bN , bN+1, · · · ∈ A∗ni for i ∈
{1, 2, . . . , L} and

A ⊂ {bN , 2bN , . . . , LbN , bN+1, 2bN+1, . . . , LbN+1, . . . } ⊂ [n1, n2, . . . , nL] ⊂ V(ni).

Let χ ∈ V .(ni). Since A ⊂ V(ni), it is clear that V .(ni) ⊂ A
.. Define k := χ(bN ).

Then χ(A) = {k, 2k, . . . qNk, 2qNk, . . . , qNqN+1k, . . . }. Since χ ∈ A., we have
χ(A) ⊂ T+. By Lemma 4.13, the fact k = χ(bN ) = 0 + Z follows. Hence
χ ∈ Z(bN ) and V .(ni) is finite. �

Corollary 4.15. Let b be a D-sequence with bounded ratios. Then Z∧{bn} =

Z(b∞).

Proof. Since Z{bn} =
⋃

(ni)
V .(ni), we have that Z∧{bn} ≤ Z(b∞).

Since b→ 0 in λb, λb ≤ T{bn} and Z∧{bn} ≥ Z(b∞). �

Finally, we can prove that for a D-sequence, b, with bounded ratios, the
locally quasi-convex modification of T{bn} is λb.

Theorem 4.16. Let b a D-sequence with bounded ratios. Then the locally
quasi-convex modification of T{bn} is λb.

Proof. Since the polar sets of the basic neighborhoods of T{bn} are finite, the
equicontinuous subsets in the dual group are finite as well. Hence the lo-
cally quasi-convex modification of T{bn} is precompact. Since T{bn} and its
locally quasi-convex modification are compatible topologies, it follows that(
T{bn}

)
lqc

= λb. �

Corollary 4.17. Let b a D-sequence with bounded ratios. Then T{bn} is not
locally quasi-convex.

Proof. If T{bn} were locally quasi-convex, then
(
T{bn}

)
lqc

= T{bn}, but
(
T{bn}

)
lqc

is not complete and T{bn} is complete. �
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Remark 4.18. Although the examples in Theorem 4.16 are not locally quasi-
convex, there exist examples of Graev-type topologies on Z which are locally
quasi-convex. Indeed, in [13] it is proved that there exist Graev-type topologies
on Z which are reflexive (hence locally quasi-convex).

Remark 4.19. Corollary 4.17 gives a family of examples of:

• Complete topologies whose locally quasi-convex modifications are not
complete.
• Non-metrizable topologies whose locally quasi-convex modifications are

metrizable.

Proposition 4.20. The dual group of Z{bn} coincides algebraically and topo-
logically with the dual group of (Z, λb); that is, the dual group of Z{bn} is Z(b∞)
endowed with the discrete topology.

Proof. From Corollary 4.15 the dual group of Z{bn} is Z∧{bn} = Z(b∞). Item

(2) in Remark 4.10 implies that Z∧{bn} is metrizable and complete. By Baire

Category Theorem and since Z∧{bn} is countable, we get that it is discrete.

Hence, it coincides topologically with (Z, λb)∧. �

Now we answer the question whether Z{bn} is MAP-Mackey.

Proposition 4.21. The topology Z{bn} is not MAP-Mackey.

Proof. If T{bn} were Mackey, the condition Γb ≤ T{bn} should hold. But, the
topology Γb has no convergent sequences and bn → 0 in T{bn}. �

Open question 3. Let (gn) a T -sequence in Z. If T{gn} is locally quasi-convex,
is T{gn} the Mackey Topology?

Acknowledgements. The author is thankful to the referee for the kind and
deep review.

References

[1] L. Außenhofer, Contributions to the duality theory of abelian topological groups and to

the theory of nuclear groups, Dissertationes Math. (Rozprawy Mat.) 384, (1999).
[2] L. Außenhofer and D. de la Barrera Mayoral, Linear topologies on Z are not Mackey

topologies, Journal of Pure and Applied Algebra 216, no. 6 (2012), 1340–1347.

[3] L. Außenhofer, D. de la Barrera Mayoral, D. Dikranjan and E. Mart́ın-Peinador,
’Varopoulos paradigm’: Mackey property versus metrizability in topological groups,

Revista Matemática Complutense 30, no. 1 (2017), 167-184.

[4] L. Außenhofer, D. Dikranjan and E. Mart́ın-Peinador, Locally quasi-convex compatible
topologies on a topological group, Axioms 4 (2015), 436–458.

[5] D. de la Barrera, Duality on abelian topological groups: The Mackey Problem, PhD

Thesis, Universidad Complutense de Madrid, (2015).

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 1 43



D. de la Barrera Mayoral

[6] D. de la Barrera Mayoral, Q is not Mackey group, Topology Appl. 178 (2014), 265–275.

[7] M. J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. (Basel) 70, no. 1

(1998), 22–28.
[8] M. J. Chasco, E. Mart́ın-Peinador and V. Tarieladze, On Mackey topology for groups,

Stud. Math. 132, no. 3 (1999), 257–284.

[9] L. de Leo, Weak and strong topologies in topological abelian groups, PhD Thesis, Uni-
versidad Complutense de Madrid, July 2008.

[10] J. M. Dı́az Nieto and E. Mart́ın-Peinador, Characteristics of the Mackey topology for

Abelian topological groups. J. C. Ferrando and M. López-Pellicer (eds.), Descriptive
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